
Static Analysis
for JavaScript

A d MøllAnders Møller
Center for Advanced Software Analysis

Aarhus University

Joint work with
Simon Holm Jensen, Peter A. Jonsson,
Magnus Madsen and Peter ThiemannMagnus Madsen, and Peter Thiemann

JavaScript: the lingua franca of Web 2 0JavaScript: the lingua franca of Web 2.0

2

The good parts of JavaScript?The good parts of JavaScript?

3

JavaScript is a dynamic languageJavaScript is a dynamic language

• Object-based, properties created on demand
• Prototype-based inheritancePrototype based inheritance
• First-class functions, closures
• Runtime types, coercions
• ···

NO STATIC TYPE CHECKINGNO STATIC TYPE CHECKING
NO STATIC CLASS HIERARCHIES

4

TAJS: Type Analysis for JavaScriptTAJS: Type Analysis for JavaScript

• Catch type-related errors using
program analysisprogram analysis

• Support the full language (including eval)
• Aim for soundness• Aim for soundness

5

Statically detecting type-related errors
in JavaScript programsin JavaScript programs

6

Likely programming errorsLikely programming errors

1. invoking a non-function value (e.g. undefined) as a function
2. reading an absent variable

f3. accessing a property of null or undefined
4. reading an absent property of an object
5. writing to variables or object properties that are never read
6. calling a function object both as a function and as a

f hconstructor, or passing function parameters with varying types
7. calling a built-in function with an invalid number of

t ith t f t d tparameters, or with a parameter of an unexpected type
etc…

7

Flow of control and data can be subtle
function Person(n) {

this.setName(n);

Person prototype count++;

function Person(n) {

this.setName(n);

Person prototype count++;

declares a “class”
named PersonPerson.prototype.count++;

}

Person.prototype.count = 0;

P t t tN f ti () { thi }

Person.prototype.count++;

}

Person.prototype.count = 0;

P t t tN f ti () { thi }

named Persondeclares a “static field”
named count

Person.prototype.setName = function(n) { this.name = n; }

function Student(n,s) {

this.b = Person;

hi b()

Person.prototype.setName = function(n) { this.name = n; }

function Student(n,s) {

this.b = Person;

hi b()

declares a shared method
d tNthis.b(n);

delete this.b;

this.studentid = s.toString();

this.b(n);

delete this.b;

this.studentid = s.toString();

named setName

declares a “sub-class”
}

Student.prototype = new Person;

}

Student.prototype = new Person;

declares a sub class
named Student

var t = 100026;

var x = new Student("Joe Average", t++);

var y = new Student("John Doe", t);

var t = 100026;

var x = new Student("Joe Average", t++);

var y = new Student("John Doe", t);

creates two Student
objects…

8

y.setName("John Q. Doe");y.setName("John Q. Doe");
j

does y have a setName method at this program point?

An abstract state
(as produced by TAJS)

9

Which way to go?Which way to go?

We want
• heap analysisheap analysis
• flow-sensitivity
• constant propagation
• on-the-fly call graphon the fly call graph

construction
• soundness

10

Our approachpp

• Abstract interpretation (dataflow analysis)
[Jensen, Møller, and Thiemann, SAS’09]

Abstract interpretation (dataflow analysis)
using the monotone framework
[Kam & Ullman ’77][Kam & Ullman 77]

• The recipe:• The recipe:
1. construct a control flow graph for the

program to be analyzedprogram to be analyzed
2. define an appropriate dataflow lattice

(abstraction of data)(abstraction of data)
3. define transfer functions

(abstraction of operations)(abstraction of operations)

11

Control flow graphsControl flow graphs

• Convenient
representation of
JavaScript programs

• Nodes describe
primitive instructions

• Edges describe
intra-procedural
control-flow

12

Analysis latticeAnalysis lattice

the analysis lattice

b t t t tabstract states

abstract objects

abstract values
13

abstract values

Abstract valuesAbstract values
object labels

(ll)(allocation sites)

14
Example: (, null, true, 42.0, , {l7,l9})

Abstract objectsAbstract objects

property names including [[Prototype]]

d ib hdescribes the
[[Scope]] property

15

Abstract statesAbstract states
heapp

(explained later, maybe...)

the current
activation record

temporary variables stack-reachable
objects

the variable object
the this object

16

the variable object,
for variable declarationsfor resolving variables

The analysis dataflow latticeThe analysis dataflow lattice

the flow graph nodescontexts the flow graph nodescontexts
(for context sensitivity)

caller context and node callee context and node

17

callee context and node

Transfer functionsTransfer functions

Example: read-property x = y[p]
1. Coerce y to objects1. Coerce y to objects
2. Coerce p to strings
3. Descend the object prototype chains

(using the [[Prototype]] property) (g [[yp]] p p y)
to find the relevant properties

4 J i th t l4. Join the property values
5. Assign the result to x

18

Weak vs. strong updatesWeak vs. strong updates
Consider write-property x[p] = y
• x may refer to many abstract objects

(identified by their allocation sites)
• ...and each may represent many concrete objects
• So write-property must conservatively be modeledSo write property must conservatively be modeled

by joining y into the existing value of x[p]
(i e a weak update) x = {a:”foo”}(i.e. a weak update)
– bad for precision!

• Strong update

x = {a: foo }
x[”a”] = 42
// is x[”a”] == 42 here?

• Strong update
(overwriting instead of joining) is possible whenever

f t l b t t bj t– x refers to only one abstract object
– ...which is known to represent only one concrete object

19

Recency abstractionRecency abstraction
[Balakrishnan and Reps, SAS’06]

• For each allocation site l
maintain two abstract objects:j
l @ corresponds to the most recently

allocated object originating from lallocated object originating from l
l * older objects from l

l @ l d ib• l @ always describes at most one concrete
object and hence permits strong updating!

• To make this work, we just need some extra
bookkeeping in the transfer functionsbookkeeping in the transfer functions

20

JavaScript web applicationsJavaScript web applications

• Modeling JavaScript code is not enough…

• The environment of the JavaScript code:

–the ECMAScript standard library
the bro ser API–the browser API
–the HTML DOM

around 250 abstract objects
with 500 properties
and 200 functions…the HTML DOM

–the event mechanism

21
[Jensen, Madsen, and Møller, ESEC/FSE’11]

A small part of the HTML object hierarchyA small part of the HTML object hierarchy…

22

Modeling eventsModeling events

• Extend lattice and
transfer functions to
collect event handlers

• Trigger events
non-deterministically

• Special treatment for
load event handlers

23

Lazy propagationLazy propagation

h
[Jensen, Møller, and Thiemann, SAS’10]

• Each abstract state is huge...

• Introducing lazy propagation:
– When dataflow enters a function, e data o e te s a u ct o ,

assume initially that no object
properties will be read by p p y
the function

– Whenever an object propertyWhenever an object property
later is read, recover its value

⇒ only relevant dataflow⇒ only relevant dataflow
is propagated!

24

Lazy propagation
lexample

x f=42 x f unknown
x.f=42x.f=42 x.f=unknown

x.f=unknown
f

x.f=42

x f=42x.f=42 x.f=42

f k
x.f=unknownx.f=42

x.f=unknown
x.f=unknown

x.f=unknownx.f=42

E h t b t t t t

25

Each represents an abstract state
(ignoring context sensitivity)

Properties of lazy propagationProperties of lazy propagation

• Theoretical properties:
P i i i t l t d b f– Precision is at least as good as before

– Soundness (wrt. language semantics) is preserved

– Recovery does not affect amortized complexity

• In practice:
– Much smaller abstract states!Much smaller abstract states!

– Number of fixpoint iterations decreases

26

ExperimentsExperiments
General results on analyzing web applications fromGeneral results on analyzing web applications from
Chrome Experiments, IE 9 Test Drive, and 10K Challenge:

The analysis is able to show that
• 85-100% of all call sites are safe85 100% of all call sites are safe
• 80-100% of all property reads are safe

ll i hi• most call sites are monomorphic
• most expressions have a unique type
• most spelling errors cause type-related errors

27

Eval in JavaScriptEval in JavaScript

l(S)• eval(S)
– parse the string S as JavaScript code then execute itparse the string S as JavaScript code, then execute it

• Challenging for JavaScript static analysis
– the string may be dynamically generated
– the generated code may have side-effectsg y
– and JavaScript has poor encapsulation mechanisms

E i ti l ith• Existing analyses either
ignore eval entirely or
handle only the simplest cases

28

Eval in Practice
function _var_exists(name) {

try {
l(’ f ’ ’ ’)

function _var_exists(name) {
try {

l(’ f ’ ’ ’)eval(’var foo = ’ + name + ’;’);
} catch (e) {

return false;
}
return true;

eval(’var foo = ’ + name + ’;’);
} catch (e) {

return false;
}
return true;

return name in window;

(if name is not "name" or "foo")
return true;

}

var Namespace = {
create: function(path) {

return true;
}

var Namespace = {
create: function(path) {(p) {

var container = null;
while (path.match(/^(\w+)\.?/)) {

var key = RegExp.$1;
path = path.replace(/^(\w+)\.?/, "");
f

(p) {
var container = null;
while (path.match(/^(\w+)\.?/)) {

var key = RegExp.$1;
path = path.replace(/^(\w+)\.?/, "");
fif (!container) {
if (!_var_exists(key))

eval(’window.’ + key + ’ = {};’);
eval(’container = ’ + key + ’;’);

} else {

if (!container) {
if (!_var_exists(key))

eval(’window.’ + key + ’ = {};’);
eval(’container = ’ + key + ’;’);

} else {} else {
if (!container[key]) container[key] = {};

container = container[key];
}

}

} else {
if (!container[key]) container[key] = {};

container = container[key];
}

}

29

}
}

};

}
}

};

http://www.chromeexperiments.com/detail/canvas-cycle/

window[key] = {};

Eval is Evil (to Static Analysis)Eval is Evil (to Static Analysis)
• but most uses of eval are not very complex... but most uses of eval are not very complex
• So let’s transform eval calls into other code!
• How can we soundly make such transformations

when we cannot analyze code with eval?when we cannot analyze code with eval?

Which came first?

Analysis or transformation

30

TheUnevalizerUnevalizer to the Rescue!The UnevalizerUnevalizer to the Rescue!

• Removes calls to eval from input code
• Does not affect the behaviorDoes not affect the behavior

of the code
th lti d i– the resulting code is
maybe not pretty

– but it is analyzable!

• The idea• The idea:
transform eval calls
during dataflow analysis

31

(TAJS)

Whenever the dataflow analysis detects new dataflow to eval

the UnevalizerUnevalizer

32

Whenever the dataflow analysis detects new dataflow to eval,
the eval transformer is triggered

[Jensen, Jonsson, and Møller, ISSTA’12]

An exampleAn example
var y = "foo"var y = "foo"var y = foo
for (i = 0; i < 10; i++) {
eval(y + "(" + i + ")")

}

var y = foo
for (i = 0; i < 10; i++) {
eval(y + "(" + i + ")")

}

• The dataflow analysis propagates dataflow

}}

y p p g
until the fixpoint is reached

iteration 1: y is "foo" i is 0– iteration 1: y is foo , i is 0
eval(y + "(" + i + ")") foo(0)

(th d t fl l i d i t f)(the dataflow analysis can now proceed into foo)
– iteration 2: y is "foo", i is AnyNumber

33

eval(y + "(" + i + ")") foo(i)

– … (would not work if i could be any string)

More examplesMore examples

l("f ") f []• eval("foo."+x) foo[x]
if we know that x is a number or a string that
is a valid identifier

• eval("foo_"+x) window["foo_"+x]
if we know that x is a string that consists of
characters that are valid in identifiers, excluding
the initial character, and that no local variables
are named foo_*_

34

... and one more example
get_cookie = function (name) {

var ca document cookie split(’;’);
get_cookie = function (name) {

var ca document cookie split(’;’);

... and one more example

var ca = document.cookie.split(’;’);
for (var i = 0, l = ca.length; i < l; i++) {

if (eval("ca[i].match(/\\b" + name + "=/)"))
return decodeURIComponent(ca[i] split(’=’)[1]);

var ca = document.cookie.split(’;’);
for (var i = 0, l = ca.length; i < l; i++) {

if (eval("ca[i].match(/\\b" + name + "=/)"))
return decodeURIComponent(ca[i] split(’=’)[1]);return decodeURIComponent(ca[i].split(=)[1]);

}
return ’’;

}

return decodeURIComponent(ca[i].split(=)[1]);
}
return ’’;

}}
get_cookie(’clicky_olark’)
get_cookie(’no_tracky’)
get cookie(’ jsuid’)

}
get_cookie(’clicky_olark’)
get_cookie(’no_tracky’)
get cookie(’ jsuid’)

eval("ca[i].match(/\\b" + name + "=/)")

get_cookie(_jsuid)get_cookie(_jsuid)

name==="clicky_olark" ? ca[i].match(/\\bclicky_olark=/)
: name==="no_tracky" ? ca[i].match(/\\bno_tracky=/)

: ca[i].match(/\\b_jsuid=/)

35

Remaining challenges
in the TAJS project

• Improve precision further to eliminate
false positivesfalse positives

• Improve scalability to handle JavaScript
b li ti th t i l lib iweb applications that involve libraries,

e.g. jQuery, MooTools, Dojo, ...
• Improve IDE integration (the Eclipse plug-in)

emphasize the most critical warnings– emphasize the most critical warnings
– visualization of abstract states, call graphs,

d i h it hi hiand inheritance hierarchies
36

Conclusion
• JavaScript programmers need better tools
• Static analysis can detect type-related errors
– model of the standard library,model of the standard library,

the browser API, and
the HTML DOMthe HTML DOM

– recency abstraction
l ti– lazy propagation

– rewrite calls to eval
during analysis

Π CENTER FOR ADVANCED SOFTWARE ANALYSISΠ CENTER FOR ADVANCED SOFTWARE ANALYSIS

http://cs.au.dk/CASA
37

