The MONA Project
Logic, Automata, and Program Verification

Anders Mgller

““““““““““

http://www.brics.dk/~amoeller/talks/dresden.pdf

The MONA Tool

S)

—
()=
10,0 | MoNA | -0
5 @
. ®

The MONA tool
e transforms formulas into finite-state automata

e decides validity / provides counterexamples
for the formulas by analyzing the automata

Logic, Automata, and Program Verification

Example: A Mutual Exclusion Protocol

Hyman’s mutual exclusion algorithm:

while true do begin

1 < noncritical section >
2 b; :=true
3 while (k #1) do begin
4 while (bq_;) do skip
5 K:=1I
end

6 < critical section >
7 b, ;= false

end

« Two processes executing (iI=0 and i=1)
« Hyman’s claim: only one can be in the critical section at any time

Logic, Automata, and Program Verification

Example: A Mutual Exclusion Protocol

Encoding the state:
declares variables that range over sets of natural numbers
’, PCO’’, PCO’’’, PCl', PCl'’, PCl''’, b0, bl, k;

ored pO_at line 1(varl t) = t0OPCO’ O t0OPCO" 0O tOPCO "™
pred pO_at line_ 2(varl t) = tQdPCO’ 0O t0OPCO’’ O tOPCO ™",

—

pred bO false(varl t) = t0ObO;
pred bO true(varl t) = tObO; ancodes program counters

pred k is O(varl t) = t0Uk;
ored k is 1(varl t) = t0Ok;
encodes state

Logic, Automata, and Progranr/erification 4

Example: A Mutual Exclusion Protocol

Encoding the dynamics:

ﬁr ed p0O _proc_step(varl t) =

_

(pO_at line_1(t) = pO0_at line 2(t+1) O unchanged vars(t)) 0O
(pO_at line 2(t) = pO at line 3(t+1) O bO true(t+1) O
unchanged k(t) 0O unchanged bl(t)) 0O
(pO_at _line_3(t) = (unchanged vars(t) O
(k. is O(t) = pO_at line 6(t+1)) O
(k is 1(t) = pO_at line 4(t+1)))) O

(pO_at line 7(t) = pO_at line 1(t+1) 0O bO false(t+1) O
unchanged k(t) 0O unchanged bl(t));

~

/

_

“pred Valid() = pO_at line 1(0) O pl_at _|line_1(0) D‘\\\\

bO false(0) Obl false(0) Ok is 1(0) O be
(O t: ((pO_proc_step(t) O unchanged PC1(t))
| (pl_proc_step(t) O unchanged PCO(t))));

Logic, Automata, and Program Verification

Y,
" \ "
valid computations

havior of proc. 0

Example: A Mutual Exclusion Protocol

Checking mutual exclusion:

Valid() => O t: =(pO_at line 6(t) O
pl at line 6(t));

Logic, Automata, and Program Verification

Example: A Mutual Exclusion Protocol

After 0.5 seconds, MONA returns an automaton with 137 states

Reply from MONA automaton analysis:
A count erexanpl e of |east length (10) is:

PCO’ o 0 0 0 01 1 1 0 1
PCO" o 60 0o 1.1 0 O O 1 O
PCO" '’ o 01 01 0 O O 0 1
PC1’ o 0 0 0 0 00O 1 1 1
PC1"’ o 0 0o 0O 0O 061 O O O
PC1" " o 1 1 1 1 1 0 1 1 1
b0 o 0 01 1 1 1 1 1 1
bl o 0 0 0 00 1 1 1 1
K o 0 0 0 0 0 0 O 1 1

This counterexample shows the encoding of a valid run
which violates the mutual-exclusion property!

Logic, Automata, and Program Verification

Overview

e Introduction: verifying Hyman’s mutual exclusion algorithm

 Monadic 2nd-order Logic on finite Strings (M2L-Str) /
Weak monadic Second-order theory of 1 Successor (WS1S)

 Logic - Automata

o Complexity

 Tree logics (M2L-Tree / WS2S)

e Implementation issues

« Applications

 Example: Pointer Assertion Logic

e Conclusion

Logic, Automata, and Program Verification

Monadic 2nd-order Logic on Strings

CD:::—-CD|CDED|CDED|:>|CD<:»CD
| Ox.® | Ox.P | O°X.P | (FX.P (formulas)
| t=t | tOT | T=T | TOT | .
T = X | TOT | TnT | T\T | O (set terms)
t i=x]0| t+1 (position terms)

 Weak Monadic 2nd-order logic = quantification over finite sets

e Two choices for interpretation:

WS1S: the natural numbers @»@»@'
M2L-Str: positions in a finite string @@@ ”@

« Typical use: as linear temporal logic

Logic, Automata, and Program Verification 9

Related Logics

tree automata __ tree automata
(finite trees) < (infinite trees)
M2L-Tree ~ WSZS string automata
/ (infinite strings)
M2L-Str ~ WSlS SlS
i CTL*
string automata
(finite strings) \

LTL CTL

Logic, Automata, and Program Verification

10

Logic - Automata

Assignment A of values to FV(®)
0

String w, over the alphabet 3={0,1} where k=|FV(a®)]

Example:
the assignment A=[P| >{2,3},Qr> ,R->0]
corresponds to the string:

P
Wy = Q
R

o P O O
= O O O
N O O B
w O O B

Define the language of @ : L(®P) ={wp| A~ @}

Logic, Automata, and Program Verification

11

Logic - Automata

Simplified syntax: -
O = P | DD | [PX.® Blchi 1960 / Elgot 1961

Translation of @ into automaton Ag, such that L(®)=L(Agy):

formula @ automaton Ay,
atomic formulas basic automata
negation - complement (
conjunction [Intersection N
existential quantification [projection+determinization

— we work with deterministic minimal automata

Logic, Automata, and Program Verification 12

Logic - Automata

Example 1:

The atomic formula:
o = POQ

corresponds to the basic automaton:

HIE
X

where P corresponds to the first component, and Q to the second

Logic, Automata, and Program Verification 13

Logic - Automata

Example 2:

The composite formula:
¢ =[FPP.Y
corresponds to a projection where the P track is removed

Consider @ = [PP. 20P 0 10Q

X~))~ o) Ll
— >0
<>N§E§ <§>8 o! E; <:8

X

This is for M2L-Str,
WS1S also needs a quotient operation after projection

Logic, Automata, and Program Verification

14

Automaton Analysis

1. Given a formula @, construct the corresponding
minimal finite-state automaton Ay,

2. Look at Ay,
— If L(Agp)=2% then @ is valid

— Otherwise, generate a (minimal) counter-example by
finding a (minimal) path in Ag, from the initial state to

a non-accepting state

Logic, Automata, and Program Verification 15

Logic — Automata

e Every automaton can be encoded as an M2L-Str formula

— but this direction is not relevant for MONA

Logic, Automata, and Program Verification

16

Complexity

Practical problems:

 The alphabet size is exponential in the number of
free variables: >={0,1}«

e A single determinization can cause an exponential
Increase In state-space size

Worst case: 22"'2 }#alternating guantifiers

And it is inevitable: The decision problem for WS1S has a
non-elementary lower bound

Meyer 1972

Logic, Automata, and Program Verification 17

Only a madman would implement that!

Nils Klarlund

Logic, Automata, and Program Verification

18

Monadic 2nd-order Logic on Trees

Generalize the structural primitives:
t o= XMS | succy(t) | succy(t)

Interpretation: now over tree structures

&

¢
ORE
o

Again, two choices of models:
WS2S: the infinite binary tree
M2L-Tree: a finite binary tree

Logic, Automata, and Program Verification

Thatcher/Wright 1968

19

Tree Automata

WS2S / M2L-Tree are also decidable using finite-state automata:

A bottom-up tree automaton has a transition function of the form

0: QxQ -2 -Q

and assigns a state to each tree node starting from the leaves

o All standard automaton operations (product, minimization, subset
construction, ...) generalize elegantly to tree automata

o Extra complexity: a quadratic blow-up in the transition function

(Later: an example application encoding
tree-shaped data structures in tree logic...)

Logic, Automata, and Program Verification 20

Guided Tree Automata (GTA)

— making tree automata practically useful

A GTA factorizes the state space:

A user-defined guide assigns a state space
to each position in the infinite binary tree

 Each state space has its own transition function

0, QpxQ.-»2-Q,

 This can give an indispensable exponential improvement
(but it requires a good guide to be defined)

Logic, Automata, and Program Verification

21

Binary Decision Diagrams (BDDs)

— working with automata with huge alphabets
How to represent transition functions

5 Q.50
when £={0,1}X and k is large?

The MONA solution:

use Binary Decision Diagrams (BDDs) Bryant 1986

Worst case: no improvement - Typical case: indispensable!

Logic, Automata, and Program Verification

22

Binary Decision Diagrams (BDDs)

A Binary Decision Diagram is a canonical graph
representation for boolean functions {0,1}¥ - {0,1}

Example:

[A=0, B=1, C=0, D=1] is mapped to 1

Logic, Automata, and Program Verification

23

Binary Decision Diagrams (BDDs)

We use Shared Multi-terminal BDDs:
 Shared:. each node represents a function
e Multi-terminal: the leaves are {q,,9,,...,9,} (not just {0,1})

conventional representation

Logic, Automata, and Program Verification

MONA representation

d: d2 O3

2

/

Oxﬁ

o
U1

g

i

< accepting states

\

- 3 Q- {01} - Q

24

DAGIfication

Use BDD properties to reuse computations:

Example:
In the formula [X,: X;0OX, O X,0 Xg
the automata for X,0X; and X, Xq are isomorphic

DAGiIfication:

o Collapse the formula parse tree to a DAG where the
edges are labeled with renaming information

e Build only one automaton for each DAG node

— gives a factor 2-5 speed-up

Logic, Automata, and Program Verification

25

Formula Reduction

— optimize the formulas before translating into automata

e Simple reductions:
true b = true, PO 2> P, etc.

o Quantifier reductions: (can give exponential speed-up!)
[(X: @ =2 O[T/X] if d=X=T and FV(T)UFV(®P)

e Conjunction reductions:
o, b, > &, ifd,is“contained in” d,

— gives a factor 2—4 speed-up

Logic, Automata, and Program Verification

26

Applications

 Hardware verification [CAV’95, ISMVL'99, FMCAD’00]
o Controller synthesis [FASE'98, FASE'00]

e Trace abstractions [PODC’96]

o Computational linguistics [LACL'97]

e Protocol verification [TACAS’95, FORTE’00]

e Duration calculus

o Parser generation [DLT99]

o Software engineering [OOPSLA’96]

 Model checking [TACAS'00]

 Theorem proving [CAV'00, FROCQOS]

 Program verification [PLDI'97, ESOP’00, PLDI'0O1]

Logic, Automata, and Program Verification

27

Pointer Assertion Logic [PLDI'0O1]

Consider an imperative programming language for
data-type implementations, based on pointers

Correctness requirements are specified with assertions
and pre/post-conditions

If

e the assertion language (“Pointer Assertion Logic”)
IS based on M2L-Tree,

e the data-types are restricted to certain tree-like structures
(“graph types” [POPL’'93]), and

e the program is sufficiently annotated
then correctness can be encoded as MONA formulas!

Logic, Automata, and Program Verification

28

Red-Black Search Trees

Example: Ared-black search tree is

1. abinary tree whose records are red or black and
have parent pointers

2. ared record cannot have a red successor
the root is black

4. the number of black records is the same for all
direct paths from the root to a leaf

o

e 1)is agraph type ©
e« 2)and 3) can be captured as PAL formulas ©
e 4) cannot be expressed ®

Logic, Automata, and Program Verification

29

The r edbl acki nsert procedure

proc redbl ackinsert(data t,root: Node): Node [t.left=null & t.right=null & inv(root)]
{ pointer vy, x: Node;
X = t;
root = treeinsert(x,root) [treeinsert.Z=x & treeinsert.Qroot];
x.color = fal se
while [x!=null & root<(left+right)*>x & al nostinvl(root,x) & (black(root) | x=root) & (x!=root & red(x.p) => red(x))]
(x!'=root & x.p.color=fal se) {
if (x.p=x.p.p.left) {
y = X.p.p.right;
if (y'=null & y.color=false) {
X.p.color = true;
y.color = true;
X.p.p.color = fal se;
X = X.p.p;
}
el se {
if (x=x.p.right) {
X = X.p;
root = leftrotate(x,root) [leftrotate. X=x & root<(left+right)*>x & red(leftrotate.Y)];
}
X.p.color = true;
X.p.p.color = fal se;
root = rightrotate(x.p.p,root) [rightrotate.Y.left=x & root<(left+right)*>x &
red(rightrotate. X) & rightrotate. Qsroot & x!=null];
root.color = true;
}}
else { ... }}

root.color = true;
return root;
} [inv(return)]

+ auxiliary procedures | eftrotate, rightrotate, andtreei nsert (total ~135 lines of program code)

Logic, Automata, and Program Verification 30

Hoare Logic

1. Require invariants at all while-loops and procedure calls
(extra assertions are also allowed)

2. Split the program into Hoare triples: {®,} stm {®,}

3. Verify each triple separately (only loop-free code left)

— Including check for null-pointer dereferences
and other memory errors

Note: highly modular, no fixed-point iteration, but requires invariants!

Logic, Automata, and Program Verification 31

Verifying the Hoare triples

Use a technique of transductions [CAAP’94] to encode loop-free code:

» A collection of M2L-Tree store predicates describes a set of stores at a
given program point, e.g:
— succ_T_d(v,w) is true if v denotes a record of type T with a pointer
field d pointing to the record w

— ptr_p(v) is true if v denotes the record pointed to
by the program variable p

 Each statement is simulated by predicate transformation, e.g:
p = g.next;
Is simulated by updating the ptr_p(v) predicate to
ptr_p’(v) = Ow. ptr_q(w) Osucc_T_next(w,Vv)

 Averification condition is constructed by expressing the
pre- and post-condition using store predicates from end points

This technique is sound and complete for individual Hoare triples!

Logic, Automata, and Program Verification

32

Pointer Assertion Logic

PALE: The Pointer Assertion Logic Engine

— an implementation of this program verification technique

r edbl acki nsert ~ 800K formulas

Result of running PALE on r edbl acki nsert:

After ~4000 tree automaton operations and 40 seconds,
PALE replies that

— all assertions are valid
— there can be no null-pointer dereferences or memory leaks
— the graph type is wellformed and valid at all cut-points

If verification fails, a counterexample initial store is returned

Logic, Automata, and Program Verification

33

Conclusion

MONA v1.4:

— Implementation of classical logic/automaton theories

— orders of magnitude more efficient than the first implementation
due to BDDs, formula reductions, etc.

Future plans:

e heuristic optimizations

* high-level language extensions
e more applications

More information:
The MONA Project: http://ww. brics. dk/ nona/

Pointer Assertion Logic: http://ww. brics. dk/ PALE/
(Open Source implementations, full documentation, papers, ...)

Logic, Automata, and Program Verification

34

