
A l i J S i tAnalyzing JavaScript
Web ApplicationsWeb Applications

Anders Møller
Aarhus University

Joint work with Simon Holm Jensen, Peter Thiemann, and Magnus Madsen

JavaScript: the lingua franca of Web 2 0JavaScript: the lingua franca of Web 2.0

2

JavaScript is a dynamic languageJavaScript is a dynamic language

• Object-based
• Prototype-based inheritancePrototype based inheritance
• First-class functions, closures
• Runtime types
• …

NO STATIC TYPE CHECKING

3

How JavaScript was designedHow JavaScript was designed

“I hacked the JS prototype
in ~1 week. And it showed!
Mistakes were frozen early.”Mistakes were frozen early.

– Brendan Eich, inventor of JavaScript

4

JavaScriptJavaScript

5

Static type analysis
to the rescue!

an abstract state for each
program point,

l it f th t d t t

6

analyze it further to detect
likely programming errors

Potential programming errorsPotential programming errors

1. invoking a non-function value (e.g. undefined) as a function
2. reading an absent variable

f3. accessing a property of null or undefined
4. reading an absent property of an object
5. writing to variables or object properties that are never read
6. calling a function object both as a function and as a

f hconstructor, or passing function parameters with varying types
7. calling a built-in function with an invalid number of

t ith t f t d tparameters, or with a parameter of an unexpected type
etc…

7

Flow of control and data can be subtle
function Person(n) {

this.setName(n);

Person prototype count++;

function Person(n) {

this.setName(n);

Person prototype count++;

declares a “class”
named PersonPerson.prototype.count++;

}

Person.prototype.count = 0;

P t t tN f ti () { thi }

Person.prototype.count++;

}

Person.prototype.count = 0;

P t t tN f ti () { thi }

named Persondeclares a “static field”
named count

Person.prototype.setName = function(n) { this.name = n; }

function Student(n,s) {

this.b = Person;

hi b()

Person.prototype.setName = function(n) { this.name = n; }

function Student(n,s) {

this.b = Person;

hi b()

declares a shared method
d tNthis.b(n);

delete this.b;

this.studentid = s.toString();

this.b(n);

delete this.b;

this.studentid = s.toString();

named setName

declares a “sub-class”
}

Student.prototype = new Person;

}

Student.prototype = new Person;

declares a sub class
named Student

var t = 100026.0;

var x = new Student("Joe Average", t++);

var y = new Student("John Doe", t);

var t = 100026.0;

var x = new Student("Joe Average", t++);

var y = new Student("John Doe", t);

creates two Student
objects…

8

y.setName("John Q. Doe");y.setName("John Q. Doe");
j

does y have a setName method at this program point?

An abstract state
(as produced by our analysis)

9

General and widely used approachesGeneral and widely used approaches

• The monotone framework
[Kam & Ullman ’77]

• The functional approach
[Sharir & Pnueli ’81]

• IFDS
[Reps, Horwitz, and Sagiv ‘95]

• …

10

Our approachOur approach

• Abstract interpretation using• Abstract interpretation using
the monotone frameworkthe monotone framework

Th i• The recipe:
1. construct a control flow graph for the

program to be analyzed
2. define an appropriate dataflow latticepp p da a o a ce

(abstraction of data)
3 define transfer functions3. define transfer functions

(abstraction of operations)
11

Control flow graphsControl flow graphs
• declare-variable[x] • Convenient
• read-variable[x,v]
• write-variable[v,x]
• constant[c v]

representation of
JavaScript programs
N d d ib• constant[c,v]

• read-property[vobj,vproperty,vresult]
• write-property[vobj,vproperty,vvalue]

• Nodes describe
primitive instructions,
edges describep p y[obj, property, value]

• delete-property[vobj,vproperty,vresult]
• if[v]

edges describe
control-flow

• Each x is a program
• entry[f,x1,…,xn], exit, exit-exc
• call[w,v0,…,vn], construct[w,v0,…,vn],

after-call[v]

p g
variable

• Each v is a temporary after call[v]
• return[v]
• throw[v], catch[x]

variable (i.e. a register)

• <op>[v1,v2], <op>[v1,v2,v3]
• … 12

Analysis latticeAnalysis lattice

the analysis lattice

b t t t tabstract states

abstract objects

abstract values
13

abstract values

Abstract valuesAbstract values
object labels

(ll)(allocation sites)

14
Example: (, null, true, 42.0, , {l7,l9})

Abstract objectsAbstract objects

property names including [[Prototype]]

(explained later) d ib h(explained later) describes the
[[Scope]] property

15

Abstract statesAbstract states
heapp

(explained later)

the current
activation record

temporary variables stack-reachable
objects

the variable object
the this object

16

the variable object,
for variable declarationsfor resolving variables

The analysis latticeThe analysis lattice

the flow graph nodescontexts
(for context sensitivity)(for context sensitivity)

17

Transfer functionsTransfer functions

Example: read-property[vobj,vproperty,vresult]
1. Coerce vobj to objects1. Coerce vobj to objects
2. Coerce vproperty to strings
3. Descend the object prototype chains

(using the [[Prototype]] property) (g [[yp]] p p y)
to find the relevant properties

4 J i th t l4. Join the property values
5. Assign the result to vresult

18

Weak vs. strong updatesWeak vs. strong updates
• For a write-property[vobj,vproperty,vvalue] node,

f b bvobj refers to one or more abstract objects
(identified by their allocation sites)

• Each abstract object generally describes
multiple concrete objects

• So write-property must conservatively be modeled
by joining vvalue into the existing value of vproperty at vobjy j g value g property obj
(i.e. a weak update)

• This is bad for precision!This is bad for precision!
• Strong update (overwriting instead of joining) is

possible whenever the abstract object is known topossible whenever the abstract object is known to
represent a single concrete object

19

Recency abstractionRecency abstraction
[Balakrishnan and Reps, SAS’06]

• For each allocation site l
maintain two abstract objects:j
l @ corresponds to the most recently

allocated object originating from lallocated object originating from l
l * older objects from l

l @ l d ib• l @ always describes at most one concrete
object and hence permits strong updating!

• To make this work, we just need some extra
bookkeeping in the transfer functionsbookkeeping in the transfer functions

20

Interprocedural analysis withInterprocedural analysis with
maybe-modified

function fcall call

after-call after-call

At function exits, restore unmodified parts of

21

the heap (and the stack) from the call node

Observing redundancyObserving redundancy

...

TaskControlBlock.prototype.markAsRunnable = function () {

this.state = this.state | STATE_RUNNABLE;

};

...

• Why is this function (from richards js V8)• Why is this function (from richards.js, V8)
visited 18 times by the analyzer???

• Mostly, new dataflow that arrives at the function entry
(and triggers re-analysis) is irrelevant to the function body!

22

(gg y) y

Lazy propagationLazy propagation
• Defer propagation of field values that are not known to

be relevant to the current function
• Use a placeholder value: unknown
• When analyzing a function,When analyzing a function,

assume initially that no fields
are referenceda e e e e ced

• When a field is referenced,
recover its proper valuerecover its proper value

⇒ irrelevant dataflow isn’t propagated
⇒ unknown implies unmodified

23

An exampleAn example

x f=42 f k
x.f=42

– Each
represents an x.f=42 x.f=unknown

x.f=unknown
x f=42

x.f=42

x.f=42

abstract state
– For simplicity, x.f=42

x f=42 x.f=unknown

p y,
no context
sensitivity here

x.f=unknownx.f=42

x.f=unknown

y

x.f=unknown
x.f=42

24

Formalization of lazy propagationFormalization of lazy propagation
How do we express the ideaHow do we express the idea
more concisely and formally?
(necessary for reasoning about its properties
and for obtaining a good implementation)and for obtaining a good implementation)

1) Start with a basic analysis framework where
t f f ti d itransfer functions are expressed via an
abstract data type (ADT)

2) Introduce lazy propagation by a systematic
modification of the ADT (without touchingmodification of the ADT (without touching
the transfer functions!)

25

The basic lattice (simplified)The basic lattice (simplified)
object labels (allocation sites) functionsobject labels (allocation sites) functions

(fi ld)property names (fields)

t f ll dset of call edges

26

contexts nodes (primitive statements)

AnalysisLattice as an y
abstract data type (ADT)

reads a field value

reads the call graphreads an
abstract i d l flabstract
state

intra-procedural flow

inter-procedural flow

• The transfer functions can only access the
AnalysisLattice element through these operations

27

y g p
• (We’ll skip their definitions here…)

Introducing lazy propagationIntroducing lazy propagation
– a systematic modification of the y

lattice and the ADT operations
property values canproperty values can
now be “unknown”!

each call edge is now distinguishing between the
now labelled with
an abstract state

unreachable state and the all-unknown state

28used for recovering “unknown” values

getfield’ (read a field)getfield (read a field)

...

getfield from the basic framework

call recover if the value is “unknown”

...

29

funentry’ (flow at function entry)funentry (flow at function entry)

(c1,n1)
u...

(c1,n1)

s (c2,entry(f2))

f
set everything

t fi ld th t

f2to unknown…

… except fields that are
known to be referenced

...

30

.

join s’ into the function entry state

funexit’ (flow at function exit)funexit (flow at function exit)
()

ug

(c1,n1)
(c2,entry(f2))

(c1,after(n1))
f2

s

unknown
implies p
not modified within the function

31
join s’ into the node after the call

Theoretical properties of lazy propTheoretical properties of lazy prop.

• Precision is at least as good as before
S d (l i)• Soundness (wrt. language semantics)
is preserved

• Recovery does not affect amortized complexity
• Number of fixpoint iterations increases in

some situations and decreases in other

32

ExperimentsExperiments

• >200 small test cases, to get into the obscure
corner cases of JavaScriptp

• A few larger benchmarks: Google’s V8
benchmark suite (500 1800 lines of code)benchmark suite (500-1800 lines of code)

• Also tested on the SunSpider benchmarks

33

ExperimentsExperiments

Some results for richards.js from V8:
– the analysis guarantees for 95% of the call/construct

instructions that they always succeed
– 1 location where an absent variable is read,

ith 0 i iwith 0 spurious warnings
– 93% of all read/write/delete-property operations will never

attempt to coerce null or undefined into an objectattempt to coerce null or undefined into an object
– 6 functions dead (guaranteed unreachable)

34

Experimental resultsExperimental results

∞ means >512MB

basic: naive monotone framework
basic+: basic extended with maybe-modified (and copy-on-write)

35

y f (py)
lazy: basic extended with lazy propagation

SummarySummary
Static analysis is a useful tool for reasoningStatic analysis is a useful tool for reasoning
about programs written in a scripting language
such as JavaScript

Lazy propagation ensures that only relevantLazy propagation ensures that only relevant
information is propagated from one function

hto another

– reduces the amount of data being propagatedreduces the amount of data being propagated

– may improve precision: non-referenced fields
respect interprocedurally realizable paths

36

