
An Introduction toAn Introduction to
Analysis and Verification of SoftwareAnalysis and Verification of Software

Anders Møller

University of Aarhus

Analysis and Verification of Software 2

Goals of this talk

• To give a brief overview of the area
• Establish some terminology, including some

“common knowledge”
• Propose study group projects
• Present some aspect by which the various projects

may be evaluated and compared

Analysis and Verification of Software 3

Bugs

bug: a mismatch between
implementation
and specification

• If there is no spec, it’s not a
bug but a feature :-)

• Catching bugs after deployment
can be expensive

• Detecting bugs vs. guaranteeing correctness?

Analysis and Verification of Software 4

Properties of Interest

Where does (semi-)automated analysis and verification
have a chance?

• resource management (memory, files, allocation, locking)
• temporal properties (event ordering, concurrency,

deadlocks, safety/liveness)
• datatype invariants (shapes, memory errors)
• security (integrity, confidentiality)
• numerical computations
• ...

Typical bugs? See e.g. bugzilla.mozilla.org or bugzilla.kernel.org

Analysis and Verification of Software 5

Rice’s Theorem

“Everything interesting about the behavior of
programs is undecidable.”

[paraphrase of H.G. Rice, 1953]

• Approximations (perferably conservative)
• Annotations (invariants)

Analysis and Verification of Software 6

Verification vs. Analysis

• Verification: checking invariants

• Analysis: detecting invariants

– this is just one possible definition of the words
– in practical tools, there is a large overlap
– analysis is not necessarily “harder” than verification

Analysis and Verification of Software 7

Relation to Debugging

• Debugging: you know there is a bug,
but not exactly where it is

• Verification: you hope there are no bugs,
but you want to be sure

• Analysis tools can be used to enhance program
understanding (e.g. “program slicing”)

• Verification tools can often provide counterexamples

Analysis and Verification of Software 8

Relation to Testing

“Program testing can be used to show
the presence of bugs, but never to show
their absence.” [Dijkstra, 1972]

Analysis and Verification of Software 9

Relation to Program Optimization

• Many of the same program analysis techniques apply

• Moore's law: “the performance of microprocessors
doubles every 18 months”

• Proebsting's law: “compiler technology doubles the
performance of typical programs every 18 years”

• Conclusion: analysis/verification is more fun than
optimization ☺

• or: invent new high-level languages that need new
optimization techniques!

Analysis and Verification of Software 10

Relation to Programming Language Design

• Programming at a higher level of abstraction
can reduce the possibility of errors

• Examples:
– type systems (note: types are invariants!)
– abstract data-types
– object oriented encapsulation and inheritance
– domain-specific languages

Analysis and Verification of Software 11

A Spectrum of Techniques

• Light-weight
– unsound and incomplete
– bug searching via simulation
– simple properties, efficient and easy to use

• Medium-weight
– sound but incomplete
– analysis via fixed-point computation, type checking/inference

• Heavy-weight
– sound and complete
– verification via theorem proving and user annotations
– complex properties, resource demanding and difficult to use

Analysis and Verification of Software 12

Aspects

• domain of applicability (model heap, object state, events,
numerical, parallelism, hardware/software, sequential/concurrent,
reactive/transformational...)

• expressive power (fixed properties vs. using logic/automata in specs)
• degree of automation, annotations, theorem prover guidance
• modularity (interprocedural, whole-program, iteration, ...)
• scalability (program size)
• efficiency (time & space), theoretical complexity
• learnability (training requirements)
• soundness/completeness, spurious errors, heuristics, transparency

(e.g. type systems should be transparent)
• error tracking (precision of error messages), counterexamples
• division between program abstraction and solution computation

(verification conditions)

Analysis and Verification of Software 13

Approaches

• Axiomatic Semantics
– Hoare logic, weakest precondition, separation logics
– often used for sequential transformational programs

• Abstract Interpretation
– data-flow analysis, constraint-based analysis

• Model Checking
– state-space exploration with modal logics
– often used for concurrent reactive systems

• Type Systems
– type checking and inference

Analysis and Verification of Software 14

Hot Research Projects and Topics

• SLAM - model checking for boolean programs and C, abstraction refinement
• Java PathFinder - model checking for Java
• Bandera - model checking for Java
• Blast - model checking for C, abstraction refinement
• SPIN - LTL model checking
• ESP - control-flow + data-flow analysis on C/C++
• 3-Valued Logic Analysis Engine - TVLA - shape analysis
• BANE/Banshee - constraint-based program analysis
• Abstract Interpretation - foundation for program analysis
• Behave! - checking behavioral properties using type systems and Pi-calculus
• Vault - type system for a safe version of C
• Cyclone - type system for a safe version of C
• CQual - type qualifiers for C
• PVS - verification system based on theorem proving with higher-order logic
• ESC/Java - theorem proving for light-weight properties
• Proof-Carrying Code - safe execution of untrusted code
• Meta-Level Compilation / Metal - finding bugs in system code, e.g. Linux kernel

