
Anders Møller

University of Aarhus

http://www.brics.dk/~amoeller/talks/infinity.pdf

Verifying Programs that Manipulate PointersVerifying Programs that Manipulate Pointers

Verifying Programs that Manipulate Pointers 2

Analyzing the Heap

 Heap: an untidy pile or mass of things

[Cambridge Dictionary]

• This is how most program analyses view the heap

• because pointers are notoriously difficult to
reason about

• but they are an important part of most
programming languages…

Verifying Programs that Manipulate Pointers 3

Example: Reversing a Linked List

struct Node {

 struct Node *n;

 int data;

}

Node *reverse(Node *x) {

 Node *y, *t;

 y = NULL;

 while (x != NULL) {

 t = y;

 y = x;

 x = x->n;

 y->n = t;

 }

 return y;

}

Assume that the input is an acyclic list,
argue that

• there are no null pointer dereferences

• no elements are lost

• the output is an acyclic list

• the output is the reverse of the input

• no other parts of the heap are modified

Verifying Programs that Manipulate Pointers 4

Why is this difficult?

In addition to the usual problems with software verification,

• destructive updating through pointers (x->f = y)
can make complex structures

• the heap has unbounded size

• data-structure invariants typically only hold at the
beginning and end of operations

Verifying Programs that Manipulate Pointers 5

Three Approaches

• Separation Logic (Reynolds & O’Hearn)
– an extension of Hoare logic

• Parametric Shape Analysis (Sagiv, Reps & Wilhelm)
– data-flow analysis using three-valued logic

• Pointer Assertion Logic (Møller & Schwartzbach)
– using monadic second-order logic on trees

Verifying Programs that Manipulate Pointers 6

Hoare Logic

program statement

precondition postcondition

Hoare triple: {P} S {Q}

• partial correctness: if S is executed in a store initially satisfying P
and it terminates, then the final store satisfies Q

• the assertion language is typically predicate logic
with transitive closure or inductively defined predicates

Verifying Programs that Manipulate Pointers 7

Hoare Logic and Pointers

Consider the standard axiom for assignment:

X=E;{Q[E/X]} {Q}

{y+7>42} {x>42}Example: x=y+7;

This is unsound in presence of pointers!

{y->a=42}Example: x->a=7;{y->a=42}
aliasing?

Verifying Programs that Manipulate Pointers 8

A possible solution?

Idea: view the heap as an array for each field

X->F=E;{Q[F[XaE]/F]} {Q}

This works, but forces global reasoning

- every heap assignment seems to affect every heap assertion

Verifying Programs that Manipulate Pointers 9

Reversing a Linked List, cont.

Consider a possible loop invariant:

∃α,β: LIST[α](x) ∧ LIST[β](y) ∧ α0
R= αR⋅β

Unfortunately, it is not enough:

• we must explicitly forbid sharing between the x and y lists

• we must explicitly state that
 every other part of the heap is unaffected!

- this makes modular specifications impossible

Verifying Programs that Manipulate Pointers 10

Separation Logic

New assertions:

• emp (empty heap)
• E a F1:E1,..,Fn: En (one-cell heap)

• P * Q (separating conjunction)

• P –* Q (separating implication)

Verifying Programs that Manipulate Pointers 11

Axioms

Axiom for assignment to the heap (“mutation”):

X->F = E;{X a ρ, F:_,σ} {X a ρ,F:E,σ}

- variants for backwards reasoning also exist
- allocation/disposal, pointer arithmetic, etc., also works

Axiom for assignment from the heap (“lookup”):

X = Y->F;{Y a ρ,F:V,σ} {X=V ∧ Y a ρ,F:V,σ}

Verifying Programs that Manipulate Pointers 12

The Frame Rule, Local Reasoning

S{P * R} {Q * R}

S{P} {Q}

• all heap cells that are not mentioned in the specification
 are guaranteed to remain unchanged!

• many other new inference rules...

• now the loop invariant works immediately
 for the list reversal example:

∃α,β: (LIST[α](x) * LIST[β](y)) ∧ α0
R= αR⋅β

Verifying Programs that Manipulate Pointers 14

Parametric Shape Analysis

Automatic inference of “shape invariants”

using data-flow analysis with three-valued logic

Verifying Programs that Manipulate Pointers 15

Representing Concrete Stores using Logic

A logical structure consists of

• a universe of elements

• a family of basic predicates

• let the universe represent the set of heap cells

• each variable x is described by a unary predicate x(p)

• each field f is described by a binary predicate f(p,q)

Verifying Programs that Manipulate Pointers 16

Example of a Logical Structure

The store

is described by the logical structure whose universe is

{a,b,c,d} and the basic predicates are interpreted by:

0010y

0001x

dcba

0000d

1000c

0100b

0010a

dcbaf

0000d

0000c

0010b

0000a

dcbag

x

y

a cb d
f f f

g

Verifying Programs that Manipulate Pointers 17

Queries

Queries are expressed in

first-order logic with transitive closure

• Are x and y pointer aliases?
∃p: x(p) ∧ y(p)

• Does x point to a cell with a self cycle?
∃p: x(p) ∧ n(p,p)

• Do x and y refer to disjoint structures?
 ¬∃p,q,r: x(p) ∧ y(q) ∧ n*(p,r) ∧ n*(q,r)

Verifying Programs that Manipulate Pointers 18

Operational Semantics by Predicate Transformation

• x = NULL

• x = y

• x = y->f

• y->f = x

x’(p) = y(p)

x’(p) = ∃q: y(q) ∧ f(q,p)

f’(p,q) = (y(p) ∧ x(q)) ∨ (¬y(p) ∧ f(p,q))

Statements that modify the store can be described
using predicate transformation:

x’(p) = 0

Verifying Programs that Manipulate Pointers 19

Program Analysis

How can this be used as a basis for program analysis?

• Idea: use the standard data-flow analysis framework
with the lattice being sets of logical structures

• however, the concrete structures have unbounded size
(the lattice needs to have finite height)…

• we need some abstraction!

Verifying Programs that Manipulate Pointers 20

Canonical Abstraction

Collapse elements that cannot be

distinguished by unary predicates

x

y

a cb df f f

g
x

y

a cdbf f
f

g

- the lattice of sets of these abstract structures is finite!

Verifying Programs that Manipulate Pointers 21

Kleene’s 3-Valued Logic

• 0 = false/never

• 1 = true/always

• 1/2 = don’t know

1/201¬

1/210

1/21/201/2

1/2101

0000

1/210∧

Verifying Programs that Manipulate Pointers 22

Abstract Structures are 3-Valued Logic Structures

• a 3-valued structure S represents
a set of 2-valued structures {T1, T2, …}

• evaluating a query formula Φ on S is a conservative
approximation of evaluating it on any Ti

x

y

a cdbf f
f

g 010y

001x

cdba

1/200cd

1/200b

010a

cdbaf

000cd

010b

000a

cdbag

Verifying Programs that Manipulate Pointers 23

The Analysis - Abstract Interpretation

• The lattice consists of sets of 3-valued structures

• Concrete operational semantics is defined using
predicate transformation on 2-valued structures

• Abstract transfer functions can be defined using
predicate transformation on 3-valued structures

Verifying Programs that Manipulate Pointers 24

Instrumentation Predicates

x
n

n

• How do we distinguish cyclic lists from acyclic lists?
• or recognize disjoint lists?
• or handle doubly-linked lists?
• or …?

• Allow extra “instrumentation predicates” to be defined
 (in terms of the core predicates)
• Canonical abstraction considers all unary predicates,
 including instrumentation predicates!

Verifying Programs that Manipulate Pointers 25

Examples of Instrumentation Predicates

• isn(p) = ∃q,r: n(q,p) ∧ n(r,p) ∧ q ≠ r
– do two or more n fields point to p?

• rx,n(p) = ∃q: x(q) ∧ n*(q,p)
– is p reachable from x through n fields?

• cf,g(p) = ∀q,r: f(p,q) ∧ g(q,r) ⇒ p=r
– does an f dereference from p followed by a

g dereference yield p?

n

n
p

x
n n

p

f
p

g

Verifying Programs that Manipulate Pointers 26

Using Instrumentation Predicates

• The choice of instrumentation predicates depends
on the application

• Adding instrumentation predicates improves precision
but decreases worst-case performance

• Predicate transformation for instrumentation predicates
must also be defined - and proven sound relative to the
core predicates

Verifying Programs that Manipulate Pointers 27

Analyzing the List Reversal Program

• Instrumentation predicates:

– rx,n(p), ry,n(p), rt,n(p) (“reachability along n from x/y/t”)

– isn(p) (“pointed to by more than one n field”)

– cn(p) (“cycle along n fields”)

• Running the TVLA tool:
– fixed point found after 4 iterations

– output structure:

– i.e., all cells are moved from x to y without introducing loops!

y
n

nry,n ry,n

x
n

nrx,n rx,n• Input structure:

Verifying Programs that Manipulate Pointers 28

Pointer Assertion Logic

• Describe stores using graph types and monadic
second-order logic on trees (M2L-Tree)

• Split the programs into Hoare triples without loops and
procedure calls using explicit invariants

• Encode each triple as an M2L-Tree formula
and run the MONA decision procedure

- relation to Separation Logic: everything is decidable here
- relation to Parametric Shape Analysis: no abstraction, explicit invariants

Verifying Programs that Manipulate Pointers 29

struct Node { struct Node *n; int data; }

pred ROOTS(pointer x,y:Node, set R:Node) =
 allpos p of Node: p in R <=> x<n*>p | y<n*>p

Node *reverse(Node *x)
 set R:Node [ROOTS(x,NULL,R)]
{
 Node *y, *t;
 y = NULL;

 while (x != NULL) [ROOTS(x,y,R)] {
 t = y;
 y = x;
 x = x->n;

 y->n = t;
 }
 return y;
} [ROOTS(NULL,return,R)]

List Reversal, revisited

In 0.5 secs., the PALE tool verifies that
• all nodes are moved
• no cycles are introduced
• there can be no memory errors

Verifying Programs that Manipulate Pointers 30

M2L-Tree and Graph Types

• M2L-Tree:
– monadic second-order logic

– on tree structures

• Graph types:
– tree structures specified by recursive types

– with extra pointers specified by M2L-Tree formulas

Pointer Assertion Logic: M2L-Tree + Graph types
– allows many common heap structures to be expressed

(doubly-linked lists, trees with parent pointers, etc.)

– reducible to M2L-Tree and decidable

Verifying Programs that Manipulate Pointers 31

Encoding Hoare triples in M2L-Tree

Use transductions to encode loop-free code:

• Store predicates model the store at each program point

• Predicate transformation models the semantics of statements
 Example: x = y.next; → x’(p) = ∃q. y(q) ∧ next(q,p)

• Verification condition is constructed by expressing the
pre- and post-condition using store predicates from end points

- Each triple is then verified separately (by the MONA tool)

- If invalid, a concrete counterexample store is generated!

Verifying Programs that Manipulate Pointers 32

Summary / Conclusion

Reasoning about programs that use pointers is challenging...

• Separation Logic
• Hoare logic with separating conjunction

• supports local reasoning and often permits succinct proofs

• Parametric Shape Analysis
• data-flow analysis where stores are represented abstractly

using three-valued logical structures

• allows precision/performance to be controlled by the choice of
instrumentation predicates

• Pointer Assertion Logic
• decidable application of Hoare logic

• requires invariants, but high expressiveness and modularity

- Still at research level, not really practically useful (yet?)

Verifying Programs that Manipulate Pointers 33

References

• Separation Logic: A Logic for Shared Mutable Data Structures
J.C. Reynolds, LICS 2002

• Parametric Shape Analysis via 3-Valued Logic
M. Sagiv, T. Reps, and R. Wilhelm, TOPLAS 20(1)

• The Pointer Assertion Logic Engine
A. Møller and M.I. Schwartzbach, PLDI 2001

