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Goals of this talk

 To give a brief overview of the area

o Establish some terminology, including some
“common knowledge”

* Propose study group projects

 Present some aspect by which the various projects
may be evaluated and compared
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Bugs

bug: a mismatch between
Implementation
and specification

e |f there is no spec, it’s not a
bug but a feature :-)
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e (Catching bugs after deployment
can be expensive

e Detecting bugs vs. guaranteeing correctness?
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Properties of Interest

Where does (semi-)automated analysis and verification
have a chance?

e resource management (memory, files, allocation, locking)

e temporal properties (event ordering, concurrency,
deadlocks, safety/liveness)

o datatype invariants (shapes, memory errors)
e security (integrity, confidentiality)
 numerical computations

Typical bugs? See e.g. bugzilla.mozilla.org or bugzilla.kernel.org
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Rice’'s Theorem

“Everything interesting about the behavior of

programs Is undecidable.”
[paraphrase of H.G. Rice, 1953]

« Approximations (perferably conservative)
e Annotations (invariants)
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Verification vs. Analysis

o Verification: checking invariants
e Analysis: detecting invariants

— this is just one possible definition of the words
— In practical tools, there is a large overlap
— analysis Is not necessarily “harder” than verification
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Relation to Debugging

 Debugging: you know there is a bug,
but not exactly where it is

 Verification: you hope there are no bugs,
but you want to be sure

* Analysis tools can be used to enhance program
understanding (e.g. “program slicing”)

 Verification tools can often provide counterexamples
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Relation to Testing

“Program testing can be used to show
the presence of bugs, but never to show
their absence.” [Dijkstra, 1972]
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Relation to Program Optimization

 Many of the same program analysis techniques apply

« Moore's law: “the performance of microprocessors
doubles every 18 months”

 Proebsting's law: “compiler technology doubles the
performance of typical programs every 18 years”

e Conclusion: analysis/verification is more fun than
optimization ©

e or: invent new high-level languages that need new
optimization techniques!
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Relation to Programming Language Design

 Programming at a higher level of abstraction
can reduce the possibility of errors

 Examples:
— type systems (note: types are invariants!)
— abstract data-types
— object oriented encapsulation and inheritance
— domain-specific languages
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A Spectrum of Techniques

o Light-weight

— unsound and incomplete

— bug searching via simulation

— simple properties, efficient and easy to use
 Medium-weight

— sound butincomplete

— analysis via fixed-point computation, type checking/inference

 Heavy-weight
— sound and complete

— verification via theorem proving and user annotations
— complex properties, resource demanding and difficult to use
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Aspects

domain of applicability (model heap, object state, events,
numerical, parallelism, hardware/software, sequential/concurrent,
reactive/transformational...)

expressive power (fixed properties vs. using logic/automata in specs)
degree of automation, annotations, theorem prover guidance
modularity (interprocedural, whole-program, iteration, ...)

scalability (program size)

efficiency (time & space), theoretical complexity

learnability (training requirements)

soundness/completeness, spurious errors, heuristics, transparency
(e.g. type systems should be transparent)

error tracking (precision of error messages), counterexamples

division between program abstraction and solution computation
(verification conditions)
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Approaches

Axiomatic Semantics
— Hoare logic, weakest precondition, separation logics
— often used for sequential transformational programs

Abstract Interpretation
— data-flow analysis, constraint-based analysis

Model Checking

— State-space exploration with modal logics
— often used for concurrent reactive systems

« Type Systems
— type checking and inference
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Hot Research Projects and Topics

« SLAM - model checking for boolean programs and C, abstraction refinement
« Java PathFinder - model checking for Java

« Bandera - model checking for Java

« Blast - model checking for C, abstraction refinement

« SPIN - LTL model checking

« ESP - control-flow + data-flow analysis on C/C++

o 3-Valued Logic Analysis Engine - TVLA - shape analysis

« BANE/Banshee - constraint-based program analysis

» Abstract Interpretation - foundation for program analysis

 Behave! - checking behavioral properties using type systems and Pi-calculus
« Vault - type system for a safe version of C

e Cyclone - type system for a safe version of C

o CQual - type qualifiers for C

« PVS - verification system based on theorem proving with higher-order logic

« ESC/Java - theorem proving for light-weight properties

« Proof-Carrying Code - safe execution of untrusted code

 Meta-Level Compilation / Metal - finding bugs in system code, e.g. Linux kernel
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