
The Checker Framework:
pluggable static analysis

for Java

Werner Dietl
University of Waterloo
https://ece.uwaterloo.ca/~wdietl/

http://CheckerFramework.org/

Joint work with Michael D. Ernst and many others.

Bug Evolution

Bug Evolution

Cost of software failures

$312 billion per year global cost of software bugs (2013)
$300 billion dealing with the Y2K problem
$650 million loss by NASA Mars missions in 1999; unit
conversion bug
$500 million Ariane 5 maiden flight in 1996; 64 bit to 16 bit
conversion bug
$440 million loss by Knight Capital Group Inc. in 30
minutes in August 2012

Outline

● Pluggable type-checking
● Architecture overview

○ Java 8 syntax for Type Annotations
○ Dataflow Framework
○ Checker Framework

● Our experience
○ Case Studies
○ SPARTA: Android Security
○ VeriGames: Crowd-sourced Verification Games

● Writing your own type system

Java's type system is too weak

Type checking prevents many errors
 int i = “hello”; // error

Type checking doesn't prevent enough errors

 System.console().readLine();

 Collections.emptyList().add(“one”);

 dbStatement.executeQuery(userData);

Java's type system is too weak

Type checking prevents many errors
 int i = “hello”; // error

Type checking doesn't prevent enough errors

 System.console().readLine();

 Collections.emptyList().add(“one”);

 dbStatement.executeQuery(userData);

NullPointerException

Java's type system is too weak

Type checking prevents many errors
 int i = “hello”; // error

Type checking doesn't prevent enough errors

 System.console().readLine();

 Collections.emptyList().add(“one”);

 dbStatement.executeQuery(userData);

UnsupportedOperationException

Java's type system is too weak

Type checking prevents many errors
 int i = “hello”; // error

Type checking doesn't prevent enough errors

 System.console().readLine();

 Collections.emptyList().add(“one”);

 dbStatement.executeQuery(userData);

SQL Injection Attacks!

Static types: not expressive enough

Null pointer exceptions

 String op(Data in) {

 return “transform: ” + in.getF();

 }

 ...

 String s = op(null);

Many other properties can't be expressed

Prevent null pointer exceptions

Type system that statically guarantees that the
program only dereferences known

 non-null references

Types of data
@NonNull reference is never null
@Nullable reference may be null

Null pointer exception

 String op(Data in) {

 return “transform: ” + in.getF();

 }

 ...

 String s = op(null);

Where is the error?

Solution 1: Restrict use

 String op(@NonNull Data in) {

 return “transform: ” + in.getF();

 }

 …
 String s = op(null); // error

Solution 2: Restrict implementation

 String op(@Nullable Data in) {

 return “transform: ” + in.getF();
 // error

 }

 …
 String s = op(null);

Benefits of type systems

● Find bugs in programs
● Guarantee the absence of errors
● Improve documentation
● Improve code structure & maintainability
● Aid compilers, optimizers, and analysis tools
● Reduce number of run-time checks

● Possible negatives:
○ Must write the types (or use type inference)
○ False positives are possible (can be suppressed)

Extended type systems

● Null pointer exceptions (ICSE SEIP'11)
● Energy consumption (PLDI'11)
● Unwanted side effects (OOPSLA'04, '05, '12,

ECOOP'08, ESEC/FSE’07)
● Unstructured heaps (ECOOP'07, '11, '12)
● Malformed input (FTfJP'12)
● UI actions not on event thread (ECOOP'13)
● Information leakage (CCS’14)

Extended type systems

● Null pointer exceptions (ICSE SEIP'11)
● Energy consumption (PLDI'11)
● Unwanted side effects (OOPSLA'04, '05, '12,

ECOOP'08, ESEC/FSE’07)
● Unstructured heaps (ECOOP'07, '11, '12)
● Malformed input (FTfJP'12)
● UI actions not on event thread (ECOOP'13)
● Information leakage (CCS’14)

Theory Practice
Decades!

The Checker Framework

A framework for pluggable type checkers
“Plugs” into the OpenJDK compiler

 javac -processor MyChecker …

Eclipse plug-in, Ant and Maven integration

Optional Type Checking

Source Compiler Executable

ErrorsFix bugs
Change
types

No errors

Optional Type Checking

Source Compiler Executable

Errors Optional
Type Checker

Warnings

Fix bugs
Change
types

Fix bugs

Add/change
annotations

No errors

Guaranteed
behavior

Optional Type Checking

Source Compiler Executable

Errors Optional
Type Checker

Warnings

Guaranteed
behaviorFix bugs

Change
types

Fix bugs

Add/change
annotations

No errors

Optional
Type Checker

Optional
Type Checker

What bugs can you detect &
prevent?
The property you care about: The annotation you write:

Null dereferences @NonNull

Mutation and side-effects @Immutable

Concurrency: locking @GuardedBy

Security: encryption, @Encrypted

tainting @Untainted

Aliasing @Linear

Equality tests @Interned

Strings: localization, @Localized

Regular expression syntax @Regex

Signature format @FullyQualified

Enumerations @Fenum

Typestate (e.g., open/closed files) @State

 Users can write their own checkers!

Checker Framework experience

Type checkers reveal important latent defects
Ran on >3 million LOC of real-world open-source
code as of early 2011
Found hundreds of user-visible failures

Annotation overhead is low
Mean 2.6 annotations per kLOC

20 annotations per kLOC for Nullness Checker
[Dietl et al. ICSE'11]

Practicality

Guarantees

Testing

Formal
Verification

Allow reliable and secure
programming in practice

Code
Reviews

Type
Systems

Type
Systems

More expressive,
more practical

Outline

● Pluggable type-checking
● Architecture overview

○ Java 8 syntax for Type Annotations
○ Dataflow Framework
○ Checker Framework

● Our experience
○ Case Studies
○ SPARTA: Android Security
○ VeriGames: Crowd-sourced Verification Games

● Writing your own type system

Project overview

Java 8 type annotation feature
jsr308-langtools extensions
annotation-tools
checker-framework

javacutils
dataflow
stubparser
framework
checker: 18 default type systems

checker-framework-inference

Project overview

Java 8 type annotation feature
jsr308-langtools extensions
annotation-tools
checker-framework

javacutils
dataflow
stubparser
framework
checker: 18 default type systems

checker-framework-inference

Java 8 extends annotation syntax

Annotations on all occurrences of types:

 @Untainted String query;
 List<@NonNull String> strings;
 myGraph = (@Immutable Graph) tmp;
 class UnmodifiableList<T>
 implements @Readonly List<T> {}

Stored in classfile
Handled by javac, javap, javadoc, …

Explicit method receivers

 class MyClass {

 int foo(@TParam String p) {…}

 int foo(@TRecv MyClass this,

 @TParam String p) {…}

No impact on method binding and overloading

Constructor return & receiver types

Every constructor has a return type
 class MyClass {

 @TReturn MyClass(@TParam String p) {...}

Inner class constructors also have a receiver
 class Outer {

 class Inner {

 @TReturn Inner(@TRecv Outer Outer.this,

 @TParam String p) {...}

Array annotations

A read-only array of non-empty arrays of
English strings:

@English String @ReadOnly [] @NonEmpty [] a;

CF has invariant arrays:
@NonNull String[] is unrelated to
@Nullable String[]

Compare to Java’s unsound covariant arrays:
String[] is a subtype of Object[]

CF: Java 6 & 7 Compatibility

Annotations in comments
 List</*@NonNull*/ String> strings;

Voodoo comments for arbitrary source code
 /*>>> import myquals.TRecv; */

 ...

 int foo(/*>>> @TRecv MyClass this,*/

 @TParam String p) {…}

CF: Annotating external libraries
stub files and annotated JDK

Allows annotating external libraries

● As separate text file (stub file)
checker-framework/checker/src/…/jdk.astub

● Within its .jar file (from annotated partial
source code)
checker-framework/checker/jdk/...

Dataflow Framework

Initially for flow-sensitive type refinement
Now a project of its own right

1. Translate AST to CFG
Standard multipass visitor over AST

2. Perform dataflow analysis over CFG with
user-provided
a. Abstract value What are we tracking?
b. Transfer functions What do operations do?
c. Store What are intermediate results?

3. Allow queries about result

Control Flow Graph

CFG is a graph of basic blocks
● Conditional basic blocks to model

conditional control flow
● Exceptional edges

Use type Node for all Java operations and
expressions, e.g.,
● StringLiteralNode, FieldAccessNode, etc.
● Make up the content of basic blocks

Properties of the CFG

● Explicit representation of implicit Java
constructs
○ Unboxing, implicit type conversions, etc.
○ Analyses do not need to worry about these things
○ All control flow explicitly modeled (e.g. exceptions

on field access)
● High-level constructs

○ Close to source language
● Different from other approaches

○ Not three-address-form
○ Analysis is not performed over the AST

Checker Framework - “Framework”

● Full type systems: inheritance, overriding, ...
● Generics (type polymorphism)

○ Also qualifier polymorphism
● Flow-sensitive type qualifier inference

○ Infers types for local variables
○ reusable component

● Qualifier defaults
● Pre-/Post-conditions
● Warning suppression
● Testing infrastructure

Outline

● Pluggable type-checking
● Architecture overview

○ Java 8 syntax for Type Annotations
○ Dataflow Framework
○ Checker Framework

● Our experience
○ Case Studies
○ SPARTA: Android Security
○ VeriGames: Crowd-sourced Verification Games

● Writing your own type system

Evaluations

● Checkers reveal important latent bugs
○ Ran on >3 million LOC of real-world code
○ Found 40 user-visible bugs, hundreds of mistakes

● Annotation overhead is low
○ Mean 2.6 annotations per kLOC

● Learning their usage is easy
○ Used successfully by first-year CS majors

● Building checkers is easy
○ New users developed 3 new realistic checkers

SPARTA: Static Program Analysis
for Reliable Trusted Apps

Security type system for Android apps
Guarantees no leakage of private information

Part of DARPA’s
Automated Program Analysis
for Cybersecurity (APAC)
program

Collaborative Verification

● Software vendor and the app store auditor
collaborate on verification task

● Flow-sensitive, context-sensitive
information-flow type system

● Red Team provided 72 apps (576 kLOC)
● Detected 96% of information flow malware

and 82% of all malware

See ”Collaborative Verification of Information
Flow for a High-Assurance App Store” paper at
CCS’14

SPARTA: Static Program Analysis
for Reliable Trusted Apps

Crowd-sourced verification

Make software verification easy and fun
Make the game accessible to everyone
Harness the power of the crowd
Goal: Verify software while waiting

http://verigames.com/

FTfJP’12 paper

Building checkers is easy

Example: Ensure encrypted communication
 void send(@Encrypted String msg) {…}

 @Encrypted String msg1 = ...;

 send(msg1); // OK

 String msg2 =;

 send(msg2); // Warning!

Building checkers is easy

Example: Ensure encrypted communication
 void send(@Encrypted String msg) {…}

 @Encrypted String msg1 = ...;

 send(msg1); // OK

 String msg2 =;

 send(msg2); // Warning!

The complete checker:
 @Target(ElementType.TYPE_USE)

 @SubtypeOf(Unqualified.class)

 public @interface Encrypted {}

Testing Infrastructure

jtreg-based testing as in OpenJDK

Light-weight tests with in-line expected errors:

 String s = "%+s%";
 //:: error: (format.string.invalid)
 f.format(s, "illegal");

Defining a type system

1. Qualifier hierarchy
○ defines subtyping

2. Type introduction rules
○ types for expressions

3. Type rules
○ checker-specific errors

4. Flow-refinement
○ checker-specific flow properties

Conclusions

Java 8 syntax for type annotations
Dataflow Framework
Checker Framework for creating type checkers

○ Featureful, effective, easy to use, scalable

Prevent bugs at compile time
Create custom type-checkers
Learn more, or download at:

http://CheckerFramework.org/

