
Static Analysis for Dynamic XMLStatic Analysis for Dynamic XML
-- The The JWIGJWIGJWIGJWIG ProjectProject

Anders Møller
Aske Simon Christensen

Michael I. Schwartzbach

University of Aarhus

Static Analysis for Dynamic XML 2

Interactive Web Services

REQUEST

RESPONSE

CLIENT WITH BROWSER WEB SERVER

Two central aspects of Web service development:
• session management
• dynamic construction of Web pages

Static Analysis for Dynamic XML 3

Problems with Existing Technologies

CGI/Perl, Servlets, JSP, ASP, PHP, ...

Session management:
• URL rewriting / hidden form fields / cookies
• hidden control-flow!
• complicated session state management!
• impossible to statically verify correspondence between

generated Web pages and received form fields!

Dynamic construction of Web pages:
• printing string fragments to output stream
• unflexible, requires linear construction!
• HTML and code is mixed together!
• impossible to statically verify that only valid HTML is generated!

Static Analysis for Dynamic XML 4

The JWIGJWIG Solution

JWIG: a novel Java-based framework for
Web service development

JWIG features:

• an explicit session concept
• shared state through usual scope mechanisms
• XML templates as first-class values
• static guarantees about the behavior of running services

– all received form data is as expected
– all dynamically generated XML documents are

guaranteed to be valid (X)HTML

Static Analysis for Dynamic XML 5

import dk.brics.jwig.*;

public class ExampleService extends Service {

int users = 0;

synchronized int next() { return ++users; }

XML wrapper = [[<html>

<head><title>JWIG</title></head>

<body><[BODY]></body>

</html>]];

public class ExampleSession extends Session {

String name;

public void main() {

XML ask = [[<form>Your name? <input name=“NAME”/>

<input type=“submit”/></form>]];

show wrapper <[BODY = ask];

name = receive NAME;

XML goodbye = wrapper <[BODY = [[

Hello <[WHO]>, you are visitor number <[COUNT]>!

]]] <[WHO = name, COUNT = next()];

show goodbye;

} } }

An Example JWIG JWIG Program

Static Analysis for Dynamic XML 6

Higher-Order XML Templates

XML templates:
• a built-in first-class data type
• well-formed fragments of XML containing named gaps
• constants + template/string plug operations
• allow separation of XML and code
• efficient implementation: constant time plug, linear time show

<html>

<head><title>JWIG</title></head>

<body><[BODY]></body>

</html>

Hello <[WHO]>, you are

visitor number <[COUNT]>!
<[]BODY =

<html>

<head><title>JWIG</title></head>

<body>

</body>

</html>

Hello <[WHO]>, you are

visitor number <[COUNT]>!

Static Analysis for Dynamic XML 7

Client Interactions

• RPC-like show statement

• receive expression for reading form data

• “type checking”:
– argument is valid XHTML
– result is expected set of name-value pairs

Static Analysis for Dynamic XML 8

flow graph
constructor

Static Guarantees using Program Analysis

class
files

flow
graph

string
analysis

regular
languages

summary graph
analysis

summary
graphs

plug analysis

receive analysis

show analysis

Static Analysis for Dynamic XML 9

Flow Graphs

A flow graph of a JWIG program captures

• the flow of string and XML values
• the correspondence between

show and receive operations
while abstracting everything else away

node ~ abstract statements

flow edges ~ data flow
receive edges ~ show/receive relation

wrapper = [[<html> ...]]

ask = [[<form> ...]]

t1 = wrapper <[BODY = ask]

show t1

receive NAME

name = ?

t2 = [[Hello ...]]

t3 = wrapper <[BODY = t2]

t4 = t3 <[WHO = name]

t5 = t4 <[COUNT = ?]

show t5

Static Analysis for Dynamic XML 10

Construction of Flow Graphs

JWIG program → Flow graph

1. Individual methods
2. Code gaps
3. Method invocations (monovariant, using CHA)

4. Exceptions
5. Show and receive operations
6. Arrays (using weak updating and aliasing)

7. Field variables (flow-insensitive)

8. Graph simplification (reaching definitions,
def-use edges, copy propagation)

Static Analysis for Dynamic XML 11

Summary Graphs

A summary graph is a convenient
representation of a set of XML values

node ~ XML template constant

template edges ~ template plug
operations

string edge ~ string plug
operations

+ gap presence information

<html>

<head><title>JWIG</title></head>

<body><[BODY]></body>

</html>

Hello <[WHO]>, you are

visitor number <[COUNT]>!

BODY

COUNTWHO

Σ* [0-9]+

Static Analysis for Dynamic XML 12

Summary Graphs as Mathematical Structures

SG = (R, T, S, P)

• R ⊆ N is a set of root nodes
• T ⊆ N × G × N is a set of template edges
• S: N × G → REG is a string edge map

• P: G → 2N × Γ × Γ is a gap presence map

Γ = 2{OPEN,CLOSED}

L(SG) = { close(d)∈XML d ∈ unfold(SG) }

Static Analysis for Dynamic XML 13

Construction of Summary Graphs

Flow graph → Summary graphs
(one for each XML variable at each program point)

• summary graphs form a lattice
• apply standard data-flow analysis framework
• relatively straightforward transfer functions

Static Analysis for Dynamic XML 14

Catching Errors

*** Field `NAME' is never available on line 15
*** Invalid XHTML at line 14
--- element 'input': requirement not satisfied:
<or>
<attribute name="type">
<union>
<string value="submit" />
<string value="reset" />

</union>
</attribute>
<attribute name="name" />

</or>

...

XML ask = [[<form>Your name? <input name=“NAME”/>

<input type=“submit”/></form>]];

...

Example: If the programmer forgets the name attribute:

then the JWIG program analyzer will find out:

Static Analysis for Dynamic XML 15

Analysis Performance

198

88

32

13

9

6

8

4

Templates

36.093923Jaoo

115.6141078Bachelor

9.724766WebBoard

7.73238TempMan

9.76167Memory

7.02133Calendar

7.1794Guess

5.3380Chat

Analysis Time
(sec.)ShowsLinesBenchmark

– soundness guarantees that no errors are missed
– no false positives encountered

Static Analysis for Dynamic XML 16

Related Work

Mawl [Ball et al.]
• introduced session-based model
• first-order XML templates

Static Analysis for Dynamic XML 17

Related Work

XDuce [Pierce et al.]
• functional language for general XML tree manipulation

– functions perform deconstruction+construction

• regular expression types
– element e[T], concatenation S,T, union S|T, empty (), recursion
– right-linearity requirement ensures regularity

(“wellformedness”)

• advanced pattern matching
– first+longest match strategy

• type checking
– subtyping based on regular language inclusion

Static Analysis for Dynamic XML 18

Summary Graphs vs. Regular Expression Types?

• Summary graphs and regular expression types
both define sets of XML trees

• They have practically the same expressive power!
(if disregarding attributes and character data restrictions)

Static Analysis for Dynamic XML 19

Regular Expression Types →→ Summary Graphs

e[T] <e><[g]></e>
g

T

()

S|T <[g]>
g

g

T

S

S,T <[g]><[h]>
h

g

T

S

Static Analysis for Dynamic XML 20

Summary Graphs →→ Regular Expression Types

1. Normalize the SG such that template constants are of the form

<e><[g]></e> or <[g]><[h]> or

2. Assign type variable to each node

X

g

h
h

Z2

Z1

Y
X = Y,Z
Z = Z1 | Z2

3. Read corresponding type equations, e.g.

<[g]><[h]>

Static Analysis for Dynamic XML 21

Wellformedness?

What happened to the right-linearity requirement?

When checking validity of a summary graph,
we approximate context-free languages with
regular languages...

Static Analysis for Dynamic XML 22

Approximating Context-Free by Regular Languages

A <[g]> B

g

L(SG) = AnBn

approximation: A*B*
or: (A+B)*

– right/left linear context free grammars
always define regular languages

Static Analysis for Dynamic XML 23

JWIGJWIG as an XML Transformation Language

• So far, JWIG can only construct XML values (plug)

• We also need type-safe deconstruction (“unplug”)

x >[path] (“select”)
x >[path = g] (“gapify”)

(path is an XPath location path)

– the analysis can be extended to handle this!

Static Analysis for Dynamic XML 24

Analyzing Select and Gapify

• Evaluate XPath location paths symbolically on
summary graphs

• Each element is assigned a status value:
– all
– some
– definite
– none
– don’t-know

• Construct summary graph for select/gapify

Static Analysis for Dynamic XML 25

Translating DTDs into Summary Graphs

• Essential when XML values come from an
external source

• Preliminary experiments suggest that
translation is feasible

Static Analysis for Dynamic XML 26

Conclusion

JWIG provides a convenient programming framework:
• session-centered
• higher-order XML templates
• plug+unplug operations

In addition, the language design permits static analysis:
• plug, unplug, receive, and show analyses
• key idea: summary graphs

http://www.brics.dk/JWIG/

