An Introduction to
Analysis and Verification of Software

Anders Mgller

University of Aarhus



Goals of this talk

 To give a brief overview of the area

o Establish some terminology, including some
“common knowledge”

* Propose study group projects

 Present some aspect by which the various projects
may be evaluated and compared

Analysis and Verification of Software



Bugs

bug: a mismatch between
Implementation
and specification

e |f there is no spec, it’s not a
bug but a feature :-)

. .
g
Mﬁ.‘-t aLik

e (Catching bugs after deployment
can be expensive

e Detecting bugs vs. guaranteeing correctness?

Analysis and Verification of Software 3



Properties of Interest

Where does (semi-)automated analysis and verification
have a chance?

e resource management (memory, files, allocation, locking)

e temporal properties (event ordering, concurrency,
deadlocks, safety/liveness)

o datatype invariants (shapes, memory errors)
e security (integrity, confidentiality)
 numerical computations

Typical bugs? See e.g. bugzilla.mozilla.org or bugzilla.kernel.org

Analysis and Verification of Software 4



Rice’'s Theorem

“Everything interesting about the behavior of

programs Is undecidable.”
[paraphrase of H.G. Rice, 1953]

« Approximations (perferably conservative)
e Annotations (invariants)

Analysis and Verification of Software



Verification vs. Analysis

o Verification: checking invariants
e Analysis: detecting invariants

— this is just one possible definition of the words
— In practical tools, there is a large overlap
— analysis Is not necessarily “harder” than verification

Analysis and Verification of Software



Relation to Debugging

 Debugging: you know there is a bug,
but not exactly where it is

 Verification: you hope there are no bugs,
but you want to be sure

* Analysis tools can be used to enhance program
understanding (e.g. “program slicing”)

 Verification tools can often provide counterexamples

Analysis and Verification of Software



Relation to Testing

“Program testing can be used to show
the presence of bugs, but never to show
their absence.” [Dijkstra, 1972]

Analysis and Verification of Software



Relation to Program Optimization

 Many of the same program analysis techniques apply

« Moore's law: “the performance of microprocessors
doubles every 18 months”

 Proebsting's law: “compiler technology doubles the
performance of typical programs every 18 years”

e Conclusion: analysis/verification is more fun than
optimization ©

e or: invent new high-level languages that need new
optimization techniques!

Analysis and Verification of Software



Relation to Programming Language Design

 Programming at a higher level of abstraction
can reduce the possibility of errors

 Examples:
— type systems (note: types are invariants!)
— abstract data-types
— object oriented encapsulation and inheritance
— domain-specific languages

Analysis and Verification of Software

10



A Spectrum of Techniques

o Light-weight

— unsound and incomplete

— bug searching via simulation

— simple properties, efficient and easy to use
 Medium-weight

— sound butincomplete

— analysis via fixed-point computation, type checking/inference

 Heavy-weight
— sound and complete

— verification via theorem proving and user annotations
— complex properties, resource demanding and difficult to use

Analysis and Verification of Software

11



Aspects

domain of applicability (model heap, object state, events,
numerical, parallelism, hardware/software, sequential/concurrent,
reactive/transformational...)

expressive power (fixed properties vs. using logic/automata in specs)
degree of automation, annotations, theorem prover guidance
modularity (interprocedural, whole-program, iteration, ...)

scalability (program size)

efficiency (time & space), theoretical complexity

learnability (training requirements)

soundness/completeness, spurious errors, heuristics, transparency
(e.g. type systems should be transparent)

error tracking (precision of error messages), counterexamples

division between program abstraction and solution computation
(verification conditions)

Analysis and Verification of Software

12



Approaches

Axiomatic Semantics
— Hoare logic, weakest precondition, separation logics
— often used for sequential transformational programs

Abstract Interpretation
— data-flow analysis, constraint-based analysis

Model Checking

— State-space exploration with modal logics
— often used for concurrent reactive systems

« Type Systems
— type checking and inference

Analysis and Verification of Software

13



Hot Research Projects and Topics

« SLAM - model checking for boolean programs and C, abstraction refinement
« Java PathFinder - model checking for Java

« Bandera - model checking for Java

« Blast - model checking for C, abstraction refinement

« SPIN - LTL model checking

« ESP - control-flow + data-flow analysis on C/C++

o 3-Valued Logic Analysis Engine - TVLA - shape analysis

« BANE/Banshee - constraint-based program analysis

» Abstract Interpretation - foundation for program analysis

 Behave! - checking behavioral properties using type systems and Pi-calculus
« Vault - type system for a safe version of C

e Cyclone - type system for a safe version of C

o CQual - type qualifiers for C

« PVS - verification system based on theorem proving with higher-order logic

« ESC/Java - theorem proving for light-weight properties

« Proof-Carrying Code - safe execution of untrusted code

 Meta-Level Compilation / Metal - finding bugs in system code, e.g. Linux kernel

Analysis and Verification of Software 14



