
Precise Analysis of String ExpressionsPrecise Analysis of String Expressions

University of Aarhus

http://www.brics.dk/~amoeller/talks/strings.pdf

Aske Simon Christensen
Anders Møller

Michael I. Schwartzbach

Precise Analysis of String Expressions 2

Motivation

Does this program always produce syntactically correct
SQL queries?

public void printAddresses(int id) throws SQLException {

Connection con = DriverManager.getConnection(“stud.db”);

String q = "SELECT * FROM address";

if (id != 0) q = q + "WHERE studentid=" + id;

ResultSet rs = con.createStatement().executeQuery(q);

while (rs.next()) {

System.out.println(rs.getString("addr"));

}

}

Precise Analysis of String Expressions 3

Motivation

How do we determine the control flow in programs
that use reflection and Class.forName?

Sorter getSorter(int i) {
String s = "algorithms.sorting.";
switch(i) {
case 0: s = s+"Bubble";

break;
case 1: s = s+"Merge";

break;
default: s = s+"Quick";

break;
}
Class c = Class.forName(s);
return (Sorter) c.newInstance();

}

Precise Analysis of String Expressions 4

Motivation

What are the possible outcomes of this program?

static String bar(int n, int k, String op) {
if (k==0) return "";
return op+n+"]"+bar(n-1,k-1,op)+" ";

}
static String foo(int n) {
StringBuffer b = new StringBuffer();
if (n<2) b.append("(");
for (int i=0; i<n; i++) b.append("(");
String s = bar(n-1,n/2-1,"*").trim();
String t = bar(n-n/2,n-(n/2-1),"+").trim();
return b.toString()+n+(s+t).replace(']',')');

}
public static void main(String args[]) {
int n = new Random().nextInt(100);
System.out.println(foo(n));

}

Precise Analysis of String Expressions 5

Goal for the Analysis

• Given a Java program,
find for each string expression E
an upper approximation of
the set of values that E may have at runtime

• We want the results as finite-state automata (FAs)

• For a given program, we are typically interested in
only some string expressions, which we call hotspots

• Observation: concatenation is the central string operation

Precise Analysis of String Expressions 6

Use the Standard Dataflow Analysis Framework?

• The lattice of regular languages has infinite height
• Widening???

Precise Analysis of String Expressions 7

Our Approach

Java → Flow graph → CFGs → FAs

front-end back-end

Precise Analysis of String Expressions 8

Flow Graphs

One node per expression, edges represent def-use:

• constant:

• join:

• concat:

(We ignore other string operations for now...)

L(n) ⊇ reg

L(n) ⊇ L(mi)

L(n) ⊇ L(m) L(p)

reg
n

Concat n

p
m

m1 n
m2

m3

Precise Analysis of String Expressions 9

Example

String foo(Random r) {

if (r.nextBoolean()) return “x”;

else return

“(“ + foo(r) + “+” + foo(r) + “)”;

}
(

Concat

Concat

Concat

Concat

+

)x

Precise Analysis of String Expressions 10

Context-Free Grammars

Grammar G = (Σ, N, P) with 3 kinds of productions:

• A → reg

• A → B

• A → B C

L(A): Language derivable from G with A as start symbol

L(A) ⊇ reg

L(A) ⊇ L(B)

L(A) ⊇ L(B) L(C)

Obtaining the CFG from
the flow graph is trival!

Precise Analysis of String Expressions 11

From CFGs to FAs

Sufficient conditions for L(A) to be a regular language:
• G is right-linear, or
• G is left-linear, or
• G is strongly regular (every strongly connected

component is left-linear or right-linear)

Precise Analysis of String Expressions 12

Right-Linear Grammars to FAs

For a right-linear grammar:

• Make a state A representing L(A) for each A ∈ N,
plus an additional final state M

• A → reg B

• A → reg

Each hotspot corresponds to a specific start state

reg

reg
A B

A M

Precise Analysis of String Expressions 13

Example

A → x B
B → y
B → z A

(Assume that A is the only hotspot here)

A

B
x

y

z

- for left-linear, just reverse the edges and swap start and final states

Precise Analysis of String Expressions 14

Strongly Regular Grammars to FAs

• Bottom-up traversal of the strongly connected components
• For each component, convert to FA by viewing

nonterminals in “lower” components as terminals!

A → x B
B → C
B → z A
C → D y
D → z
D → C w

A
B

C

D

right-linear component

left-linear component

Precise Analysis of String Expressions 15

Approximation

Given a non-strongly regular grammar G = (Σ, N, P),
we need a grammar G’ = (Σ, N’, P’) such that

• G’ is strongly regular

• N ⊆ N’

• For all A ∈ N representing hotspots, LG(A) ⊆ LG’ (A)

• LG’ (A) \ LG(A) is “small”

Precise Analysis of String Expressions 16

The Mohri-Nederhof Algorithm

Transforms each non-linear component into a right-linear:

• For each nonterminal A, add a “follows” nonterminal A’
• A → reg ⇒ A → reg A’
• A → B C ⇒ A → B, B’ → C, C’ → A’
• A → reg1 reg2 ⇒ A → R A’, R → reg1 reg2

• A → reg B ⇒ A → reg B, B’ → A’
• A → B reg ⇒ A → B, B’ → reg A’
• if A is a hotspot or used in another component: add A’ → ε

(This elegant algorithm originates from speech recognition.)

Precise Analysis of String Expressions 17

Example

B → y A
C → B z
D → C A
E → D w
A → x
A → E

B → y A, A → B’
C → B, B’ → z C’
D → C, C’ → A, A’ → D’
E → D, D’ → w E’
A → x A’
A → E, E’ → A’
A’ → ε

(Assume that only A is a hotspot or used in another component)

Precise Analysis of String Expressions 18

Multi-Level Finite Automata

• From the strongly regular grammar,
extracting an FA for a single hotspot is easy

• However, we typically have many hotspots

• An MLFA is an automaton with 2 kinds of transitions:

reg

(p,q)

• every state is assigned a “level”

• p and q are states at a lower level
than r and s
(represent a start and a final state)

r s

sr

Precise Analysis of String Expressions 19

From Strongly Regular Grammar to MLFA

• Each grammar component corresponds to an MLFA level

• The (p,q) transitions are used for nonterminals that are
defined in another component (at a lower level)

Precise Analysis of String Expressions 20

From MLFA to FAs

• Each hotspot corresponds to a grammar nonterminal

• Each grammar nonterminal corresponds to a pair of
MLFA states (a start and a final state)

• For each state pair, we can extract an (N)FA
(by “unfolding” the (p,q) transitions)

• Apply memoization to avoid redundant computations

Precise Analysis of String Expressions 21

Handling Other String Operations

• insert, substring, replace, trim, toLowerCase, ...

• Extend the grammars with unary/binary
operation productions, e.g.:

A → toLowerCase(B)

• Extend the MLFAs with operation transitions, e.g.:

• To make this work, we must have
1. no cycles containing special string operations
2. automaton operations approximating the special string operations

toLowerCase(p,q)
sr

Precise Analysis of String Expressions 22

Breaking Operation Cycles

• Example:
A → delete(A) (delete deletes an unknown substring)

A → A A
A → B

• Character Set Approximation:
– pick an operation production A → op(B) in the loop
– replace it by A → (charsop(B))*

where charsop(B) is the set of individual characters that may
appear in strings derived from op(B)

Precise Analysis of String Expressions 23

Analysis Interface

• Implementation for Java, supporting all String and
StringBuffer operations

• analyze(string,regexp)
– indicates analysis points
– no effect at runtime

• cast(string,regexp)
– asserts values of strings, throws exception if violated
– for “helping” the analysis

• check(string,regexp)
– tests regular set membership, returns boolean
– no effect for analysis

Precise Analysis of String Expressions 24

The Front End

Java → class files → Soot / Jimple → intermediate code → flow graph

Challenges:
• virtual method invocations, exceptions
• aliasing of mutable data (arrays, StringBuffer)
• escaping and intrusion (to/from unknown code)
• def-use edges (reaching definitions analysis on intermediate code)

• 3-address format for bytecode suitable for analysis
• intraprocedural control-flow graphs
• class hierarchy analysis for interprocedural flow
• null-pointer analysis
• alias analysis

compact representation
that only considers
expressions of type
String and
StringBuffer
(and array variants)
and control flow

Precise Analysis of String Expressions 25

Soundness and Complexity

• Java → flow graph
extended CFG → strongly-regular grammar

• flow graph → extended CFG
strongly-regular grammar → MLFA → FAs

• flow graph → MLFA: linear time
• MLFA → (N)FAs: exponential (worst case)

conservative
approximation

exact

Precise Analysis of String Expressions 26

Applications

• JWIG / XACT: static analysis for extensions of Java for
programming Web services and XML transformations

• Call graphs for Java programs that use reflection
through the Class.forName method

• Syntax checking of expressions that are dynamically
generated as strings (e.g. SQL / JDBC)
– also foundation for type checking!

Precise Analysis of String Expressions 27

Conclusion

• Precise and efficient analysis of string expressions
• Implementation for full Java
• Convenient runtime system

• More information:
– Precise Analysis of String Expressions,

Christensen, Møller, and Schwartzbach,
Proc. 10th International Static Analysis Symposium (SAS’03)

– Static Checking of Dynamically Generated Queries in Database Applications,
Gould, Su, Devanbu,
Proc. 26th International Conference on Software Engineering (ICSE’04)

– http://www.brics.dk/JSA/

