Analyzing JavaScript
Web Applications

Anders Mogller

Aarhus University

Joint work with Simon Holm Jensen, Peter Thiemann, and Magnus Madsen

—
o))
<
o))

Search +
Applications edit
Photos
i1 Groups

BT events
a Scrabulous
td Super wall

¥ more

Cheap flights from
Jat2

Book now to get new
summer sun routes from
A£29,599 (one way induding
taxes) to Cyprus, Crete,
Sardinia, La Rochelle,
Jersey, and mare.

Maore Ads

N
@

Profile edit

Nnaolil
i lsua

J

o
i

+h
| 9

[a)
L A

nte
P‘-o |

welcome, erickfuture
[Sign Out, My Account]

YAHOO! LocaL

» GET MAP AND DIRECTIONS

Ly Printable Version #Send ~ & Save » [] Live Traffic
[a]] [New Yok w
¥ FIND A RUSTNESS ON THE MAP JE & hp",»“fm R
[en | 2 Byt

Search Results: susai

@ - From | Mare In‘e

1 sushi Ga-der

Fram | More Tnén

[Sushi-Grill-Music-Russiar Farty-Black Vip Car
Friends [INCORECS

Eus
! River

Brooklyn, NY
From | More Info

Maps Home Dial-Up Map (Original) Helt

Help/Policies ~

o £ Arnadaay.
ey St 2 piadizanst

Manhattan S sk
3
Y e

ALY
S

‘,.ﬂ‘
et
; i 2]
Flushing m%t\\ 9 HINE! E ety
5 115 Z
g% j
FEAY

Cmail - Inbox

@‘\
o o
(a3 ,:5\"§
& &
Sushi Japanese kA& RA (5) . 9\05
0 o
Brooklyn, NY
From | More Info |
View Photos of Me (112) =
= = e El Fzan ke (71
View My Friends (103) Acsults 1 10 of 1€ Hext
Get mare Super Wall pos View Local Resuts as a List —
Play Scrabulous with me - : s Dala 2006 NEVTED
2 i Displaying 10 stories,
Edit My Profile
i April 5
I am online now. HEl

@ Jenny commented on Helen Isley's photo. 10:220m

A TR S -

5o you were how old when you gave birth to them?
el

¥ Lancaster Friends

37 friends at Lancaster. See Al
" “ £5, Jenny and David Threlkeld are now friends. 2:072-
B I At
Sana = =
Maormi Corinth AT Jenny wrote on Helen Isley's wall.5::5pm
Simmons Dutton Siddigui

April 3
& Jenny is at home. 5:42

i Jenny joined the group B&Q Drones, ;3%

March 28

@ Jenny wrate on Naomi Simmons's wall. 1 1:450m

Laura

| #| [Clhttp://gmail.google.cr ¥

Gl

ahansen@gmail.com | Feedback | Contacts | S¢

| Search Mail
Show search options Create a filter

Compose Mail Archive || More actions... _»| Refresh

e a-ilr?:’[: All, Read, Unread, Starred, Unstarred, Ap|
Starred ¥ [me, Ask, Robert (8) » gmail test
Sent Mail -

All Mail I~ Gmail Team » Re:[#9130
Spam [Ask Bjern Hansen » testfoo bar
Trash [~ Ask, me (2] » pgp signec
w Labels [” Robert, me (2) Re: Postfix
agmail stuff r Gmail Team » gmail stuff G

Edit labels
Select: All, Read, Unread, Starred, Unstarred, None

Archive || More actions... |

You are currently using 0 MB (0%) of your 1000 MB.
Shortcuts: o-open y-archive ¢-compose j-older k-newer

lauvaQe
Jaap

Object-based
Prototype-based inheritance
First-class functions, closures
Runtime types

NO STATIC TYPE CHECKING

“| hacked the JS prototype
in ~1 week. And it showed!

. ”»
Mistakes were frozen early.

— Brendan Eich, inventor of JavaScript

Static type analysis
to the rescue!

an abstract state for each
=== — program point,
!': | ”:;_f"““fjﬁ: \ — d
e — analyze it further to detect
==) likely programming errors

NDAaktAamd Pl el
UL Lid CIiIV

.~
19

otén p Oograimming €
invoking a non-function value (e.g. undefined) as a function
reading an absent variable

accessing a property of nul 1 or undefined

reading an absent property of an object

writing to variables or object properties that are never read

S D D

calling a function object both as a function and as a
constructor, or passing function parameters with varying types

7. calling a built-in function with an invalid number of
parameters, or with a parameter of an unexpected type

etc...

Flow of control and data can be subtle

function Person(n) {

this.setName(n): declares a “class”
Person.prototype.count++; amed Person
- aclares a "static field”

- -—.MAI‘ ﬁl\llﬂ+
Person . nreclllype.Clulit = U, A LERA A i b

Persomegrotatyna cotiime™=_tunction(n) { this.name = n; }

7 1

tunction Student{ii,S) 1
this.b = Person: declares a shared method

this.b(n); named setName
delete this.b;

this.studentid = s.toString(Q);
}

Student.prototype = new Person:

declares a “sub-class”
named Student

var t = 100026.0;

var x = new Student("Joe Average", t++)y Creates two Student
var y = new Student("John Doe", t); objects...
y.setName("John Q. Doe");

does Yy have a setName method at this program point?

An abstract state

(as produced by our analysis)

T CRIBST_FROTID
T " Jo-.
P F_¢_PROTC e
o] TRETRSHTY PPLE] f.x’
/ Fohteel: ROMGT_FRGTS | FLNGTION_PROTS
§ ¥ abs) Han . o] IR R R BT PR TS
|!_ T - T N
FO "-h ! P %
et 1 / T F_Persan e Y
Predetyee: (R S FRIT =i J_X.f"’f IEnHRa: 1
L L] Pretiynet (F_Passen, PROT)
Ceeesll: HEbTEALY - 1o kkpa (RN ETIOH B R 2o L
I T e veun: 8
e P soRgtiveha: IP_Fereon]
GLOBAL e

o
-
T

st ane! (P /
Ba it [PoFgrsen} i R s (PR B T FROTGC
Shedkeri: IF_Shdeig e[o WFaks]: i
F_Stmlent
T 1 T | edonfl o e - \
f/ . - i L i

5 (ki e R "IET Aviags
¥l e, | WP PN PRRTY Bretaee: (PSR ROTO) Ty
[Fiataly 6] FeBEST_FRGTE I L1 NFEEEeeE (PYNET S FROTS] b /
- o~ | bkl ., PEtkNFROTO

R Ekng P | FEMEEIVEERINR O

LT TR ey s e - Nt es): PRz en FROT

Ty, -
rr -
- i

rrr.r'_._r
n

e,
rrrr_rr
e T,

)

seneral and w

(= | A ‘.l
all WIUIC

-~
d

The monotone framework
[Kam & Ullman '77]

The functional approach
[Sharir & Pnueli ’81]

IFDS
[Reps, Horwitz, and Sagiv ‘95]

ad an
€d ap

'CS

:"
M

)

'aY ur ~l

VUl dapproacn

* Abstract interpretation using
the monotone framework

* The recipe:

1.

construct a control flow graph for the
program to be analyzed

define an appropriate dataflow lattice
(abstraction of data)

define transfer functions
(abstraction of operations)

11

declare-variable[x]
read-variable[x,V]
write-variable[v,x]
constant[c,v]
read-property[V .V, ropertyVresutt)

write-prope rty[Vobjr Voroperty’ Vvalue]

delete-property[v
if[v]
entry[f,x,,....X,], exit, exit-exc

obj’Vproperty’ Vresult]

calllw,v,,...,v,], construct[w,v,,...,v,],
after-call[v]

return(v]
throw[v], catch[x]

<op>[v,,v,], <op>[vy,V,,v;]

L.

grapns

Convenient
representation of
JavaScript programs

Nodes describe
primitive instructions,
edges describe
control-flow

Each x is a program
variable

Each v is a temporary
variable (i.e. a register)

12

the analysis lattice

abstract states

abstract objects

abstract values

13

object labels
(allocation sites)

v
Value = Undef x Null x Bool x Num x String x P(L)

bool
undef null /7 N\
Undef = | Null = | Bool = true false
1 1
L
g HUITI rrrrrrrrr $!“'ng
INF "”Wﬂ//m e NetUlnt il
n WOt , Ulnt€iring NetUIniSiring
Num= /% TN A String= — Py
~Inf +Inl NaN 0 . 4294967295 .« -42 187 1.2 w "wn4R94967 295" oo™ "har”
T, | e TTm— T

1

Example: (L, null, true, 42.0, L, {¢,4})

14

AMctrvanct AlntAacntkea
MJOLIAUL UNJTULD

| S

property names including [[Prototype]]

v

Obj — (I’ — Value = Absent » Afttributes » Meodified) = P{ScopeChain}

Vs !
(explained later) describes the

[[Scope]] property

absent inadified
Absent = | Modified = |
1 1
Attributes = ReadOnly x DoniDelete = DontEnum
T T T
AN <~ N AN
ReadOnly = RO notRO DontDelete = DD neiDD DontEnum = DE notDE
N/ N/ N\ S

1 1 1

15

AMcbvarnd cdkadkaAan
MNJOLIAUL OLALTO

hea
- P

State = (L — Obj} x Stack x P(L} x P(L)

\/

(explained later)

. the current stack-reachable
temporary variables

\ actlvatlcin record objects\
Stack = (I' — Value) x P(ExecutionContext) x P(L)
ExecutionContext = ScopeChain x L x L
ScopeChain = L f . the th1is object
f the variable object,

for resolving variables for variable declarations

16

AnalysisLattice = C' ¥ N — State
contexts the flow graph nodes

(for context sensitivity)

17

Tlﬂ “ﬁ‘ﬂ” ‘l R N I £~
N | SICI 1 Vi

o~ o~
adll iICU

Exa m p | e . read-pro pe rty[VObj, Vproperty, Vresu/t]

1.
2.
3.

Coerce v, to objects
Coerce Vproperty to strings

Descend the object prototype chains
(using the [[Prototype]] property)
to find the relevant properties

4. Join the property values
. Assign the result to v,es

18

Weak vs

For a write-property[V,,,V, opertyVyaiuel NOde,
Vopj refers to one or more abstract objects
(identified by their allocation sites)

., STrong
. JLIUIIH

Each abstract object generally describes
multiple concrete objects

So write-property must conservatively be modeled
by joining v, into the existing value of v, at v,
(i.e. a weak update)

roperty

This is bad for precision!

Strong update (overwriting instead of joining) is
possible whenever the abstract object is known to
represent a single concrete object

19

Dﬂﬁﬂ
INCULCT

o)
o
Q

|
[Balakrishnan and Reps, SAS’06]
 For each allocation site ¢
maintain two abstract objects:

£ @ corresponds to the most recently
allocated object originating from ¢

{ * older objects from £

e { @ 3lways describes at most one concrete
object and hence permits strong updating!

* To make this work, we just need some extra
bookkeeping in the transfer functions

20

ith

4

after-call aftergcall

I
I
I
v v

At function exits, restore unmodified parts of
the heap (and the stack) from the call node

21

Nhe Vv
WUNO

cﬁ:
c:.
E:.

'<

TaskControlBlock.prototype.markAsRunnable = function () {
this.state = this.state | STATE_RUNNABLE;

I E
* Why is this function (from richards. js, V8)

visited 18 times by the analyzer???

* Mostly, new dataflow that arrives at the function entry
(and triggers re-analysis) is irrelevant to the function body!

22

l 2= ravare s erads
LdZy propdagation
* Defer propagation of field values that are not known to
be relevant to the current function

e Use a placeholder value: unknown

 When analyzing a function,
assume initially that no fields
are referenced

e When a field is referenced,
recover its proper value

—> irrelevant dataflow isn’t propagated
—> unknown implies unmodified

A MY MANF IAN I I &
M1l CTAAITIYIC
s h
Senm x.f=42
. xf=A2 Xf=unknown
x.f=42 Y A~

x.f=unknown

nnnnn

fz -

" rl
lr ®
; fa
:

®

+ x,f=unknown
. x.f= ‘

— Each e
represents an
abstract state

— For simplicity,
no context
sensitivity here

24

EAM ﬂ.
rTJlilidil

L n ~f o \.
8 1A

on ot iazy propagat
How do we express the idea
more concisely and formally?

Za

(necessary for reasoning about its properties
and for obtaining a good implementation)

1) Start with a basic analysis framework where
transfer functions are expressed via an
abstract data type (ADT)

2) Introduce lazy propagation by a systematic
modification of the ADT (without touching
the transfer functions!)

25

I ne pasic iattice (sim I|J ifie)
object labels (allocation sites) functions
\ Y

Value = P(L) x P(F) x Base

Obj = P — Value
T property names (fields)

State = L — Ob]

CallGraph = P{(C"x N x (" X F'}
Y~ set of call edges

AnalysisLattice = (C' x N — State) x CallGraph
b R

contexts nodes (primitive statements)

26

AnalysisLattice as an
abstract data type (ADT)

reads a field value

S'gs*e*:f‘;‘l?f.%é-af X N x L x P — Value
reads an geteatlgraph : () — CallGraph <«— reads the call graph
—» getstate 1 €' x N — State
propagate : € X N x State — ()
funentry . C x N x C' % F x State — ()
/. funexit: C x N x €' x F x State — ()
inter-procedural flow

abstract
state

«— intra-procedural flow

* The transfer functions can only access the
AnalysisLattice element through these operations

* (WEe’ll skip their definitions here...)

27

cing lazy propagat
— a systematic modification of the
lattice and the ADT operations

lvadepn
111L1

o~ uc
i uu

~~
OV

property values can

”l

now be “unknown”!

CallGraph = €' x N x €' x F — (State] none)

AnalysisLattice = (C' x N — (State|nane)) X CaIIGra;ﬁ
now distinguishing between the 2 each call edge is
unreachable state and the all-unknown state now labelled with

_ an abstract state
recover . C X N x L x P — Value

/

used for recovering “unknown” values s

a.getfield (ce C,ne N, & L, pe P):

v = a.getfield(c,n, l,p)
if v = unknown then
// the field value has been reduced to unknown, so recover the real value

¥~ getfield from the basic framework

v = a.recover(c,n, . p)

end if ¥~ call recover if the value is “unknown”
return v

29

I...‘ A A .‘-., 4% U A 8 L‘..l‘

1£ ~
funentry’ (flow at funct

one

a.funentry’ (1 € C,n1 € N, ea € C, fo € F, s € State):
let (m.g) =a and u = m(cg, entry(f2)) ‘

// introduce unknown field values

§ 1= 1 state \] S
if u # none then set everything

forall /e L.pe P do
if «(f)(p) # unknown then to unknown...

// the field has been referenced

end if

$(Op)=s0)p) —0 except fields that are

-

AN

u
(cy,nq) ﬁ

(cy.entry(f,))

£

~

il known to be referenced

end if
// propagate the resulting state into the function entry
a.propagate’ (ca, entry(fa), s")

™

join s” into the function entry state

30

afunexit (e C,my eN,ca €, [

let (_.g) =a and u, = g{cy,ny. 2,

s 1= Lstate
forall fcL.pc Pdo
if s(£){(p) = unknown then

F., s € State):
f2)

-
-
i

(cy,after(n,))

/ the field has not been accessed, so restore its value from the call edge state

s (E)(p) = ug(€)(p)
else
' (£)(p) = s(£)(p)
end if
end for
a.propagate’ ey, after(ig), s')

4 “—
unknown

implies

not modified within the function

\ join s” into the node after the call

31

Tl
11

O
(@)

* Precision is at least as good as before

e Soundness (wrt. language semantics)
is preserved

* Recovery does not affect amortized complexity

* Number of fixpoint iterations increases in
some situations and decreases in other

32

l m ~ v i
8

o«
ITIHILO

Exper
e >200 small test cases, to get into the obscure

corner cases of JavaScript

* A few larger benchmarks: Google’s V8
benchmark suite (500-1800 lines of code)

* Also tested on the SunSpider benchmarks

33

l

~ v i
8

o«
ments

Exper

Some results for richards. js from V8:

— the analysis guarantees for 95% of the call/construct
instructions that they always succeed

— 1 location where an absent variable is read,
with 0 spurious warnings

— 93% of all read/write/delete-property operations will never
attempt to coerce null or undefined into an object

— 6 functions dead (guaranteed unreachable)

34

Cumavimmantal vacrileea
LANCIHTICIILAI TTouUlblo
[terations Time (seconds) Memory (MB)
LOC|Blocks| lazy|basic+| basic| lazy|basic+|basic| lazy|basic+ | basic
richards.js 529| 478| 1399, 2782| 2663| 3.8 4.6/ 5.6| 3.7 6.4/11.05
benchpress. js 463| 710| 5097| 12581 (18060| 5.4| 13.4| 33.2| 7.8] 24.0(42.02
delta-blue. js 853 1054|63611 o0 oo |136.7 o0 oo |140.5 00 o0
cryptobench. js | 1736 2857 |17213| 43848 co| 22.1] 99.4| oo 42.8] 1279 oo
3d-cube. js 342 h45| 2009| 4147 7116, 4.0 5.3| 14.1] 6.2 10.6| 18.4
3d-raytrace.js | 446| 575H| 6749| 30323 co| &8.2] 24.8] oo 10.1] 16.7| oo
crypto-md5. js 296 392 646 1004| 5358| 1.8 2.0 4.5| 2.7 3.6| 6.1
access-nbody. js| 179 149 317 523| 551 1.0 1.3 1.8| 0.9 1.7| 3.2

basic: naive monotone framework

oo means >512MB

basic+: basic extended with maybe-modified (and copy-on-write)

lazy:

basic extended with lazy propagation

35

CI 1 9 N "N AN 2
» iilidl 'y
W Static analysis is a useful tool for reasoning
about programs written in a scripting language
such as JavaScript

W Lazy propagation ensures that only relevant
information is propagated from one function
to another

— reduces the amount of data being propagated

— may improve precision: non-referenced fields
respect interprocedurally realizable paths

36

