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Analyzing the Heap

Heap: an untidy pile or mass of things
[Cambridge Dictionary]

* This is how most program analyses view the heap

* because pointers are notoriously difficult to
reason about

* but they are an important part of most
programming languages...
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Example

: Reversing a Linked List

struct Node {
struct Node *n;
int data;

}

Node *reverse(Node *x) {
Node "y, *t;
y = NULL;
while (x != NULL) {
t=y;
=5
X = X->n;
Vo=
}

return y;

}

Assume that the input is an acyclic list,
argue that

* there are no null pointer dereferences
* no elements are lost

* the output is an acyclic list

* the output is the reverse of the input

 no other parts of the heap are modified
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Why is this difficult?

In addition to the usual problems with software verification,

« destructive updating through pointers (x->f = y)
can make complex structures

* the heap has unbounded size

« data-structure invariants typically only hold at the
beginning and end of operations
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Three Approaches

« Separation Logic (Reynolds & O’'Hearn)

— an extension of Hoare logic

 Parametric Shape Analysis (Sagiv, Reps & Wilhelm)

— data-flow analysis using three-valued logic

* Pointer Assertion Logic (Mgller & Schwartzbach)
— using monadic second-order logic on trees
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Hoare Logic

/ program statement

Hoare triple: {P} S {Q}
7 R

precondition postcondition

« partial correctness: if S is executed in a store initially satisfying P

and it terminates, then the final store satisfies Q

« the assertion language is typically predicate logic
with transitive closure or inductively defined predicates
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Hoare Logic and Pointers

Consider the standard axiom for assignment:

{QIE/X]} X=E; {Q}

Example: {y+7>42} x=y+7; {x>42}

This is unsound in presence of pointers!

Example: @ =75 *@

aliasing?

v
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A possible solution?

|dea: view the heap as an array for each field

{Q[FIX—EVF]} x->F=E: {Q}

This works, but forces global reasoning
- every heap assignment seems to affect every heap assertion
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Reversing a Linked List, cont.

Consider a possible loop invariant:

Jo,B: LIST[0(X) A LISTIRI(Y) A atgR= oR-pB

Unfortunately, it is not enough:
« we must explicitly forbid sharing between the x and y lists

* we must explicitly state that

every other part of the heap is unaffected!
- this makes modular specifications impossible
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Separation Logic

New assertions:

c emp

- E— FE,,.F E,|
e P+xQ

e P—Q
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AXxioms

Axiom for assignment to the heap (“mutation”):

X—p, F_o} xsF=g: {X+ p,FE,oc}

Axiom for assignment from the heap (“lookup”):

{Y=pFV,o} x=v>F: {X=VaYpFV,o}

- variants for backwards reasoning also exist
- allocation/disposal, pointer arithmetic, etc., also works
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The Frame Rule, Local Reasoning

{P} s {Q}
{P+R} S {Q+R}

« all heap cells that are not mentioned in the specification
are guaranteed to remain unchanged!

* many other new inference rules...

* now the loop invariant works immediately
for the list reversal example:

Jo,B: (LIST[](x) * LISTIRI(Y)) A oiR= aR-p
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Parametric Shape Analysis

Automatic inference of “shape invariants”
using data-flow analysis with three-valued logic
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Representing Concrete Stores using Logic

A logical structure consists of
* a universe of elements
a family of basic predicates

let the universe represent the set of heap cells
each variable x is described by a unary predicate x(p)
each field f is described by a binary predicate f(p,q)
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Example of a Logical Structure

The store

Is described by the logical structure whose universe is
{a,b,c,d} and the basic predicates are interpreted by:

O =190
- O |T
o OO0
o O|Qa

O O T QO |=h
o O O O
© O O -~ |T
© O -~ OO0
© -~ O O|Q
o O T 90 |@Q
O O O O
o O -~ O|T
O O O O|o
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Queries

Queries are expressed in
first-order logic with transitive closure

« Are x and y pointer aliases?
Ap: x(p) A y(p)

* Does x point to a cell with a self cycle?
dp: x(p) A n(p,p)

Do x and y refer to disjoint structures?
~dp,q,r: x(p) A y(q) A n*(p,r) A n*(q,r)
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Operational Semantics by Predicate Transformation

Statements that modify the store can be described
using predicate transformation:

X = NULL X(p)=0
* X=Y X'(p) = y(p)
o x=y->f X'(p) = 39: y(q) A f(q,p)

y->f = X f(p,a) = (y(p) A x(q)) v (=y(p) A f(p,q))
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Program Analysis

How can this be used as a basis for program analysis?

» |dea: use the standard data-flow analysis framework
with the lattice being sets of logical structures

 however, the concrete structures have unbounded size
(the lattice needs to have finite height)...

« we need some abstraction!
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Canonical Abstraction

Collapse elements that cannot be
distinguished by unary predicates

y
XM Loh@ 0 x—@) fé..ﬁ.@%f
9 g

- the lattice of sets of these abstract structures is finite!
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Kleene’s 3-Valued Logic

« 0 = false/never
* 1 =true/always
« 1/, =don’t know

AlO 1 1/

0 1 1/, Z

; 0/0 0 O

=[1 0 1/, 0 0,
1,10 17, 1/,
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Abstract Structures are 3-Valued Logic Structures

f f e X
x —»(3) ? ....‘:f ,
9

* a 3-valued structure S represents

a set of 2-valued structures {T,, T,, ...}

ab cd fla b cd gla b cd
10 O al0O1 O al0O 0O O
01 O bOO1/2 b0 1 O
d{j0O 0O O

cd001/2C

« evaluating a query formula ® on S is a conservative
approximation of evaluating it on any T,
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The Analysis - Abstract Interpretation

 The lattice consists of sets of 3-valued structures

« Concrete operational semantics is defined using
predicate transformation on 2-valued structures

« Abstract transfer functions can be defined using
predicate transformation on 3-valued structures
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Instrumentation Predicates

 How do we distinguish cyclic lists from acyclic lists?
* or recognize disjoint lists?

 or handle doubly-linked lists?

or...?

 Allow extra “instrumentation predicates” to be defined
(in terms of the core predicates)

« Canonical abstraction considers all unary predicates,
iIncluding instrumentation predicates!
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Examples of Instrumentation Predicates

e |Sn(p) = anr: n(q’p) A n(r’p) A q = :n:@>

— do two or more n fields point to p? n

* Iyn(P) =39:x(q) A n*(q,p) o L
X,n .......
— is p reachable from x through n fields? X > @

_ . _ f
* Cg(P) =Va,ri(p.,q) A 9(q,r) = p=r O%0
— does an f dereference from p followed by a g
g dereference yield p?
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Using Instrumentation Predicates

* The choice of instrumentation predicates depends
on the application

* Adding instrumentation predicates improves precision
but decreases worst-case performance

* Predicate transformation for instrumentation predicates
must also be defined - and proven sound relative to the
core predicates
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Analyzing the List Reversal Program

* |Instrumentation predicates:
— 'y n(P), ry,n(p), 't n(P) (‘reachability along n from x/y/t’)
—isp(p)  ("pointed to by more than one n field”)
— c,(p)  (“cycle along n fields”)

* Running the TVLA tool:

— fixed point found after 4 iterations

— i.e., all cells are moved from x to y without introducing loops!
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Pointer Assertion Logic

» Describe stores using graph types and monadic
second-order logic on trees (M2L-Tree)

« Split the programs into Hoare triples without loops and
procedure calls using explicit invariants

 Encode each triple as an M2L-Tree formula
and run the MONA decision procedure

- relation to Separation Logic: everything is decidable here
- relation to Parametric Shape Analysis: no abstraction, explicit invariants
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List Reversal, revisited

struct Node { struct Node *n; int data; }

Node *reverse(Node *x)
set R:Node [ROOTS(x,NULL,R)]
{
Node *y, *t;
v.=NLULL:
while (x = NULL) [ROOTS(x,y,R)] {
=Y

pred ROOTS(pointer x,y:Node, set R:Node) =
allpos p of Node: p in R <=> x<n*>p | y<n*>p

y=Xx
X = X—>N;
von=1

}

In 0.5 secs., the PALE tool verifies that
« all nodes are moved

* No cycles are introduced

 there can be no memory errors

return y;
} [ROOTS(NULL,return,R)]
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M2L-Tree and Graph Types

e M2L-Tree:

— monadic second-order logic
— on tree structures

« Graph types:
— tree structures specified by recursive types
— with extra pointers specified by M2L-Tree formulas

Pointer Assertion Logic: M2L-Tree + Graph types

— allows many common heap structures to be expressed
(doubly-linked lists, trees with parent pointers, etc.)

— reducible to M2L-Tree and decidable
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Encoding Hoare triples in M2L-Tree

Use transductions to encode loop-free code:
« Store predicates model the store at each program point

 Predicate transformation models the semantics of statements
Example: x = y.next; —  X(p)=31q.Yy(q) A next(q,p)

» Verification condition is constructed by expressing the
pre- and post-condition using store predicates from end points

- Each triple is then verified separately (by the MONA tool)
- If invalid, a concrete counterexample store is generated!
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Summary / Conclusion

Reasoning about programs that use pointers is challenging...

« Separation Logic

* Hoare logic with separating conjunction

» supports local reasoning and often permits succinct proofs
« Parametric Shape Analysis

« data-flow analysis where stores are represented abstractly
using three-valued logical structures

 allows precision/performance to be controlled by the choice of
instrumentation predicates

 Pointer Assertion Logic
» decidable application of Hoare logic
* requires invariants, but high expressiveness and modularity

- Still at research level, not really practically useful (yet?)
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