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Motivation

Does this program always produce syntactically correct
SQL queries?

public void printAddresses(int id) throws SQLException {

Connection con = DriverManager.getConnection(“stud.db”);

String q = "SELECT * FROM address";

if (id != 0) q = q + "WHERE studentid=" + id;

ResultSet rs = con.createStatement().executeQuery(q);

while (rs.next()) {

System.out.println(rs.getString("addr"));

}

}
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Motivation

How do we determine the control flow in programs 
that use reflection and Class.forName?

Sorter getSorter(int i) {
String s = "algorithms.sorting.";
switch(i) {
case 0:  s = s+"Bubble";

break;
case 1:  s = s+"Merge";

break;
default: s = s+"Quick";

break;
}
Class c = Class.forName(s);
return (Sorter) c.newInstance();

}
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Motivation

What are the possible outcomes of this program?

static String bar(int n, int k, String op) {
if (k==0) return "";
return op+n+"]"+bar(n-1,k-1,op)+" ";

}
static String foo(int n) {
StringBuffer b = new StringBuffer();
if (n<2) b.append("(");
for (int i=0; i<n; i++) b.append("(");
String s = bar(n-1,n/2-1,"*").trim();
String t = bar(n-n/2,n-(n/2-1),"+").trim();
return b.toString()+n+(s+t).replace(']',')');

}
public static void main(String args[]) {
int n = new Random().nextInt(100);
System.out.println(foo(n));

}
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Goal for the Analysis

• Given a Java program, 
find for each string expression E
an upper approximation of 
the set of values that E may have at runtime

• We want the results as finite-state automata (FAs)

• For a given program, we are typically interested in 
only some string expressions, which we call hotspots

• Observation: concatenation is the central string operation



Precise Analysis of String Expressions 6

Use the Standard Dataflow Analysis Framework?

• The lattice of regular languages has infinite height
• Widening???
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Our Approach

Java  → Flow graph  → CFGs  → FAs

front-end back-end
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Flow Graphs

One node per expression, edges represent def-use:

• constant:

• join:

• concat:

(We ignore other string operations for now...)

L(n) ⊇ reg

L(n) ⊇ L(mi) 

L(n) ⊇ L(m) L(p) 

reg
n

Concat n

p
m

m1 n
m2

m3
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Example

String foo(Random r) {

if (r.nextBoolean()) return “x”;

else return

“(“ + foo(r) + “+” + foo(r) + “)”;

}
(

Concat

Concat

Concat

Concat

+

)x
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Context-Free Grammars

Grammar G = (Σ, N, P) with 3 kinds of productions:

• A → reg

• A → B

• A → B C

L(A): Language derivable from G with A as start symbol

L(A) ⊇ reg

L(A) ⊇ L(B) 

L(A) ⊇ L(B) L(C) 

Obtaining the CFG from
the flow graph is trival!
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From CFGs to FAs

Sufficient conditions for L(A) to be a regular language:
• G is right-linear, or
• G is left-linear, or
• G is strongly regular (every strongly connected 

component is left-linear or right-linear)



Precise Analysis of String Expressions 12

Right-Linear Grammars to FAs

For a right-linear grammar:

• Make a state A representing L(A) for each A ∈ N, 
plus an additional final state M

• A → reg B

• A → reg

Each hotspot corresponds to a specific start state

reg

reg
A B

A M
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Example

A → x B
B → y
B → z A

(Assume that A is the only hotspot here)

A

B
x

y

z

- for left-linear, just reverse the edges and swap start and final states
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Strongly Regular Grammars to FAs

• Bottom-up traversal of the strongly connected components
• For each component, convert to FA by viewing 

nonterminals in “lower” components as terminals!

A → x B
B → C
B → z A
C → D y
D → z
D → C w

A
B

C

D

right-linear component

left-linear component
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Approximation

Given a non-strongly regular grammar G = (Σ, N, P), 
we need a grammar G’ = (Σ, N’, P’ ) such that

• G’ is strongly regular

• N ⊆ N’

• For all A ∈ N representing hotspots, LG(A) ⊆ LG’ (A)

• LG’ (A) \ LG(A) is “small”
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The Mohri-Nederhof Algorithm

Transforms each non-linear component into a right-linear:

• For each nonterminal A, add a “follows” nonterminal A’
• A → reg ⇒ A → reg A’
• A → B C ⇒ A → B,   B’ → C,   C’ → A’
• A → reg1 reg2 ⇒ A → R A’,   R → reg1 reg2

• A → reg B ⇒ A → reg B,   B’ → A’
• A → B reg ⇒ A → B,   B’ → reg A’
• if A is a hotspot or used in another component:  add  A’ → ε

(This elegant algorithm originates from speech recognition.)
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Example

B → y A
C → B z
D → C A
E → D w
A → x
A → E

B → y A,   A → B’
C → B,   B’ → z C’
D → C,   C’ → A,   A’ → D’
E → D,   D’ → w E’
A → x A’
A → E,   E’ → A’
A’ → ε

(Assume that only A is a hotspot or used in another component)
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Multi-Level Finite Automata

• From the strongly regular grammar, 
extracting an FA for a single hotspot is easy

• However, we typically have many hotspots

• An MLFA is an automaton with 2 kinds of transitions:

reg

(p,q)

• every state is assigned a “level” 

• p and q are states at a lower level 
than r and s
(represent a start and a final state)

r s

sr
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From Strongly Regular Grammar to MLFA

• Each grammar component corresponds to an MLFA level

• The (p,q) transitions are used for nonterminals that are 
defined in another component (at a lower level)
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From MLFA to FAs

• Each hotspot corresponds to a grammar nonterminal

• Each grammar nonterminal corresponds to a pair of 
MLFA states (a start and a final state)

• For each state pair, we can extract an (N)FA
(by “unfolding” the (p,q) transitions)

• Apply memoization to avoid redundant computations 
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Handling Other String Operations

• insert, substring, replace, trim, toLowerCase, ...

• Extend the grammars with unary/binary 
operation productions, e.g.:

A → toLowerCase(B)

• Extend the MLFAs with operation transitions, e.g.:

• To make this work, we must have
1. no cycles containing special string operations
2. automaton operations approximating the special string operations

toLowerCase(p,q)
sr
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Breaking Operation Cycles

• Example:
A → delete(A) (delete deletes an unknown substring)

A → A A
A → B

• Character Set Approximation:
– pick an operation production A → op(B)  in the loop
– replace it by A → (charsop(B))*

where charsop(B) is the set of individual characters that may 
appear in strings derived from op(B)
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Analysis Interface

• Implementation for Java, supporting all String and 
StringBuffer operations

• analyze(string,regexp)
– indicates analysis points
– no effect at runtime

• cast(string,regexp)
– asserts values of strings, throws exception if violated
– for “helping” the analysis

• check(string,regexp)
– tests regular set membership, returns boolean
– no effect for analysis
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The Front End

Java → class files  → Soot / Jimple  → intermediate code → flow graph

Challenges:
• virtual method invocations, exceptions
• aliasing of mutable data (arrays, StringBuffer)
• escaping and intrusion (to/from unknown code)
• def-use edges (reaching definitions analysis on intermediate code)

• 3-address format for bytecode suitable for analysis
• intraprocedural control-flow graphs
• class hierarchy analysis for interprocedural flow
• null-pointer analysis
• alias analysis

compact representation
that only considers
expressions of type 
String and 
StringBuffer 
(and array variants)
and control flow
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Soundness and Complexity

• Java → flow graph
extended CFG → strongly-regular grammar             

• flow graph → extended CFG
strongly-regular grammar → MLFA → FAs

• flow graph → MLFA:    linear time
• MLFA → (N)FAs:         exponential (worst case)

conservative 
approximation

exact
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Applications

• JWIG / XACT:  static analysis for extensions of Java for 
programming Web services and XML transformations

• Call graphs for Java programs that use reflection
through the Class.forName method

• Syntax checking of expressions that are dynamically 
generated as strings (e.g. SQL / JDBC)
– also foundation for type checking!
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Conclusion

• Precise and efficient analysis of string expressions
• Implementation for full Java
• Convenient runtime system

• More information:
– Precise Analysis of String Expressions,

Christensen, Møller, and Schwartzbach,
Proc. 10th International Static Analysis Symposium (SAS’03)

– Static Checking of Dynamically Generated Queries in Database Applications,
Gould, Su, Devanbu,
Proc. 26th International Conference on Software Engineering (ICSE’04)

– http://www.brics.dk/JSA/


