Verifying Programs that Manipulate Pointers

Anders Moaller

1T
Q) o
Q w,

) <
3 z
s] 2
A S
fa

% &

s \55\

University of Aarhus
== DINICU D

http://www.brics.dk/~amoeller/talks/infinity.pdf

Analyzing the Heap

Heap: an untidy pile or mass of things
[Cambridge Dictionary]

* This is how most program analyses view the heap

* because pointers are notoriously difficult to
reason about

* but they are an important part of most
programming languages...

Verifying Programs that Manipulate Pointers

Example

: Reversing a Linked List

struct Node {
struct Node *n;
int data;

}

Node *reverse(Node *x) {
Node "y, *t;
y = NULL;
while (x != NULL) {
t=y;
=5
X = X->n;
Vo=
}

return y;

}

Assume that the input is an acyclic list,
argue that

* there are no null pointer dereferences
* no elements are lost

* the output is an acyclic list

* the output is the reverse of the input

 no other parts of the heap are modified

Verifying Programs that Manipulate Pointers

Why is this difficult?

In addition to the usual problems with software verification,

« destructive updating through pointers (x->f = y)
can make complex structures

* the heap has unbounded size

« data-structure invariants typically only hold at the
beginning and end of operations

Verifying Programs that Manipulate Pointers

Three Approaches

« Separation Logic (Reynolds & O’'Hearn)

— an extension of Hoare logic

 Parametric Shape Analysis (Sagiv, Reps & Wilhelm)

— data-flow analysis using three-valued logic

* Pointer Assertion Logic (Mgller & Schwartzbach)
— using monadic second-order logic on trees

Verifying Programs that Manipulate Pointers

Hoare Logic

/ program statement

Hoare triple: {P} S {Q}
7 R

precondition postcondition

« partial correctness: if S is executed in a store initially satisfying P

and it terminates, then the final store satisfies Q

« the assertion language is typically predicate logic
with transitive closure or inductively defined predicates

Verifying Programs that Manipulate Pointers 6

Hoare Logic and Pointers

Consider the standard axiom for assignment:

{QIE/X]} X=E; {Q}

Example: {y+7>42} x=y+7; {x>42}

This is unsound in presence of pointers!

Example: @ =75 *@

aliasing?

v

Verifying Programs that Manipulate Pointers

A possible solution?

|dea: view the heap as an array for each field

{Q[FIX—EVF]} x->F=E: {Q}

This works, but forces global reasoning
- every heap assignment seems to affect every heap assertion

Verifying Programs that Manipulate Pointers 8

Reversing a Linked List, cont.

Consider a possible loop invariant:

Jo,B: LIST[0(X) A LISTIRI(Y) A atgR= oR-pB

Unfortunately, it is not enough:
« we must explicitly forbid sharing between the x and y lists

* we must explicitly state that

every other part of the heap is unaffected!
- this makes modular specifications impossible

Verifying Programs that Manipulate Pointers 9

Separation Logic

New assertions:

c emp

- E— FE,,.F E,|
e P+xQ

e P—Q

Verifying Programs that Manipulate Pointers

empty heap)

one-cell heap)
separating conjunction)
separating implication)

(
(
(
(

10

AXxioms

Axiom for assignment to the heap (“mutation”):

X—p, F_o} xsF=g: {X+ p,FE,oc}

Axiom for assignment from the heap (“lookup”):

{Y=pFV,o} x=v>F: {X=VaYpFV,o}

- variants for backwards reasoning also exist
- allocation/disposal, pointer arithmetic, etc., also works

Verifying Programs that Manipulate Pointers 11

The Frame Rule, Local Reasoning

{P} s {Q}
{P+R} S {Q+R}

« all heap cells that are not mentioned in the specification
are guaranteed to remain unchanged!

* many other new inference rules...

* now the loop invariant works immediately
for the list reversal example:

Jo,B: (LIST[](x) * LISTIRI(Y)) A oiR= aR-p

Verifying Programs that Manipulate Pointers 12

Parametric Shape Analysis

Automatic inference of “shape invariants”
using data-flow analysis with three-valued logic

Verifying Programs that Manipulate Pointers

14

Representing Concrete Stores using Logic

A logical structure consists of
* a universe of elements
a family of basic predicates

let the universe represent the set of heap cells
each variable x is described by a unary predicate x(p)
each field f is described by a binary predicate f(p,q)

Verifying Programs that Manipulate Pointers 15

Example of a Logical Structure

The store

Is described by the logical structure whose universe is
{a,b,c,d} and the basic predicates are interpreted by:

O =190
- O |T
o OO0
o O|Qa

O O T QO |=h
o O O O
© O O -~ |T
© O -~ OO0
© -~ O O|Q
o O T 90 |@Q
O O O O
o O -~ O|T
O O O O|o

Verifying Programs that Manipulate Pointers

© O O O|Qa

16

Queries

Queries are expressed in
first-order logic with transitive closure

« Are x and y pointer aliases?
Ap: x(p) A y(p)

* Does x point to a cell with a self cycle?
dp: x(p) A n(p,p)

Do x and y refer to disjoint structures?
~dp,q,r: x(p) A y(q) A n*(p,r) A n*(q,r)

Verifying Programs that Manipulate Pointers

17

Operational Semantics by Predicate Transformation

Statements that modify the store can be described
using predicate transformation:

X = NULL X(p)=0
* X=Y X'(p) = y(p)
o x=y->f X'(p) = 39: y(q) A f(q,p)

y->f = X f(p,a) = (y(p) A x(q)) v (=y(p) A f(p,q))

Verifying Programs that Manipulate Pointers

18

Program Analysis

How can this be used as a basis for program analysis?

» |dea: use the standard data-flow analysis framework
with the lattice being sets of logical structures

 however, the concrete structures have unbounded size
(the lattice needs to have finite height)...

« we need some abstraction!

Verifying Programs that Manipulate Pointers

19

Canonical Abstraction

Collapse elements that cannot be
distinguished by unary predicates

y
XM Loh@ 0 x—@) fé..ﬁ.@%f
9 g

- the lattice of sets of these abstract structures is finite!

Verifying Programs that Manipulate Pointers

20

Kleene’s 3-Valued Logic

« 0 = false/never
* 1 =true/always
« 1/, =don’t know

AlO 1 1/

0 1 1/, Z

; 0/0 0 O

=[1 0 1/, 0 0,
1,10 17, 1/,

Verifying Programs that Manipulate Pointers

Abstract Structures are 3-Valued Logic Structures

f f e X
x —»(3) ?‘:f ,
9

* a 3-valued structure S represents

a set of 2-valued structures {T,, T,, ...}

ab cd fla b cd gla b cd
10 O al0O1 O al0O 0O O
01 O bOO1/2 b0 1 O
d{j0O 0O O

cd001/2C

« evaluating a query formula ® on S is a conservative
approximation of evaluating it on any T,

Verifying Programs that Manipulate Pointers

22

The Analysis - Abstract Interpretation

 The lattice consists of sets of 3-valued structures

« Concrete operational semantics is defined using
predicate transformation on 2-valued structures

« Abstract transfer functions can be defined using
predicate transformation on 3-valued structures

Verifying Programs that Manipulate Pointers

23

Instrumentation Predicates

 How do we distinguish cyclic lists from acyclic lists?
* or recognize disjoint lists?

 or handle doubly-linked lists?

or...?

 Allow extra “instrumentation predicates” to be defined
(in terms of the core predicates)

« Canonical abstraction considers all unary predicates,
iIncluding instrumentation predicates!

Verifying Programs that Manipulate Pointers

24

Examples of Instrumentation Predicates

e |Sn(p) = anr: n(q’p) A n(r’p) A q = :n:@>

— do two or more n fields point to p? n

* Iyn(P) =39:x(q) A n*(q,p) o L
X,n
— is p reachable from x through n fields? X > @

_ . _ f
* Cg(P) =Va,ri(p.,q) A 9(q,r) = p=r O%0
— does an f dereference from p followed by a g
g dereference yield p?

Verifying Programs that Manipulate Pointers

25

Using Instrumentation Predicates

* The choice of instrumentation predicates depends
on the application

* Adding instrumentation predicates improves precision
but decreases worst-case performance

* Predicate transformation for instrumentation predicates
must also be defined - and proven sound relative to the
core predicates

Verifying Programs that Manipulate Pointers 26

Analyzing the List Reversal Program

* |Instrumentation predicates:
— 'y n(P), ry,n(p), 't n(P) (‘reachability along n from x/y/t’)
—isp(p) ("pointed to by more than one n field”)
— c,(p) (“cycle along n fields”)

* Running the TVLA tool:

— fixed point found after 4 iterations

— i.e., all cells are moved from x to y without introducing loops!

Verifying Programs that Manipulate Pointers 27

Pointer Assertion Logic

» Describe stores using graph types and monadic
second-order logic on trees (M2L-Tree)

« Split the programs into Hoare triples without loops and
procedure calls using explicit invariants

 Encode each triple as an M2L-Tree formula
and run the MONA decision procedure

- relation to Separation Logic: everything is decidable here
- relation to Parametric Shape Analysis: no abstraction, explicit invariants

Verifying Programs that Manipulate Pointers 28

List Reversal, revisited

struct Node { struct Node *n; int data; }

Node *reverse(Node *x)
set R:Node [ROOTS(x,NULL,R)]
{
Node *y, *t;
v.=NLULL:
while (x = NULL) [ROOTS(x,y,R)] {
=Y

pred ROOTS(pointer x,y:Node, set R:Node) =
allpos p of Node: p in R <=> x<n*>p | y<n*>p

y=Xx
X = X—>N;
von=1

}

In 0.5 secs., the PALE tool verifies that
« all nodes are moved

* No cycles are introduced

 there can be no memory errors

return y;
} [ROOTS(NULL,return,R)]

Verifying Programs that Manipulate Pointers

29

M2L-Tree and Graph Types

e M2L-Tree:

— monadic second-order logic
— on tree structures

« Graph types:
— tree structures specified by recursive types
— with extra pointers specified by M2L-Tree formulas

Pointer Assertion Logic: M2L-Tree + Graph types

— allows many common heap structures to be expressed
(doubly-linked lists, trees with parent pointers, etc.)

— reducible to M2L-Tree and decidable

Verifying Programs that Manipulate Pointers

30

Encoding Hoare triples in M2L-Tree

Use transductions to encode loop-free code:
« Store predicates model the store at each program point

 Predicate transformation models the semantics of statements
Example: x = y.next; — X(p)=31q.Yy(q) A next(q,p)

» Verification condition is constructed by expressing the
pre- and post-condition using store predicates from end points

- Each triple is then verified separately (by the MONA tool)
- If invalid, a concrete counterexample store is generated!

Verifying Programs that Manipulate Pointers 31

Summary / Conclusion

Reasoning about programs that use pointers is challenging...

« Separation Logic

* Hoare logic with separating conjunction

» supports local reasoning and often permits succinct proofs
« Parametric Shape Analysis

« data-flow analysis where stores are represented abstractly
using three-valued logical structures

 allows precision/performance to be controlled by the choice of
instrumentation predicates

 Pointer Assertion Logic
» decidable application of Hoare logic
* requires invariants, but high expressiveness and modularity

- Still at research level, not really practically useful (yet?)

Verifying Programs that Manipulate Pointers 32

References

« Separation Logic: A Logic for Shared Mutable Data Structures
J.C. Reynolds, LICS 2002

« Parametric Shape Analysis via 3-Valued Logic
M. Sagiv, T. Reps, and R. Wilhelm, TOPLAS 20(1)

» The Pointer Assertion Logic Engine
A. Mgller and M.l. Schwartzbach, PLDI 2001

Verifying Programs that Manipulate Pointers 33

