
Anders Møller

University of Aarhus

The MONA The MONA ProjectProject
Logic, Automata, and Program VerificationLogic, Automata, and Program Verification

http://www.brics.dk/~amoeller/talks/dresden.pdf

Logic, Automata, and Program Verification 2

The MONA Tool

The MONA tool
• transforms formulas into finite-state automata
• decides validity / provides counterexamples

for the formulas by analyzing the automata

MONAα
¬∧

⊆
β

⇒

∃∀

Logic, Automata, and Program Verification 3

Example: A Mutual Exclusion Protocol

Hyman’s mutual exclusion algorithm:

while true do begin
1 < noncritical section >
2 bi := true
3 while (k ≠ i) do begin
4 while (b1-i) do skip
5 k := i

end
6 < critical section >
7 bi := false

end

• Two processes executing (i=0 and i=1)
• Hyman’s claim: only one can be in the critical section at any time

Logic, Automata, and Program Verification 4

Example: A Mutual Exclusion Protocol

Encoding the state:

var2 PC0’, PC0’’, PC0’’’, PC1’, PC1’’, PC1’’’, b0, b1, k;

pred p0_at_line_1(var1 t) = t∉∉∉∉ PC0’ ∧∧∧∧ t∉∉∉∉ PC0’’ ∧∧∧∧ t∉∉∉∉ PC0’’’;
pred p0_at_line_2(var1 t) = t∉∉∉∉ PC0’ ∧∧∧∧ t∉∉∉∉ PC0’’ ∧∧∧∧ t∈∈∈∈ PC0’’’;
...

pred b0_false(var1 t) = t∉∉∉∉ b0;
pred b0_true(var1 t) = t∈∈∈∈ b0;
...

pred k_is_0(var1 t) = t∈∈∈∈ k;
pred k_is_1(var1 t) = t∉∉∉∉ k;

declares variables that range over sets of natural numbers

encodes program counters

encodes state

Logic, Automata, and Program Verification 5

Example: A Mutual Exclusion Protocol

Encoding the dynamics:
pred p0_proc_step(var1 t) =

(p0_at_line_1(t) ⇒⇒⇒⇒ p0_at_line_2(t+1) ∧∧∧∧ unchanged_vars(t)) ∧∧∧∧
(p0_at_line_2(t) ⇒⇒⇒⇒ p0_at_line_3(t+1) ∧∧∧∧ b0_true(t+1) ∧∧∧∧

unchanged_k(t) ∧∧∧∧ unchanged_b1(t)) ∧∧∧∧
(p0_at_line_3(t) ⇒⇒⇒⇒ (unchanged_vars(t) ∧∧∧∧

(k_is_0(t) ⇒⇒⇒⇒ p0_at_line_6(t+1)) ∧∧∧∧
(k_is_1(t) ⇒⇒⇒⇒ p0_at_line_4(t+1)))) ∧∧∧∧

...

(p0_at_line_7(t) ⇒⇒⇒⇒ p0_at_line_1(t+1) ∧∧∧∧ b0_false(t+1) ∧∧∧∧
unchanged_k(t) ∧∧∧∧ unchanged_b1(t));

...

pred Valid() = p0_at_line_1(0) ∧∧∧∧ p1_at_line_1(0) ∧∧∧∧
b0_false(0) ∧∧∧∧ b1_false(0) ∧∧∧∧ k_is_1(0) ∧∧∧∧
(∀∀∀∀ 1 t: ((p0_proc_step(t) ∧∧∧∧ unchanged_PC1(t))

| (p1_proc_step(t) ∧∧∧∧ unchanged_PC0(t))));

behavior of proc. 0

valid computations

Logic, Automata, and Program Verification 6

Example: A Mutual Exclusion Protocol

Checking mutual exclusion:

Valid() ⇒⇒⇒⇒ ∀∀∀∀ 1 t: ¬¬¬¬(p0_at_line_6(t) ∧∧∧∧
p1_at_line_6(t));

Logic, Automata, and Program Verification 7

Example: A Mutual Exclusion Protocol

After 0.5 seconds, MONA returns an automaton with 137 states

Reply from MONA automaton analysis:
A counterexample of least length (10) is:

PC0' 0 0 0 0 0 1 1 1 0 1

PC0'' 0 0 0 1 1 0 0 0 1 0

PC0''' 0 0 1 0 1 0 0 0 0 1

PC1' 0 0 0 0 0 0 0 1 1 1

PC1'' 0 0 0 0 0 0 1 0 0 0

PC1''' 0 1 1 1 1 1 0 1 1 1

b0 0 0 0 1 1 1 1 1 1 1

b1 0 0 0 0 0 0 1 1 1 1

k 0 0 0 0 0 0 0 0 1 1

This counterexample shows the encoding of a valid run
which violates the mutual-exclusion property!

Logic, Automata, and Program Verification 8

Overview

• Introduction: verifying Hyman’s mutual exclusion algorithm

• Monadic 2nd-order Logic on finite Strings (M2L-Str) /
Weak monadic Second-order theory of 1 Successor (WS1S)

• Logic → Automata

• Complexity

• Tree logics (M2L-Tree / WS2S)

• Implementation issues

• Applications

• Example: Pointer Assertion Logic

• Conclusion

Logic, Automata, and Program Verification 9

Φ ::= ¬Φ | Φ∨Φ | Φ∧Φ | Φ⇒Φ | Φ⇔Φ
| ∀ 1x.Φ | ∃ 1x.Φ | ∀ 2X.Φ | ∃ 2X.Φ (formulas)
| t=t | t∈ T | T=T | T⊆ T | ...

T ::= X | T∪ T | T∩T | T\T | ∅ (set terms)

t ::= x | 0 | t+1 (position terms)

• Weak Monadic 2nd-order logic = quantification over finite sets

• Two choices for interpretation:
WS1S: the natural numbers
M2L-Str: positions in a finite string

• Typical use: as linear temporal logic

Monadic 2nd-order Logic on Strings

0 1 2

0 1 2 n

Logic, Automata, and Program Verification 10

Related Logics

S2S

M2L-Tree ~ WS2S

CTL*

CTLLTL

M2L-Str ~ WS1S ≈ S1S

tree automata
(finite trees)

tree automata
(infinite trees)

string automata
(infinite strings)

string automata
(finite strings)

Logic, Automata, and Program Verification 11

Logic →→→→ Automata

Example:
the assignment A=[P {2,3},Q ∅ ,R 0]
corresponds to the string:

0 0 1 1 P
wA = 0 0 0 0 Q

1 0 0 0 R
0 1 2 3

⇔Assignment A of values to FV(Φ)

String wA over the alphabet Σ={0,1}k where k=|FV(Φ)|

Define the language of Φ : L(Φ) = { wA | A Φ }

Logic, Automata, and Program Verification 12

Logic →→→→ Automata

Simplified syntax:
Φ ::= ¬Φ | Φ∧Φ | ∃ 2X.Φ

| X1⊆ X2 | X1=X2\X3 | X1=X2+1

Büchi 1960 / Elgot 1961

Translation of Φ into automaton AΦ such that L(Φ)=L(AΦ):

formula Φ automaton AΦ
atomic formulas basic automata
negation ¬ complement
conjunction ∧ intersection ∩
existential quantification ∃ projection+determinization

– we work with deterministic minimal automata

Logic, Automata, and Program Verification 13

Logic →→→→ Automata

Example 1:

The atomic formula:

Φ = P⊆ Q

corresponds to the basic automaton:

where P corresponds to the first component, and Q to the second

X
X

0 1 0
1 , 1 , 0

1
0

Logic, Automata, and Program Verification 14

Logic →→→→ Automata

Example 2:

The composite formula:

Φ = ∃ 2P.Ψ
corresponds to a projection where the P track is removed

This is for M2L-Str,
WS1S also needs a quotient operation after projection

Consider Φ = ∃ 2P. 2∈ P ∧ 1∈ Q

X
X

X
1

X
0

0
X

1
X

X
X

X
X

X 1

0 X

X

X

X

Logic, Automata, and Program Verification 15

Automaton Analysis

1. Given a formula Φ, construct the corresponding
minimal finite-state automaton AΦ

2. Look at AΦ:

– If L(AΦ)=Σ*, then Φ is valid

– Otherwise, generate a (minimal) counter-example by
finding a (minimal) path in AΦ from the initial state to
a non-accepting state

Logic, Automata, and Program Verification 16

Logic ←←←← Automata

• Every automaton can be encoded as an M2L-Str formula

– but this direction is not relevant for MONA

Logic, Automata, and Program Verification 17

Complexity

Practical problems:

• The alphabet size is exponential in the number of
free variables: Σ={0,1}k

• A single determinization can cause an exponential
increase in state-space size

Worst case: 22...2 } #alternating quantifiers

And it is inevitable: The decision problem for WS1S has a
non-elementary lower bound

Meyer 1972

Logic, Automata, and Program Verification 18

Only a madman would implement that!

Nils Klarlund

Logic, Automata, and Program Verification 19

Monadic 2nd-order Logic on Trees

Generalize the structural primitives:
t ::= x | 0 | t+1 | ε | succ0(t) | succ1(t)

Interpretation: now over tree structures

Again, two choices of models:
WS2S: the infinite binary tree
M2L-Tree: a finite binary tree

ε

0 1

00 01 10 11

Thatcher/Wright 1968

Logic, Automata, and Program Verification 20

Tree Automata

WS2S / M2L-Tree are also decidable using finite-state automata:

• All standard automaton operations (product, minimization, subset
construction, ...) generalize elegantly to tree automata

• Extra complexity: a quadratic blow-up in the transition function

A bottom-up tree automaton has a transition function of the form
δ: Q×Q→Σ→Q

and assigns a state to each tree node starting from the leaves

(Later: an example application encoding
tree-shaped data structures in tree logic...)

Logic, Automata, and Program Verification 21

Guided Tree Automata (GTA)

– making tree automata practically useful

A GTA factorizes the state space:
• A user-defined guide assigns a state space

to each position in the infinite binary tree

• Each state space has its own transition function
δa: Qb×Qc→Σ→Qa

• This can give an indispensable exponential improvement
(but it requires a good guide to be defined)

Logic, Automata, and Program Verification 22

Binary Decision Diagrams (BDDs)

– working with automata with huge alphabets

How to represent transition functions
δ: Q→Σ→Q

when Σ={0,1}k and k is large?

Bryant 1986
The MONA solution:

use Binary Decision Diagrams (BDDs)

Worst case: no improvement - Typical case: indispensable!

Logic, Automata, and Program Verification 23

Binary Decision Diagrams (BDDs)

A Binary Decision Diagram is a canonical graph
representation for boolean functions {0,1}k→{0,1}

Example:

[A=0, B=1, C=0, D=1] is mapped to 1

0

0

0

0

1

1

1
1

A

B B
D

0 1

Logic, Automata, and Program Verification 24

Binary Decision Diagrams (BDDs)

We use Shared Multi-terminal BDDs:
• Shared: each node represents a function
• Multi-terminal: the leaves are {q1,q2,...,qn} (not just {0,1})

q1 q2 q3

q1 q2 q3

δ: Q→ {0,1}k →Q

MONA representation

X1 X1

X2 X2

accepting states

0

0
0

0

1 1

1 1

q1 q3q2

conventional representation

1
1

1
1

0
X

1
0

1
0

0
X

X
X

Logic, Automata, and Program Verification 25

DAGification

Use BDD properties to reuse computations:

Example:
In the formula ∃ X7: X1⊆ X7 ∧ X7⊆ X9
the automata for X1⊆ X7 and X7⊆ X9 are isomorphic

DAGification:
• Collapse the formula parse tree to a DAG where the

edges are labeled with renaming information
• Build only one automaton for each DAG node

– gives a factor 2–5 speed-up

Logic, Automata, and Program Verification 26

Formula Reduction

– optimize the formulas before translating into automata

• Simple reductions:
true ∨ Φ � true , ¬¬ Φ � Φ , etc.

• Quantifier reductions: (can give exponential speed-up!)
∃∃∃∃ X: Φ � Φ[T/X] if Φ⇒X=T and FV(T)⊆ FV(Φ)

• Conjunction reductions:
Φ1 ∧ Φ 2 � Φ1 if Φ2 is “contained in” Φ1

– gives a factor 2–4 speed-up

Logic, Automata, and Program Verification 27

Applications

• Hardware verification [CAV’95, ISMVL’99, FMCAD’00]
• Controller synthesis [FASE’98, FASE’00]
• Trace abstractions [PODC’96]
• Computational linguistics [LACL’97]
• Protocol verification [TACAS’95, FORTE’00]
• Duration calculus
• Parser generation [DLT’99]
• Software engineering [OOPSLA’96]
• Model checking [TACAS’00]
• Theorem proving [CAV’00, FROCOS]
• Program verification [PLDI’97, ESOP’00, PLDI’01]
• …

Logic, Automata, and Program Verification 28

Pointer Assertion Logic [PLDI’01]

Consider an imperative programming language for
data-type implementations, based on pointers

Correctness requirements are specified with assertions
and pre/post-conditions

If
• the assertion language (“Pointer Assertion Logic”)

is based on M2L-Tree,
• the data-types are restricted to certain tree-like structures

(“graph types” [POPL’93]), and
• the program is sufficiently annotated
then correctness can be encoded as MONA formulas!

Logic, Automata, and Program Verification 29

Red-Black Search Trees

Example: A red-black search tree is
1. a binary tree whose records are red or black and

have parent pointers
2. a red record cannot have a red successor
3. the root is black
4. the number of black records is the same for all

direct paths from the root to a leaf

• 1) is a graph type ☺
• 2) and 3) can be captured as PAL formulas ☺
• 4) cannot be expressed �

Logic, Automata, and Program Verification 30

The redblackinsert procedure
proc redblackinsert(data t,root:Node):Node [t.left=null & t.right=null & inv(root)]
{ pointer y,x:Node;
x = t;
root = treeinsert(x,root) [treeinsert.Z=x & treeinsert.Q=root];
x.color = false;
while [x!=null & root<(left+right)*>x & almostinv1(root,x) & (black(root) | x=root) & (x!=root & red(x.p) => red(x))]

(x!=root & x.p.color=false) {
if (x.p=x.p.p.left) {
y = x.p.p.right;
if (y!=null & y.color=false) {
x.p.color = true;
y.color = true;
x.p.p.color = false;
x = x.p.p;

}
else {
if (x=x.p.right) {
x = x.p;
root = leftrotate(x,root) [leftrotate.X=x & root<(left+right)*>x & red(leftrotate.Y)];

}
x.p.color = true;
x.p.p.color = false;
root = rightrotate(x.p.p,root) [rightrotate.Y.left=x & root<(left+right)*>x &

red(rightrotate.X) & rightrotate.Q=root & x!=null];
root.color = true;

} }
else { ... }}

root.color = true;
return root;

} [inv(return)]

+ auxiliary procedures leftrotate, rightrotate, and treeinsert (total ~135 lines of program code)

Logic, Automata, and Program Verification 31

Hoare Logic

1. Require invariants at all while-loops and procedure calls
(extra assertions are also allowed)

2. Split the program into Hoare triples: {Φpre} stm {Φpost}

3. Verify each triple separately (only loop-free code left)
– including check for null-pointer dereferences

and other memory errors

Note: highly modular, no fixed-point iteration, but requires invariants!

Logic, Automata, and Program Verification 32

Verifying the Hoare triples

Use a technique of transductions [CAAP’94] to encode loop-free code:

• A collection of M2L-Tree store predicates describes a set of stores at a
given program point, e.g:

– succ_T_d(v,w) is true if v denotes a record of type T with a pointer
field d pointing to the record w

– ptr_p(v) is true if v denotes the record pointed to
by the program variable p

• Each statement is simulated by predicate transformation, e.g:
p = q.next;

is simulated by updating the ptr_p(v) predicate to
ptr_p’(v) = ∃ w. ptr_q(w) ∧ succ_T_next(w,v)

• A verification condition is constructed by expressing the
pre- and post-condition using store predicates from end points

This technique is sound and complete for individual Hoare triples!

Logic, Automata, and Program Verification 33

Pointer Assertion Logic

PALE: The Pointer Assertion Logic Engine
– an implementation of this program verification technique

redblackinsert ~ 800K formulas

Result of running PALE on redblackinsert:
After ~4000 tree automaton operations and 40 seconds,
PALE replies that
– all assertions are valid
– there can be no null-pointer dereferences or memory leaks
– the graph type is wellformed and valid at all cut-points

If verification fails, a counterexample initial store is returned

Logic, Automata, and Program Verification 34

Conclusion

MONA v1.4:
– implementation of classical logic/automaton theories
– orders of magnitude more efficient than the first implementation

due to BDDs, formula reductions, etc.

More information:
The MONA Project: httphttp://://wwwwww.brics.dk/.brics.dk/monamona//

Pointer Assertion Logic: httphttp://www.brics.dk/://www.brics.dk/PALEPALE//

(Open Source implementations, full documentation, papers, ...)

Future plans:
• heuristic optimizations
• high-level language extensions
• more applications

