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Preface

Static program analysis is the art of reasoning about the behavior of computer
programs without actually running them. This is useful not only in optimizing
compilers for producing efficient code but also for automatic error detection
and other tools that can help programmers. A static program analyzer is a pro-
gram that reasons about the behavior of other programs. For anyone interested
in programming, what can be more fun than writing programs that analyze
programs?

As known from Turing and Rice, all interesting properties of the behavior
of programs written in common programming languages are mathematically
undecidable. This means that automated reasoning of software generally must
involve approximation. It is also well known that testing may reveal errors but
generally cannot show their absence. In contrast, static program analysis can –
with the right kind of approximations – check all possible executions of the pro-
grams and provide guarantees about their properties. One of the key challenges
when developing such analyses is how to ensure high precision and efficiency
to be practically useful.

These notes present principles and applications of static analysis of pro-
grams. We cover basic type analysis, lattice theory, control flow graphs, dataflow
analysis, fixed-point algorithms, narrowing and widening, path-sensitivity, in-
terprocedural analysis and context-sensitivity, control flow analysis, and pointer
analysis. A tiny imperative programming language with heap pointers and
function pointers is subjected to numerous different static analyses illustrating
the techniques that are presented.

We emphasize a constraint-based approach to static analysis where suitable
constraint systems conceptually divide the analysis task into a front-end that
generates constraints from program code and a back-end that solves the con-
straints to produce the analysis results. This approach enables separating the
analysis specification, which determines its precision, from the algorithmic as-
pects that are important for its performance. In practice when implementing
analyses, we often solve the constraints on-the-fly, as they are generated, with-
out representing them explicitly.

iii



iv Preface

We focus on analyses that are fully automatic (i.e., not involving programmer
guidance, for example in the form of loop invariants) and conservative (usually
meaning sound but incomplete), and we only consider Turing complete lan-
guages (like most programming languages used in ordinary software develop-
ment).

The analyses that we cover are expressed using different kinds of constraint
systems, each with their own constraint solvers:

• term unification constraints, with an almost-linear union-find algorithm,

• conditional subset constraints, with a cubic algorithm, and

• monotone constraints over lattices, with variations of fixpoint solvers.

The style of presentation is intended to be precise but not overly formal.
The readers are assumed to be familiar with advanced programming language
concepts and the basics of compiler construction.

We will see the basic tools that are required to perform static analysis of
programs. Real-life applications invariably gravitate back to the techniques that
we will covered, though many variations and extensions are usually required.

Two major areas will not been covered at all. The quality of an analysis can
only be measured relatively to a suite of intended applications. It is rare that
competing analyses can be formally compared, so much work in this area is con-
cerned with performing experiments to establish the precision and efficiency of
proposed analyses. The correctness of an analysis requires a formal semantics of
the underlying programming language. Completely formal proofs of correct-
ness of analyses are exceedingly laborious and remain mostly academic exer-
cises. Even so, it is often possible to provide convincing informal correctness
arguments.

The notes are accompanied by a web site that provides lecture slides, an
implementation (in Scala) of most of the algorithms we cover, and additional
exercises:

http://cs.au.dk/˜amoeller/spa/



Chapter 1

Introduction

There are many interesting questions that can be asked about a given program,
for example:

• does the program terminate on every input?
• how large can the heap become during execution?
• does there exist an input that leads to a null pointer dereference, division-

by-zero, or arithmetic overflow?
• are all variables initialized before they are read?
• are arrays always accessed within their bounds?
• are all assertions guaranteed to succeed?
• does the program contain dead code, or more specifically, is function f

reachable from main?
• does the value of variable x depend on the program input?
• is it possible that the value of xwill be read in the future?
• do p and q point to disjoint structures in the heap?
• can there be dangling references, e.g. pointers to memory that has been

freed?
• are all resources properly released before the program terminates?

Such questions arise when reasoning about correctness of programs and when
optimizing programs for improving their performance. Regarding correctness,
programmers routinely use testing to gain confidence that their programs works
as intended, but as famously stated by Dijkstra: “Program testing can be used to
show the presence of bugs, but never to show their absence.” Ideally we want guaran-
tees about what our programs may do for all possible inputs, and we want these
guarantees to be provided automatically, that is, by programs. A program ana-
lyzer is such a program that takes other programs as input and decides whether
or not they have a given property.
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Rice’s theorem is a general result from 1953 that informally states that all in-
teresting questions about the behavior of programs (written in Turing-complete
programming languages1) are undecidable. This is easily seen for any special
case. Assume for example the existence of an analyzer that decides if a variable
in a program has a constant value. In other words, the analyzer is a program A
that takes as input a program T and one of T ’s variables x, and decides whether
or not x has a constant value whenever T is executed.

(T,x)

A

Is the value of variable 

in     always a constant

when     is executed?

T

T

x

yes

no

We could then exploit this analyzer to also decide the halting problem by
using as input the following program where TM(j) simulates the j’th Turing
machine on empty input:

x = 17; if (TM(j)) x = 18;

Here x has a constant value if and only if the j’th Turing machine does not
halt on empty input. If the hypothetical constant-value analyzer A exists, then
we have a decision procedure for the halting problem, which is known to be
impossible.

This seems like a discouraging result. However, our real goal is not to decide
such properties but rather to solve practical problems like making the program
run faster or use less space, or finding bugs in the program. The solution is to
settle for approximative answers that are still precise enough to fuel our applica-
tions.

Most often, such approximations are conservative (or safe), meaning that all
errors lean to the same side, which is determined by our intended application.

Consider again the problem of determining if a variable has a constant value.
If our intended application is to perform constant propagation optimization,
then the analysis may only answer yes if the variable really is a constant and
must answer maybe if the variable may or may not be a constant. The trivial
solution is of course to answer maybe all the time, so we are facing the engineer-
ing challenge of answering yes as often as possible while obtaining a reasonable
analysis performance.

(T,x)

A

Is the value of variable 

in     always a constant

when     is executed?

T

T

x

yes, definitely!

maybe, don’t know

1From this point on, we only consider Turing complete languages.
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A different example is the question: to which variables may the pointer p
point? If our intended application is to replace *p with x in order to save a
dereference operation, then the analysis may only answer “&x” if p certainly
must point to x and must answer “?” if this is false or the answer cannot be de-
termined. If our intended application is instead to determine the maximal size
of *p, then the analysis must reply with a possibly too large set {&x,&y,&z,...}
that is guaranteed to contain all targets.

In general, all optimization applications need conservative approximations.
If we are given false information, then the optimization is unsound and changes
the semantics of the program. Conversely, if we are given trivial information,
then the optimization fails to do anything.

Approximative answers may also be useful for finding bugs in programs,
which may be viewed as a weak form of program verification. As a case in
point, consider programming with pointers in the C language. This is fraught
with dangers such as null dereferences, dangling pointers, leaking memory,
and unintended aliases. Ordinary compiler technology offers little protection
from pointer errors. Consider the following small program which performs
every kind of error if executed with precisely 42 arguments:

int main(int argc, char *argv[]) {

if (argc == 42) {

char *p,*q;

p = NULL;

printf("%s",p);

q = (char *)malloc(100);

p = q;

free(q);

*p = ’x’;

free(p);

p = (char *)malloc(100);

p = (char *)malloc(100);

q = p;

strcat(p,q);

}

}

The standard tools such as gcc -Wall and lint detect no errors. Finding the
errors by testing might miss the errors, unless we happen to have a test case
that runs the program with exactly 42 arguments. However, if we had even
approximative answers to questions about null values and pointer targets, then
many of the above errors could be caught statically, without actually running
the program.

Exercise 1.1: Describe all the errors in the above program.
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1.1 Undecidability of Static Program Analysis

(This section requires familiarity with the concept of universal Turing machines;
it is not a prerequisite for the following chapters.)

The reduction from the halting problem presented above shows that some
static analysis problems are undecidable, in particular the problem of deciding
whether a given variable in a program has a constant value. However, termi-
nation is often the least of the concerns programmers have about whether their
programs work correctly. Is the problem of deciding whether a variable has a
constant value still undecidable if we are allowed to assume that our programs
always terminate? And what about other desired program properties?

Using a diagonalization argument in combination with the classic proof of
Rice’s theorem, we can once and for all show a very strong result: Every non-
trivial2 property of the behavior3 of programs is undecidable, even if we only consider
programs that terminate on every input.

In other words, every attempt to build a fully automatic program analyzer,
that is, a program that can check nontrivial correctness properties of the input-
output behavior of other programs is doomed to fail, even if the program ana-
lyzer is allowed to assume that the given program always terminates. Approx-
imation is inevitable.

If we model programs as deterministic Turing machines, it seems reason-
able to define “correctness” as unreachability of a special fail state.4 That is,
on a given input, a Turing machine will eventually terminate in its accept state
(intuitively returning “yes”), in its reject state (intuitively returning “no”‘), in
its fail state (meaning that the correctness condition has been violated), or the
machine diverges (i.e., never terminates).

We can show the undecidability result using an elegant proof by contradic-
tion. Assume P is a program that can decide whether or not the fail state is
reachable in a given total Turing machine. (If the input to P is not a total Turing
machine, P ’s output is unspecified – we only require it to correctly analyze Tur-
ing machines that always terminate.) Let us say that P halts in its accept state
if and only if the fail state of the given Turing machine is unreachable, and it
halts in the reject state otherwise. That is, intuitively P says “yes” if the given
Turing machine works correctly, and “no” otherwise. Our goal is to show that
P cannot exist.

If P exists, then we can also build another Turing machine, let us call it M ,
that takes as input the encoding e(T ) of a Turing machine T and then builds the
encoding e(ST ) of yet another Turing machine ST , which behaves as follows:
ST is essentially a universal Turing machine that is specialized to simulate T on

2A property is nontrivial if there exists at least one program that satisfies the property and at
least one program that does not. Conversely, trivial properties can be decided even without looking
at the input program, and all the properties we care about in practice are nontrivial.

3By “behavior” of programs, we mean their input-output semantics, in contrast to syntactic
properties.

4Technically, we here restrict ourselves to safety properties; liveness properties can be addressed
similarly using other models of computability.
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input e(T ). Let w denote the input to ST . Now ST is constructed such that it
simulates T on input e(T ) for at most |w| moves. If the simulation ends in T ’s
accept state, then ST goes to its fail state. It is obviously possible to create ST in
such a way that this is the only way it can reach its fail state. If the simulation
does not end in T ’s accept state (that is, |w|moves have been made, or the simu-
lation reaches T ’s reject or fail state), then ST goes to its accept state or its reject
state (which one we choose does not matter). This completes the explanation of
how ST works relative to T and w. Note that ST never diverges, and it reaches
its fail state if and only if T accepts input e(T ) after at most |w| moves. After
building e(ST ), M passes it to our hypothetical program analyzer P . Assum-
ing that P works as promised, it ends in accept if ST is “correct”, in which case
we also let M halt in its accept state, and in reject otherwise, in which case M
similarly halts in its reject state.

P

M

e(T)
accept accept

reject reject

e(S  )T
constructs 

from e(T)

e(S  )
T

We now ask: Does M accept input e(M)? That is, what happens if we run
M with T = M? If M does accept input e(M ), it must be the case that P ac-
cepts input e(ST ), which in turn means that ST is “correct”, so its fail state is
unreachable. In other words, for any input w, no matter its length, ST does not
reach its fail state. This in turn means that T does not accept input e(T ). How-
ever, we have T = M , so this contradicts our assumption that M accepts input
e(M). Conversely, if M rejects input e(M), then P rejects input e(ST ), so the
fail state of ST is reachable for some input v. This means that there must exist
somew such that the fail state of ST is reached in |w| steps on input v, so T must
accept input e(T ), and again we have a contradiction. By construction M halts
in either accept or reject on any input, but neither is possible for input e(M). In
conclusion, the ideal program analyzer P cannot exist.

Exercise 1.2: In the above proof, the hypothetical program analyzer P is
only required to correctly analyze programs that always terminate. In other
words, the analyzer is allowed to assume that the given program always ter-
minates. How can the proof be simplified if we want to prove the following
weaker property? There exists no Turing machine P that can decide whether
or not the fail state is reachable in a given Turing machine. (Note that the
given Turing machine is now not assumed to be total.)





Chapter 2

A Tiny Programming
Language

We use a tiny imperative programming language, called TIP, throughout the
following chapters. It is designed to have a minimal syntax and yet to contain
all the constructions that make static analyses interesting and challenging.

2.1 The Syntax of TIP

In this section we present the formal syntax of the TIP language, based on
context-free grammars.

Expressions
The basic expressions all denote integer values:

E→ intconst
| id
| E + E | E - E | E * E | E / E | E > E | E == E
| ( E )
| input

The input expression reads an integer from the input stream. The comparison
operators yield 0 for false and 1 for true. Pointer expressions will be added later.

Statements
The simple statements are familiar:
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S→ id = E;
| output E;
| S S
|
| if (E) { S }

[
else { S }

]?
| while (E) { S }

We use the notation
[
. . .
]? to indicate optional parts. In the conditions we in-

terpret 0 as false and all other values as true. The output statement writes an
integer value to the output stream.

Functions
Functions take any number of arguments and return a single value:

F→ id ( id,. . .,id ) {
[
var id,. . .,id;

]? S return E; }

The var block declares a collection of local variables. Function calls are an
extra kind of expression:

E→ id ( E,. . .,E )

Pointers
Finally, to allow dynamic memory, we introduce pointers into a heap:

E→ &id
| malloc
| *E
| null

The first expression creates a pointer to a variable, the second expression al-
locates a new cell in the heap, and the third expression dereferences a pointer
value. In order to assign values to heap cells we allow another form of assign-
ment:

S→ *id = E;

Note that pointers and integers are distinct values, so pointer arithmetic is not
permitted. It is of course limiting that malloc only allocates a single heap cell,
but this is sufficient to illustrate the challenges that pointers impose.

We also allow function pointers to be denoted by function names. In order
to use those, we generalize function calls to:

E→ (E)( E,. . .,E )

Function pointers serve as a simple model for objects or higher-order functions.
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Programs
A program is just a collection of functions:

P→ F . . .F

The final function is the main one that initiates execution. Its arguments are
supplied in sequence from the beginning of the input stream, and the value
that it returns is appended to the output stream. We make the notationally
simplifying assumption that all declared identifiers are unique in a program,
i.e. that no two different program points introduce the same identifier name.

Exercise 2.1: Argue that any program can be normalized so that all declared
identifiers are unique.

TIP lacks many features known from commonly used programming lan-
guages, for example, type annotations, global variables, records, objects, nested
functions, and pointer arithmetic. We will consider some of these features in
exercises in later chapters.

To keep the presentation short, we deliberately have not specified all details
of the TIP language, neither the syntax nor the semantics.

Exercise 2.2: Identify the under-specified parts of the TIP language, and pro-
pose meaningful choices to make it more well-defined.

2.2 Example Programs

The following TIP programs all compute the factorial of a given integer. The
first one is iterative:

ite(n) {

var f;

f = 1;

while (n>0) {

f = f*n;

n = n-1;

}

return f;

}

The second program is recursive:

rec(n) {

var f;

if (n==0) { f=1; }

else { f=n*rec(n-1); }

return f;

}
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The third program is unnecessarily complicated:

foo(p,x) { main() {

var f,q; var n;

if (*p==0) { f=1; } n = input;

else { return foo(&n,foo);

q = malloc; }

*q = (*p)-1;

f=(*p)*((x)(q,x));

}

return f;

}

2.3 Control Flow Graphs

For the purpose of analysis, it is often convenient to view the program as a
control flow graph, which is a different representation of the program source.

For now, we consider only the subset of the TIP language consisting of a
single function body without pointers. A control flow graph (CFG) is a directed
graph, in which nodes correspond to statements and edges represent possible
flow of control. For convenience, a CFG always has a single point of entry,
denoted entry, and a single point of exit, denoted exit. We may think of these as
no-op statements.

If v is a node in a CFG then pred(v) denotes the set of predecessor nodes and
succ(v) the set of successor nodes.

Control Flow Graphs for Statements

For now, we only consider simple statements, for which CFGs may be con-
structed in an inductive manner. The CFGs for assignments, output, return
statements, and declarations look as follows:

EreturnEoutputid = E var id

For the sequence S1 S2, we eliminate the exit node of S1 and the entry node of
S2 and glue the statements together:
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S

S

1

2

Similarly, the other control structures are modeled by inductive graph construc-
tions:

E

S S1 2

E

S

E

S

Using this systematic approach, the iterative factorial function results in the
following CFG:

f=1

n>0

n = n−1

f = f*n

var f

return f

We discuss control flow graphs for entire programs comprising multiple
functions in Chapter 7.





Chapter 3

Type Analysis

Our programming language does not have explicit types, but of course the var-
ious operations are intended to be applied only to certain arguments. Specifi-
cally, the following restrictions seem reasonable:

• arithmetic operations and comparisons apply only to integers;
• only integers can be input and output of the main function;
• conditions in control structures must be integers;
• only functions can be called; and
• the unary * operator only applies to pointers.

We assume that their violation results in runtime errors. Thus, for a given pro-
gram we would like to know that these requirements hold during execution.
Since this is an interesting question, we immediately know that it is undecid-
able.

We resort to a conservative approximation: typability. A program is typable
if it satisfies a collection of type constraints that is systematically derived from
the syntax tree of the given program. This condition implies that the above
requirements are guaranteed to hold during execution, but the converse is not
true. Thus, our type-checker will be conservative and reject some programs
that in fact will not violate any requirements during execution.

3.1 Types
We first define a language of types that will describe possible values:

τ → int
| &τ
| (τ,. . .,τ)->τ
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The type terms describe respectively integers, pointers, and function pointers.
The grammar would normally generate finite types, but for recursive functions
and data structures we need regular types. Those are defined as regular trees
defined over the above constructors. Recall that a possibly infinite tree is regular
if it contains only finitely many different subtrees.

Exercise 3.1: Show how regular types can be represented by finite automata
so that two types are equal if their automata accept the same language.

3.2 Type Constraints

For a given program we generate a constraint system and define the program
to be typable when the constraints are solvable. In our case we only need to
consider equality constraints over regular type terms with variables. This class
of constraints can be efficiently solved using the unification algorithm.

For each identifier id we introduce a type variable [[id]], and for each occur-
rence of a non-identifier expression E a type variable [[E]]. Here, E refers to
a concrete node in the syntax tree—not to the syntax it corresponds to. This
makes our notation slightly ambiguous but simpler than a pedantically correct
approach. (To avoid ambiguity, one could, for example, use the notation [[E]]v
where v is a unique ID of the syntax tree node.) Assuming that all declared
identifiers are unique (see Exercise 2.1), there is no need to use different type
variables for different occurrences of the same identifier.

The constraints are systematically defined for each construction in our lan-
guage:

intconst: [[intconst]] = int
E1 op E2: [[E1]] = [[E2]] = [[E1 op E2]] = int
E1==E2: [[E1]] = [[E2]] ∧ [[E1==E2]] = int
input: [[input]] = int
id = E: [[id]] = [[E]]

output E: [[E]]= int
if (E) S: [[E]]= int

if (E) S1 else S2: [[E]]= int
while (E) S: [[E]]= int

id(id1,. . .,idn){ . . .return E; }: [[id]] = ([[id1]],. . .,[[idn]])->[[E]]
id(E1,. . .,En): [[id]] = ([[E1]],. . .,[[En]])->[[id(E1,. . .,En)]]
(E)(E1,. . .,En): [[E]] = ([[E1]],. . .,[[En]])->[[(E)(E1,. . .,En)]]

&id: [[&id]]= &[[id]]
malloc: [[malloc]]= &α
null: [[null]]= &α
*E: [[E]]= &[[*E]]

*id=E: [[id]]= &[[E]]
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In the above rules, each occurrence of α denotes a fresh type variable. Note
that variable references and declarations do not yield any constraints and that
parenthesized expression are not present in the abstract syntax.

All term constructors furthermore satisfy the general term equality axiom:

c(t1, . . . , tn) = c′(t′1, . . . , t
′n) ⇒ ti = t′i for each i

where c is one of the term constructors, for example &.
Thus, a given program gives rise to a collection of equality constraints on

type terms with variables.

Exercise 3.2: Explain each of the above type constraints.

A solution assigns to each type variable a type, such that all equality constraints
are satisfied. The correctness claim for this algorithm is that the existence of a
solution implies that the specified runtime errors cannot occur during execu-
tion.

3.3 Solving Constraints

If solutions exist, then they can be computed in almost linear time using the
unification algorithm for regular terms. Since the constraints may also be ex-
tracted in linear time, the whole type analysis is quite efficient.

The complicated factorial program generates the following constraints, where
duplicates are not shown:

[[foo]] = ([[p]],[[x]])->[[f]] [[*p==0]] = int
[[*p]] = int [[f]] = [[1]]
[[1]] = int [[0]] = int
[[p]] = &[[*p]] [[q]] = [[malloc]]
[[malloc]] = &α [[q]] = &[[(*p)-1]]
[[q]] = &[[*q]] [[*p]] = int
[[f]] = [[(*p)*((x)(q,x))]] [[(*p)*((x)(q,x))]] = int
[[(x)(q,x)]] = int [[x]] = ([[q]],[[x]])->[[(x)(q,x)]]
[[input]] = int [[main]] = ()->[[foo(&n,foo)]]
[[n]] = [[input]] [[&n]] = &[[n]]
[[foo]] = ([[&n]],[[foo]])->[[foo(&n,foo)]] [[*p]] = [[0]]

These constraints have a solution, where most variables are assigned int, ex-
cept:

[[p]] = &int
[[q]] = &int
[[malloc]] = &int
[[x]] = φ
[[foo]] = φ
[[&n]] = &int
[[main]] = ()->int
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where φ is the regular type that corresponds to the infinite unfolding of:

φ = (&int,φ)->int

Exercise 3.3: Draw a picture of the unfolding of φ.

Since this solution exists, we conclude that our program is type correct. Recur-
sive types are also required for data structures. The example program:

var p;

p = malloc;

*p = p;

creates the constraints:

[[p]] = &α
[[p]] = &[[p]]

which has the solution [[p]] = ψ where ψ = &ψ. Some constraints admit infinitely
many solutions. For example, the function:

poly(x) {

return *x;

}

has type &α->α for any type α, which corresponds to the polymorphic behavior
it displays.

3.4 Slack and Limitations

The type analysis is of course only approximate, which means that certain pro-
grams will be unfairly rejected. A simple example is:

bar(g,x) {

var r;

if (x==0) { r=g; } else { r=bar(2,0); }

return r+1;

}

main() {

return bar(null,1);

}

which never causes an error but is not typable since it among others generates
constraints equivalent to:

int = [[r]] = [[g]] = &α
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which are clearly unsolvable.

Exercise 3.4: Explain the behavior of this program.

It is possible to use a more powerful polymorphic type analysis to accept the
above program, but many other examples will inevitably remain rejected.

Another problem is that this type system ignores several other runtime er-
rors, such as dereference of null pointers, reading of uninitialized variables,
division by zero, and the more subtle escaping stack cell demonstrated by this
program:

baz() {

var x;

return &x;

}

main() {

var p;

p=baz(); *p=1;

return *p;

}

The problem is that *p denotes a stack cell that has escaped from the baz func-
tion. As we shall see, these problems can instead be handled by more ambitious
static analyses.





Chapter 4

Lattice Theory

The technique for static analysis that we will study is based on the mathematical
theory of lattices, which we briefly review in this chapter.

4.1 Example: Sign Analysis

As a motivating example, assume that we wish to design an analysis that can
find out the possible signs of the integer values of variables and expressions in
a given program. In concrete executions, values can be arbitrary integers. In
contrast, our analysis considers an abstraction of the integer values by group-
ing them into the three categories, or abstract values: positive (+), negative (-),
and zero (0). Similar to the analysis we considered in Chapter 3, we circum-
vent undecidability by introducing approximation. That is, the analysis must
be prepared to handle uncertain information, in this case situations where it
does not know the sign of some expression, so we add a special abstract value
(?) representing “don’t know”. We must also decide what information we are
interested in for the cases where the sign of some expression is, for example,
positive in some executions but not in others. For this example, let us assume
we are interested in definite information, that is, the analysis should only report
+ for a given expression if it is certain that this expression will evaluate to a pos-
itive number in every execution of that expression and ? otherwise. In addition,
it turns out to be beneficial to also introduce an abstract value⊥ for expressions
whose values are not numbers (but instead, say, pointers) or have no value in
any execution because they are unreachable from the program entry.

Consider this program:

var a,b,c;

a = 42;

b = 87;
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if (input) {

c = a + b;

} else {

c = a - b;

}

Here, the analysis could conclude that a and b are positive numbers in all pos-
sible executions at the end of the program. The sign of c is either positive or
negative depending on the concrete execution, so the analysis must report ? for
that variable.

Altogether we have an abstract domain consisting of the five abstract values
{+, -, 0, ?,⊥}, which we can organize as follows with the least precise informa-
tion at the top and the most precise information at the bottom:

?

+ 0 −

The ordering reflects the fact that ⊥ represents the empty set of integer values
and ? represents the set of all integer values.

This abstract domain is an example of a lattice. We continue the develop-
ment of the sign analysis in Section 5.2, but we first need the mathematical foun-
dation in place.

4.2 Lattices

A partial order is a set S equipped with a binary relation vwhere the following
conditions are satisfied:

• reflexivity: ∀x ∈ S : x v x
• transitivity: ∀x, y, z ∈ S : x v y ∧ y v z ⇒ x v z
• anti-symmetry: ∀x, y ∈ S : x v y ∧ y v x⇒ x = y

When x v y we say that y is a safe approximation of x, or that x is at least as precise
as y.

Let X ⊆ S. We say that y ∈ S is an upper bound for X , written X v y, if we
have ∀x ∈ X : x v y. Similarly, y ∈ S is a lower bound for X , written y v X , if
∀x ∈ X : y v x. A least upper bound, written tX , is defined by:

X v tX ∧ ∀y ∈ S : X v y ⇒ tX v y

Dually, a greatest lower bound, written uX , is defined by:

uX v X ∧ ∀y ∈ S : y v X ⇒ y v uX
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A lattice is a partial order in which tX and uX exist for all X ⊆ S. (The
literature typically calls this a complete lattice.) A lattice must have a unique
largest element denoted > and a unique smallest element denoted ⊥.

Exercise 4.1: Prove that tS and uS are the unique largest element and the
unique smallest element, respectively, in S. In other words, we have> = tS
and ⊥ = uS.

Exercise 4.2: Prove that tS = u∅ and that uS = t∅.

We will often look at finite lattices. For those the lattice requirements reduce
to observing that ⊥ and > exist and that every pair of elements x and y have a
least upper bound written x t y and a greatest lower bound written x u y.

A finite partial order may be illustrated by a Hasse diagram in which the ele-
ments are nodes and the order relation is the transitive closure of edges leading
from lower to higher nodes. With this notation, all of the following partial or-
ders are also lattices:

whereas these partial orders are not lattices:

Exercise 4.3: Why do these two diagrams not define lattices?

Every finite set A defines a lattice (2A,⊆), where ⊥ = ∅, > = A, x t y = x ∪ y,
and x u y = x ∩ y. We call this the powerset lattice for A. For a set with four
elements, the powerset lattice looks like this:
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{0,1}

{0} {1}

{}

{2} {3}

{1,3} {2,3}{1,2}{0,3}{0,2}

{0,1,2} {0,1,3} {0,2,3} {1,2,3}

{0,1,2,3}

The height of a lattice is defined to be the length of the longest path from ⊥ to
>. For example, the above powerset lattice has height 4. In general, the lattice
(2A,⊆) has height |A|.

4.3 Constructing Lattices

If L1, L2, . . . , Ln are lattices with finite height, then so is the product:

L1 × L2 × . . .× Ln = {(x1, x2, . . . , xn) | xi ∈ Li}

where v is defined pointwise. Note that t and u can be computed pointwise
and that height(L1 × . . .× Ln) = height(L1) + . . .+ height(Ln).

There is also a sum operator:

L1 + L2 + . . .+ Ln = {(i, xi) | xi ∈ Li\{⊥,>}} ∪ {⊥,>}

where⊥ and> are as expected and (i, x) v (j, y) if and only if i = j and x v y.
Note that height(L1 + . . . + Ln) = max{height(Li)}. The sum operator can be
illustrated as follows:
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If L is a lattice, then so is lift(L), which can be illustrated by:
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and has height(lift(L)) = height(L) + 1 if L has finite height.
If A is a set (not necessarily a lattice), then flat(A) illustrated by

a
...

a a
1 2 n

is a lattice with height 2.

Exercise 4.4: Argue that flat(A) can be viewed as a kind of sum lattice.

Finally, if A is a set and L is a lattice, then we obtain a map lattice:

A 7→ L = {[a1 7→ x1, . . . , an 7→ xn] | xi ∈ L}

ordered pointwise: f v g ⇔ ∀ai : f(ai) v g(ai). If A is finite and L has finite
height then height(A 7→ L) = |A| · height(L).

Exercise 4.5: Argue that every product lattice is isomorphic to a map lattice.

Exercise 4.6: Verify the above claims about the heights of the lattices that are
constructed.

The set Sign = {+, -, 0, ?,⊥}with the ordering described in Section 4.1 forms
a lattice that we use for describing abstract values in the sign analysis. An ex-
ample of a map lattice is StateSigns = Vars 7→ Sign where Vars is the set of
variable names occurring in the program that we wish to analyze. Elements of
this lattice describe abstract states that provide abstract values for all variables.
An example of a product lattice is ProgramSigns = StateSignsn where n is the
number of nodes in the CFG of the program. This lattice describes abstract
states for all nodes in the program.
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4.4 Equations and Fixed-Points

Continuing the sign analysis from Section 4.1, what are the signs of the variables
at each line of the following program?
var a,b; // 1

a = 42; // 2

b = a + input; // 3

a = a - b; // 4

We can derive a system of equations with one constraint variable for each pro-
gram variable and line number from the program:
a1 = ?
b1 = ?
a2 = +
b2 = b1
a3 = a2
b3 = a2 + ?
a4 = a3 - b3
b4 = b3

The operators + and - here work on abstract values, which we return to in Sec-
tion 5.2. In this constraint system, the constraint variables have values from the
abstract value lattice Sign . We can alternatively derive the following equivalent
equation system where each constraint variable instead has a value from the
abstract state lattice StateSigns from Section 4.3:
x1 = [a 7→ ?, b 7→ ?]
x2 = x1[a 7→ +]
x3 = x2[b 7→ x2(a) + ?]
x4 = x3[a 7→ x3(a) - x3(b)]

Notice that each equation only depends on preceding ones for this example
program, so in this case the solution can be found by simple substition. How-
ever, mutually recursive equations may appear, for example, for programs that
contain loops. We now show how to solve such equation systems in a general
setting.

A function f : L → L is monotone when ∀x, y ∈ L : x v y ⇒ f(x) v f(y).
Note that this property does not imply that f is extensive, that is, ∀x ∈ L : x v
f(x); for example, the function that maps all inputs to ⊥ is monotone but not
extensive for lattices with more than one element.

Note that the composition of monotone functions is again monotone. Also,
the definition of monotonicity generalizes naturally to functions with multiple
arguments. Viewed as functions t and u are monotone.

We say that x ∈ L is a fixed-point for f if f(x) = x. A least fixed-point x for f
is a fixed-point for f where x v y for every fixed-point y for f .

Let L be a lattice with finite height. An equation system is of the form:



4.4 EQUATIONS AND FIXED-POINTS 25

x1 = F1(x1, . . . , xn)
x2 = F2(x1, . . . , xn)
...
xn = Fn(x1, . . . , xn)

where xi are variables and Fi : L
n → L is a collection of functions. If all the

functions are monotone then the system has a unique least solution, which is
obtained as the least fixed-point of the function F : Ln → Ln defined by:

F (x1, . . . , xn) = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn))

The central result we need is the fixed-point theorem. In a lattice L with finite
height, every monotone function f has a unique least fixed-point given by:

fix (f) =
⊔
i≥0

f i(⊥)

The proof of this theorem is quite simple. Observe that ⊥ v f(⊥) since ⊥ is
the least element. Since f is monotone, it follows that f(⊥) v f2(⊥) and by
induction that f i(⊥) v f i+1(⊥). Thus, we have an increasing chain:

⊥ v f(⊥) v f2(⊥) v . . .

Since L is assumed to have finite height, we must for some k have that fk(⊥) =
fk+1(⊥). We define fix (f) = fk(⊥) and since f(fix (f)) = fk+1(⊥) = fk(⊥) =
fix (f), we know that fix (f) is a fixed-point. Assume now that x is another fixed-
point. Since ⊥ v x it follows that f(⊥) v f(x) = x, since f is monotone and by
induction we get that fix (f) = fk(⊥) v x. Hence, fix (f) is the least fixed-point.
By anti-symmetry, it is also unique.

The careful reader may have noticed that this is a constructive proof of the
fixed-point theorem. We return to this in Section 5.1 where we consider the
algorithm that can be inferred from the proof.

The time complexity of computing a fixed-point depends on three factors:

• the height of the lattice, since this provides a bound for k;

• the cost of computing f ;

• the cost of testing equality.

The computation of a fixed-point can be illustrated as a walk up the lattice start-
ing at ⊥:
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We can similarly solve systems of inequations of the form:

x1 v F1(x1, . . . , xn)
x2 v F2(x1, . . . , xn)
...
xn v Fn(x1, . . . , xn)

by observing that the relation x v y is equivalent to x = x u y. Thus, solutions
are preserved by rewriting the system into:

x1 = x1 u F1(x1, . . . , xn)
x2 = x2 u F2(x1, . . . , xn)
...
xn = xn u Fn(x1, . . . , xn)

which is just a system of equations with monotone functions as before. Con-
versely, inequations of the form:

x1 w F1(x1, . . . , xn)
x2 w F2(x1, . . . , xn)
...
xn w Fn(x1, . . . , xn)

can be rewritten into:

x1 = x1 t F1(x1, . . . , xn)
x2 = x2 t F2(x1, . . . , xn)
...
xn = xn t Fn(x1, . . . , xn)

by observing that the relation x w y is equivalent to x = x t y.

Exercise 4.7: Show that x v y is equivalent to x = x u y.



Chapter 5

Dataflow Analysis with the
Monotone Framework

Classical dataflow analysis, also called the monotone framework, starts with a
CFGand a lattice Lwith finite height. The lattice may be fixed for all programs,
or it may be parameterized with the given program.

To every node v in the CFG, we assign a variable [[v]] ranging over the ele-
ments ofL. For each construction in the programming language, we then define
a dataflow constraint, that relates the value of the variable of the corresponding
node to those of other nodes (typically the neighbors).

As for type inference, we will ambiguously use the notation [[S]] for [[v]] if
S is the syntax associated with v. The meaning will always be clear from the
context.

We can systematically extract a collection of constraints over the variables
for a given CFG. If all the constraints happen to be equations or inequations
with monotone right-hand sides, then we can use the fixed-point algorithm to
compute the unique least solution.

The dataflow constraints are sound if all solutions correspond to correct in-
formation about the program. The analysis is conservative since the solutions
may be more or less imprecise, but computing the least solution will give the
highest degree of precision.

5.1 Fixed-Point Algorithms

If the CFG has nodes V = {v1, v2, . . . , vn}, then we work in the lattice Ln. As-
suming that node vi generates the dataflow equation [[vi]] = Fi([[v1]], . . . , [[vn]]),
we construct the combined function F : Ln → Ln as described earlier:

F (x1, . . . , xn) = (F1(x1, . . . , xn), . . . , Fn(x1, . . . , xn))
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The naive algorithm that follows immediately from the fixed-point theorem is
then to proceed as follows:

x = (⊥, . . . ,⊥);
do {

t = x;
x = F (x);
} while (x 6= t);

to compute the fixed-point x. Another algorithm, called chaotic iteration, ex-
ploits the fact that our lattice has the structure Ln to compute the fixed-point
(x1, . . . , xn):

x1 = ⊥; . . .xn = ⊥;
while (∃i : xi 6= Fi(x1, . . . , xn)) {
xi = Fi(x1, . . . , xn);
}

The term “chaotic” comes from the fact that i is picked nondeterministically.

Exercise 5.1: Prove that chaotic iteration computes the least fixed-point of F .

Exercise 5.2: Assuming that we have a way to efficiently determine whether
the loop condition holds, why is chaotic iteration better than the naive algo-
rithm?

To obtain an efficient way to determine whether the loop condition holds in
the chaotic iteration algorithm, we study further the structure of the individual
constraints.

In the general case, every variable [[vi]] depends on all other variables. Most
often, however, an actual instance of Fi will only read the values of a few other
variables. We represent this information as a map:

dep : V → 2V

which for each node v tells us the subset of other nodes for which [[v]] occurs in
a nontrivial manner on the right-hand side of their dataflow equations. That is,
dep(v) is the set of nodes whose information may depend on the information
of v. Armed with this information, we can present the worklist algorithm to
compute the fixed-point (x1, . . . , xn):

x1 = ⊥; . . .xn = ⊥;
W = {1, . . . , n};
while (W 6= ∅) {
i =W.removeNext();
y = Fi(x1, . . . , xn);
if (y 6= xi) {
for (vj ∈ dep(vi))W.add(j);
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xi = y;
}

}

The set W is here called the worklist with operations add and removeNext for
adding and (nondeterministically) removing an item.

Exercise 5.3: Give an invariant that is strong enough to prove the correctness
of the worklist algorithm.

Further improvements are possible. It may be beneficial to handle in separate
turns the strongly connected components of the graph induced by the dep map,
and the worklist set could be changed into a priority queue allowing us to ex-
ploit domain-specific knowledge about a particular dataflow problem.

5.2 Example: Sign Analysis, Revisited

Continuing the example from Section 4.1, we want to determine the sign (+,0,-)
of all expressions. We start with the tiny lattice Sign for describing abstract
values:

?

+ 0 −

The full lattice for our analysis is the map lattice:

Vars 7→ Sign

where Vars is the set of variables occurring in the given program. Each element
of this lattice can be thought of as an abstract state. For each CFG node v we
assign a variable [[v]] that denotes an abstract state that gives the sign values for
all variables at the program point before the node.

The dataflow constraints model the effects on the abstract environments.
For variable declarations we update accordingly:

[[v]] = JOIN (v) [id1 7→ ?, . . . , idn 7→ ?]

For an assignment we use the constraint:

[[v]] = JOIN (v) [id 7→ eval(JOIN (v), E)]

and for all other nodes the constraint:

[[v]] = JOIN (v)
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where:
JOIN (v) =

⊔
w∈pred(v)

[[w]]

and eval performs an abstract evaluation of expressions:

eval(σ, id) = σ(id)
eval(σ, intconst) = sign(intconst)
eval(σ,E1 opE2) = op(eval(σ,E1), eval(σ,E2))

where σ is the current environment, sign gives the sign of an integer constant
and op is an abstract evaluation of the given operator, defined by the following
tables:

+ ⊥ 0 - + ?

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ 0 - + ?

- ⊥ - - ? ?

+ ⊥ + ? + ?

? ⊥ ? ? ? ?

- ⊥ 0 - + ?

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ 0 + - ?

- ⊥ - ? - ?

+ ⊥ + + ? ?

? ⊥ ? ? ? ?

* ⊥ 0 - + ?

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ 0 0 0 0

- ⊥ 0 + - ?

+ ⊥ 0 - + ?

? ⊥ 0 ? ? ?

/ ⊥ 0 - + ?

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ ? 0 0 ?

- ⊥ ? ? ? ?

+ ⊥ ? ? ? ?

? ⊥ ? ? ? ?

> ⊥ 0 - + ?

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ 0 + 0 ?

- ⊥ 0 ? 0 ?

+ ⊥ + + ? ?

? ⊥ ? ? ? ?

== ⊥ 0 - + ?

⊥ ⊥ ⊥ ⊥ ⊥ ⊥
0 ⊥ + 0 0 ?

- ⊥ 0 ? 0 ?

+ ⊥ 0 0 ? ?

? ⊥ ? ? ? ?

It is not obvious that the right-hand sides of our constraints correspond to mono-
tone functions. However, the t operator and map updates clearly are, so it all
comes down to monotonicity of the abstract operators on the sign lattice. This
is best verified by a tedious manual inspection. Notice that for a lattice with n
elements, monotonicity of an n × n table can be verified automatically in time
O(n3).

Exercise 5.4: Describe the O(n3) algorithm for checking monotonicity of an
operator given by an n× n table.

Exercise 5.5: Check that the above tables indeed define monotone operators
on the Sign lattice.
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Exercise 5.6: Argue that these tables are the most precise possible for the
Sign lattice, given that soundness must be preserved.

Exercise 5.7: Generate the equation system for the example program in Sec-
tion 4.1, and then solve it using one of the fixed-point algorithms.

Exercise 5.8: Write a small program that leads to an equation system with
mutually recursive constraints.

We lose some information in the above analysis, since for example the expres-
sion (2>0)==1 is analyzed as ?, which seems unnecessarily coarse. Also, +/+
results in ? rather than + since e.g. 1/2 is rounded down to zero. To handle
these situations more precisely, we could enrich the sign lattice with element 1
(the constant 1), +0 (positive or zero), and -0 (negative or zero) to keep track of
more precise abstract values:

?

1

+ 0 −

+0 −0

and consequently describe the abstract operators by 8× 8 tables.

Exercise 5.9: Define the six operators on the extended Sign lattice by means
of 8× 8 tables. Check that they are properly monotone.

The results of a sign analysis could in theory be used to eliminate division by
zero errors by rejecting programs in which denominator expressions have sign
0 or ?. However, the resulting analysis will probably unfairly reject too many
programs to be practical, unless we add techniques such as path sensitivity (see
Chapter 6).
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5.3 Example: Liveness

A variable is live at a program point if its current value may be read during the
remaining execution of the program. Clearly undecidable, this property can
be approximated by a static analysis called liveness analysis (or live variables
analysis).

We use a powerset lattice where the elements are the variables occurring in
the given program. This is an example of a parameterized lattice, that is, one that
depends on the specific program being analyzed. For the example program:

var x,y,z;

x = input;

while (x>1) {

y = x/2;

if (y>3) x = x-y;

z = x-4;

if (z>0) x = x/2;

z = z-1;

}

output x;

the lattice is thus:
L = (2{x,y,z},⊆)

The corresponding CFG looks as follows:

z = x−4

z>0

z = z−1

output x

x = x−y

x = x/2

x = input x>1 y = x/2 y>3

var x,y,z

For every CFG node vwe introduce a constraint variable [[v]]denoting the subset
of program variables that are live at the program point before that node. The
analysis wil be conservative, since the computed set may be too large. We use



5.3 EXAMPLE: LIVENESS 33

the auxiliary definition:
JOIN (v) =

⋃
w∈succ(v)

[[w]]

For the exit node the constraint is:

[[exit]] = {}

For conditions and output statements, the constraint is:

[[v]] = JOIN (v) ∪ vars(E)

For assignments, the constraint is:

[[v]] = JOIN (v) \ {id} ∪ vars(E)

For a variable declaration the constraint is:

[[v]] = JOIN (v) \ {id1, . . . , idn}

Finally, for all other nodes the constraint is:

[[v]] = JOIN (v)

Here, vars(E) denote the set of variables occurring in E. These constraints
clearly have monotone right-hand sides.

Exercise 5.10: Argue that the right-hand sides of constraints define monotone
functions.

The intuition is that a variable is live if it is read in the current node, or it is
read in some future node unless it is written in the current node. Our example
program yields these constraints:

[[var x,y,z]] = [[x=input]] \ {x, y, z}
[[x=input]] = [[x>1]] \ {x}
[[x>1]] = ([[y=x/2]] ∪ [[output x]]) ∪ {x}
[[y=x/2]] = ([[y>3]] \ {y}) ∪ {x}
[[y>3]] = [[x=x-y]] ∪ [[z=x-4]] ∪ {y}
[[x=x-y]] = ([[z=x-4]] \ {x}) ∪ {x,y}
[[z=x-4]] = ([[z>0]] \ {z}) ∪ {x}
[[z>0]] = [[x=x/2]] ∪ [[z=z-1]] ∪ {z}
[[x=x/2]] = ([[z=z-1]] \ {x}) ∪ {x}
[[z=z-1]] = ([[x>1]] \ {z}) ∪ {z}
[[output x]] = [[exit]] ∪ {x}
[[exit]] = {}

whose least solution is:
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[[entry]] = {}
[[var x,y,z]] = {}
[[x=input]] = {}
[[x>1]] = {x}
[[y=x/2]] = {x}
[[y>3]] = {x, y}
[[x=x-y]] = {x, y}
[[z=x-4]] = {x}
[[z>0]] = {x, z}
[[x=x/2]] = {x, z}
[[z=z-1]] = {x, z}
[[output x]] = {x}
[[exit]] = {}

From this information a clever compiler could deduce that y and z are never live
at the same time, and that the value written in the assignment z=z-1 is never
read. Thus, the program may safely be optimized into:

var x,yz;

x = input;

while (x>1) {

yz = x/2;

if (yz>3) x = x-yz;

yz = x-4;

if (yz>0) x = x/2;

}

output x;

which saves the cost of one assignment and could result in better register allo-
cation.

We can estimate the worst-case complexity of this analysis, using for exam-
ple the naive algorithm from Section 5.1. We first observe that if the program
has nCFG nodes and k variables, then the lattice (2Vars)n has height k ·nwhich
bounds the number of iterations we can perform. Each lattice element can be
represented as a bitvector of length k · n. For each iteration we have to perform
O(n) intersection, difference, or equality operations on sets of size k, which in
all takes time O(k · n). Thus, the total time complexity is O(k2 · n2).

Exercise 5.11: What is the worst-case complexity of the liveness analysis if
using the worklist algorithm?

5.4 Example: Available Expressions

A nontrivial expression in a program is available at a program point if its cur-
rent value has already been computed earlier in the execution. The set of avail-
able expressions for all program points can be approximated using a dataflow



5.4 EXAMPLE: AVAILABLE EXPRESSIONS 35

analysis. The lattice we use has as elements all expressions occurring in the
program and is ordered by reverse subset inclusion. For this concrete program:

var x,y,z,a,b;

z = a+b;

y = a*b;

while (y > a+b) {

a = a+1;

x = a+b;

}

we have 4 different nontrivial expressions, so our lattice is:

L = (2{a+b,a*b,y>a+b,a+1},⊇)

which looks like:

{a+b,a*b,y>a+b,a+1}

{a+b,a*b,y>a+b} {a+b,a*b,a+1} {a+b,y>a+b,a+1} {a*b,y>a+b,a+1}

{a+b,a*b} {a+b,y>a+b} {a+b,a+1} {a*b,y>a+b} {a*b,a+1} {y>a+b,a+1}

{a+b} {a*b} {y>a+b} {a+1}

{}

The largest element of our lattice is ∅which corresponds to the trivial informa-
tion. The flow graph corresponding to the above program is:
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z = a+b

y > a+b

a = a+1

x = a+b

y = a*b

var x,y,z,a,b

For each CFG node vwe introduce a constraint variable [[v]] ranging overL. Our
intention is that it should contain the subset of expressions that are guaranteed
always to be available at the program point after that node. For example, the
expression a+b is available at the condition in the loop, but it is not available
at the final assignment in the loop. Our analysis will be conservative since
the computed set may be too small . The dataflow constraints are defined as
follows, where we this time define:

JOIN (v) =
⋂

w∈pred(v)

[[w]]

For the entry node we have the constraint:

[[entry]] = {}

If v contains a condition E or the statement output E, then the constraint is:

[[v]] = JOIN (v) ∪ exps(E)

If v contains an assignment of the form id=E, then the constraint is:

[[v]] = (JOIN (v) ∪ exps(E))↓ id

For all other kinds of nodes, the constraint is just:

[[v]] = JOIN (v)

Here the function ↓id removes all expressions that contain a reference to the
variable id, and the exps function is defined as:
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exps(intconst) = ∅
exps(id) = ∅
exps(input) = ∅
exps(E1opE2) = {E1opE2} ∪ exps(E1) ∪ exps(E2)

where op is any binary operator. The intuition is that an expression is available
in v if it is available from all incoming edges or is computed in v, unless its
value is destroyed by an assignment statement. Again, the right-hand sides
of the constraints are monotone functions. For the example program, we then
generate the following concrete constraints:

[[entry]] = {}
[[var x,y,z,a,b]] = [[entry]]
[[z=a+b]] = exps(a+b) ↓z
[[y=a*b]] = ([[z=a+b]] ∪ exps(a*b)) ↓y
[[y>a+b]] = ([[y=a*b]] ∩ [[x=a+b]]) ∪ exps(y>a+b)
[[a=a+1]] = ([[y>a+b]] ∪ exps(a+1))↓a
[[x=a+b]] = ([[a=a+1]] ∪ exps(a+b))↓x
[[exit]] = [[y>a+b]]

Using the fixed-point algorithm, we obtain the minimal solution:

[[entry]] = {}
[[var x,y,z,a,b]] = {}
[[z=a+b]] = {a+b}
[[y=a*b]] = {a+b, a*b}
[[y>a+b]] = {a+b, y>a+b}
[[a=a+1]] = {}
[[x=a+b]] = {a+b}
[[exit]] = {a+b, y>a+b}

which confirms our assumptions about a+b. Observe that the expressions avail-
able at the program point before a node v can be computed as JOIN (v). With
this knowledge, an optimizing compiler could systematically transform the pro-
gram into a (slightly) more efficient version:

var x,y,z,a,b,aplusb;

aplusb = a+b;

z = aplusb;

y = a*b;

while (y > aplusb) {

a = a+1;

aplusb = a+b;

x = aplusb;

}

while being guaranteed of preserving the semantics.
We can again estimate the worst-case complexity of the analysis. We first

observe that if the program has nCFG nodes and k nontrivial expressions, then
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the lattice has height k · n which bounds the number of iterations we perform.
Each lattice element can be represented as a bitvector of length k. For each
iteration we have to perform O(n) intersection, union, or equality operations
which in all takes time O(kn). Thus, the total time complexity is O(k2n2).

5.5 Example: Very Busy Expressions

An expression is very busy if it will definitely be evaluated again before its value
changes. To approximate this property, we need the same lattice and auxiliary
functions as for available expressions. For every CFG node v the variable [[v]] de-
notes the set of expressions that at the program point before the node definitely
are busy. We define:

JOIN (v) =
⋂

w∈succ(v)

[[w]]

The constraint for the exit node is:

[[exit]] = {}

For conditions and output statements we have:

[[v]] = JOIN (v) ∪ exps(E)

For assignments the constraint is:

[[v]] = JOIN (v) ↓ id ∪ exps(E)

For all other nodes we have the constraint:

[[v]] = JOIN (v)

The intuition is that an expression is very busy if it is evaluated in the current
node or will be evaluated in all future executions unless an assignment changes
its value. On the example program:

var x,a,b;

x = input;

a = x-1;

b = x-2;

while (x>0) {

output a*b-x;

x = x-1;

}

output a*b;

the analysis reveals that a*b is very busy inside the loop. The compiler can
perform code hoisting and move the computation to the earliest program point
where it is very busy. This would transform the program into the more efficient
version:
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var x,a,b,atimesb;

x = input;

a = x-1;

b = x-2;

atimesb = a*b;

while (x>0) {

output atimesb-x;

x = x-1;

}

output atimesb;

5.6 Example: Reaching Definitions

The reaching definitions for a given program point are those assignments that
may have defined the current values of variables. For this analysis we need a
powerset lattice of all assignments (really CFG nodes) occurring in the program.
For the example program from before:

var x,y,z;

x = input;

while (x>1) {

y = x/2;

if (y>3) x = x-y;

z = x-4;

if (z>0) x = x/2;

z = z-1;

}

output x;

the lattice becomes:

L = (2{x=input,y=x/2,x=x-y,z=x-4,x=x/2,z=z-1},⊆)

For every CFG node v the variable [[v]] denotes the set of assignments that may
define values of variables at the program point after the node. We define

JOIN (v) =
⋃

w∈pred(v)

[[w]]

For assignments the constraint is:

[[v]] = JOIN (v)↓ id ∪ {v}

and for all other nodes it is simply:

[[v]] = JOIN (v)
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This time the ↓id function removes all assignments to the variable id. This anal-
ysis can be used to construct a def-use graph, which is like a CFG except that
edges go from definitions to possible uses. For the example program, the def-
use graph is:

x = input

x>1

y = x/2

y>3

z = x−4

z>0

z = z−1

output x

x = x−y

x = x/2

The def-use graph is a further abstraction of the program and is the basis of
optimizations such as dead code elimination and code motion.

Exercise 5.12: Show that the def-use graph is always a subgraph of the tran-
sitive closure of the CFG.

5.7 Forwards, Backwards, May, and Must

The four classical analyses that we have seen so far can be classified in various
ways. They are all just instances of the general monotone framework, but their
constraints have a particular structure.

A forwards analysis is one that for each program point computes information
about the past behavior. Examples of this are available expressions and reaching
definitions. They can be characterized by the right-hand sides of constraints
only depending on predecessors of the CFG node. Thus, the analysis starts at the
entry node and moves forwards in the CFG.

A backwards analysis is one that for each program point computes informa-
tion about the future behavior. Examples of this are liveness and very busy
expressions. They can be characterized by the right-hand sides of constraints
only depending on successors of the CFG node. Thus, the analysis starts at the
exit node and moves backwards in the CFG.
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A may analysis is one that describes information that may possibly be true
and, thus, computes an upper/ approximation. Examples of this are liveness
and reaching definitions. They can be characterized by the right-hand sides of
constraints using a union operator to combine information.

A must analysis is one that describes information that must definitely be
true and, thus, computes a lower approximation. Examples of this are available
expressions and very busy expressions. They can be characterized by the right-
hand sides of constraints using an intersection operator to combine information.

Thus, our four examples show every possible combination, as illustrated by
this diagram:

Forwards Backwards
May Reaching Definitions Liveness
Must Available Expressions Very Busy Expressions

These classifications are mostly botanical in nature, but awareness of them may
provide inspiration for constructing new analyses.

5.8 Example: Initialized Variables

Let us try to define an analysis that ensures that variables are initialized before
they are read. This can be solved by computing for every program point the
set of variables that are guaranteed to be initialized, thus our lattice is the re-
verse powerset of variables occurring in the given program. Initialization is a
property of the past, so we need a forwards analysis. Also, we need definite
information which implies a must analysis. This means that our constraints are
phrased in terms of predecessors and intersections. On this basis, they more or
less give themselves. For the entry node we have the constraint:

[[entry]] = {}

for assignments we have the constraint:

[[v]] =
⋂

w∈pred(v)

[[w]] ∪ {id}

and for all other nodes the constraint:

[[v]] =
⋂

w∈pred(v)

[[w]]

The compiler could now check for every use of a variable that it is contained in
the computed set of initialized variables.
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5.9 Example: Constant Propagation

An analysis related to sign analysis is constant propagation, where we for every
program point want to determine the variables that have a constant value. The
analysis is structured just like the sign analysis, except that the basic lattice is
replaced by:

0 1 2 3−3 −2 −1

?

and that operators are abstracted in the following manner for e.g. addition:

λnλm.if (n = ⊥∨m = ⊥) {⊥} else if (n = ?∨m = ?) {?} else {n+m}

Based on this analysis, an optimizing compiler could transform the program:

var x,y,z;

x = 27;

y = input;

z = 2*x+y;

if (x < 0) { y = z-3; } else { y = 12; }

output y;

into:

var x,y,z;

x = 27;

y = input;

z = 54+y;

if (0) { y = z-3; } else { y = 12; }

output y;

which, following a reaching definitions analysis and a dead code elimination,
can be reduced to:

var y;

y = input;

output 12;

5.10 Example: Interval Analysis

An interval analysis computes for every integer variable a lower and an upper
bound for its possible values. Intervals are interesting analysis results, since
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sound answers can be used for optimizations such as array bounds checking,
numerical overflow, and efficient integer representations.

This example involves a lattice of infinite height and we must use a spe-
cial technique, called widening to ensure convergence towards a fixed-point. In-
creased precision may be obtained using a complementary technique, called
narrowing.

The lattice describing a single variable is defined as:

Interval = lift({[l, h] | l, h ∈ N ∧ l ≤ h})

where:
N = {−∞, . . . ,−2,−1, 0, 1, 2, . . . ,∞}

is the set of integers extended with infinite endpoints and the order on intervals
is:

[l1, h1] v [l2, h2] ⇔ l2 ≤ l1 ∧ h1 ≤ h2
corresponding to inclusion of points. This lattice looks as follows:

[−2,−2] [−1,−1] [0,0] [1,1] [2,2]

[1,2][0,1][−1,0]

[−  ,−2]

[−  ,−1]

[−  ,0]

[−2,0] [−1,1] [0,2]

[2,  ]

[1,  ]

[−2,2]

[−2,1] [−1,2]

[−  ,  ]

8 8

8

8

8

8

8

8

[0,  ]

[−2,−1]

It is clear that we do not have a lattice of finite height, since it contains for ex-
ample the infinite chain:

[0, 0] v [0, 1] v [0, 2] v [0, 3] v [0, 4] v [0, 5] . . .

This carries over to the lattice we would ultimately use, namely:

L = Vars 7→ Interval

where for the entry node we use the constant function returning the⊥ element:

[[entry]] = λx.⊥
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for an assignment the constraint:

[[v]] = JOIN (v) [id 7→ eval(JOIN (v), E)]

and for all other nodes the constraint:

[[v]] = JOIN (v)

where:
JOIN (v) =

⊔
w∈pred(v)

[[w]]

and eval performs an abstract evaluation of expressions:

eval(σ, id) = σ(id)
eval(σ, intconst) = [intconst, intconst]
eval(σ,E1 opE2) = op(eval(σ,E1), eval(σ,E2))

where the abstract arithmetical operators all are defined by:

op([l1, h1], [l2, h2]) = [ min
x∈[l1,h1],y∈[l2,h2]

x op y, max
x∈[l1,h1],y∈[l2,h2]

x op y]

For example, +([1, 10], [−5, 7]) = [1− 5, 10 + 7] = [−4, 17].

Exercise 5.13: Argue that these definitions yield monotone operators on the
Interval lattice.

Exercise 5.14: Show how the abstract comparison operators can be made
more precise.

The lattice has infinite height, so we are unable to use the monotone framework,
since the fixed-point algorithm may never terminate. This means that for the
lattice Ln the sequence of approximants:

F i(⊥, . . . ,⊥)

need never converge. A powerful technique to address this kind of problem is
introduced in the next section.

5.11 Widening

To obtain convergence of the interval analysis presented in Section 5.10 we shall
use a technique called widening which introduces a function w : Ln → Ln so
that the sequence:

(w ◦ F )i(⊥, . . . ,⊥)

now converges on a fixed-point that is larger than every F i(⊥, . . . ,⊥) and thus
represents sound information about the program. The widening function w
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will intuitively coarsen the information sufficiently to ensure termination. For
our interval analysis, w is defined pointwise down to single intervals. It op-
erates relatively to a fixed finite subset B ⊂ N that must contain −∞ and ∞.
Typically,B could be seeded with all the integer constants occurring in the given
program, but other heuristics could also be used. On a single interval we have:

w([l, h]) = [max{i ∈ B | i ≤ l},min{i ∈ B | h ≤ i}]

which finds the best fitting interval among the ones that are allowed.

Exercise 5.15: Show that since w is an extensive monotone function and
w(Interval) is a finite lattice, the widening technique is guaranteed to work
correctly.

5.12 Narrowing

Widening generally shoots above the target, but a subsequent technique called
narrowing may improve the result. If we define:

fix =
⊔
F i(⊥, . . . ,⊥) fixw =

⊔
(w ◦ F )i(⊥, . . . ,⊥)

then we have fix v fixw . However, we also have that fix v F (fixw) v fixw ,
which means that a subsequent application of F may refine our result and still
produce sound information. This technique, called narrowing, may in fact be
iterated arbitrarily many times.

Exercise 5.16: Show that ∀i : fix v F i+1(fixw) v F i(fixw) v fixw .

An example will demonstrate the benefits of these techniques. Consider this
program:

y = 0; x = 7; x = x+1;

while (input) {

x = 7;

x = x+1;

y = y+1;

}

Without widening, the analysis will produce the following diverging sequence
of approximants for the program point after the loop:

[x 7→ ⊥, y 7→ ⊥]
[x 7→ [8, 8], y 7→ [0, 1]]
[x 7→ [8, 8], y 7→ [0, 2]]
[x 7→ [8, 8], y 7→ [0, 3]]
...
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If we apply widening, based on the set B = {−∞, 0, 1, 7,∞} seeded with the
constants occurring in the program, then we obtain a converging sequence:

[x 7→ ⊥, y 7→ ⊥]
[x 7→ [7,∞], y 7→ [0, 1]]
[x 7→ [7,∞], y 7→ [0, 7]]
[x 7→ [7,∞], y 7→ [0,∞]]

However, the result for x is discouraging. Fortunately, a few iterations of nar-
rowing refines the result to:

[x 7→ [8, 8], y 7→ [0,∞]]

which is really the best we could hope for. Correspondingly, further narrowing
has no effect. Note that the decreasing sequence:

fixw w F (fixw) w F 2(fixw) w F 3(fixw) . . .

is not guaranteed to converge, so heuristics must determine how many times to
apply narrowing.



Chapter 6

Path Sensitivity

Until now, we have ignored the values of conditions by simply treating if- and
while-statements as a nondeterministic choice between the two branches. This
is called a path insensitive analysis as it does not distinguish different paths that
lead to a given program point. This technique fails to include some information
that could potentially be used in a static analysis. Consider for example the
following program:

x = input;

y = 0;

z = 0;

while (x > 0) {

z = z+x;

if (17 > y) { y = y+1; }

x = x-1;

}

The previous interval analysis (with widening) will conclude that after the while-
loop the variable x is in the interval [−∞,∞], y is in the interval [0,∞], and z is
in the interval [−∞,∞]. However, in view of the conditionals being used, this
result is too pessimistic.

6.1 Assertions

To exploit the available information, we shall extend the language with an ar-
tificial statement, assert(E), where E is a boolean expression. This statement
will abort execution at runtime if E is false and otherwise have no effect, how-
ever, we shall only insert it at places where E is guaranteed to be true. In the
interval analysis, the constraints for these new statement will narrow the inter-
vals for the various variables by exploiting information in conditionals.
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In the example program, the meanings of the conditionals can be encoded
by the following program transformation:
x = input;

y = 0;

z = 0;

while (x > 0) {

assert(x > 0);

z = z+x;

if (17 > y) { assert(17 > y); y = y+1; }

x = x-1;

}

assert(!(x > 0));

Constraints for a node v with an assert statement may trivially be given as:

[[v]] = JOIN (v)

in which case no extra precision is gained. In fact, it requires insight into the
specific static analysis to define non-trivial and sound constraints for these con-
structs.

For the interval analysis, extracting the information carried by general con-
ditions, or predicates, such as E1 > E2 or E1 == E2 relative to the lattice ele-
ments is complicated and in itself an area of considerable study. For simplicity,
let us consider conditions only of the two kinds id > E andE > id. The former
kind of assertion can be handled by the constraint

[[v]] = JOIN (v)[id 7→ gt(JOIN (v)(id), eval(JOIN (v), E))]

where
gt([l1, h1], [l2, h2]) = [l1, h1] u [l2,∞]

Exercise 6.1: Argue that this constraint for assert is sound and monotone.

Negated condition are handled in similar fashions, and all other conditions
are given the trivial, but sound identity constraint.

With this refinement, the interval analysis of the above example will con-
clude that after the while-loop the variable x is in the interval [−∞..0], y is in
the interval [0, 17], and z is in the interval [0,∞].

Exercise 6.2: Discuss how more conditions may be given non-trivial con-
straints for assert to improve analysis precision further.

6.2 Branch Correlations

The use of assert statements at conditional branches provides a simple kind of
path sensitivity called control sensitivity, however it is insufficient for reasoning
about correlations of branches in programs. Here is a typical example:
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if (condition) {

open();

flag = 1;

} else {

flag = 0;

}

...

if (flag) {

close();

}

We here assume that open and close are built-in functions for opening and
closing a specific file. The file is initially closed, and the “. . . ” consists of
statements that do not call open or close or modify flag. We wish to design
an analysis that can check that close is only called if the file is currently open.

As a starting point, we use this lattice for modeling the open/closed status
of the file:

L = (2{open,closed},⊆)

For every CFG node v the variable [[v]] denotes the possible status of the file
at the program point after the node. For open and close statements the con-
straints are:

[[open()]] = {open}

[[close()]] = {closed}

For the entry node, we define:

[[entry ]] = {closed}

and for every other node, which does not modify the file status, the constraint
is simply:

[[v]] = JOIN (v)

where JOIN is defined as usual for a forward, may analysis:

JOIN (v) =
⋃

w∈pred(v)

[[w]]

In the example program, the close function is clearly called if and only if
open is called, but the current analysis fails to discover this.

Exercise 6.3: Write the constraints being produced for the example program
and show that the solution for [[flag]] (the node for the last if condition) is
{open, closed}.

Arguing that the program has the desired property obviously involves the
flag variable, which the lattice above ignores. So, we can try with a slightly



50 6 PATH SENSITIVITY

more sophisticated lattice – a product lattice that keeps track of both the status
of the file and the value of the flag:

L′ = (2{open,closed},⊆)× (2{flag=0,flag6=0},⊆)

Additionally, we insert assert to make sure that conditionals are not ignored:

if (condition) {

assert(condition);

open();

flag = 1;

} else {

assert(!condition);

flag = 0;

}

...

if (flag) {

assert(flag);

close();

} else {

assert(!flag);

}

This is still insufficient, though. At the program point after the first if-else
statement, the analysis only knows that open may have been called and flag
may be 0.

Exercise 6.4: Specify the constraints that fit with the L′ lattice. Then show
that the analysis produces the lattice element (2{open,closed}, 2{flag=0,flag6=0})
for the first node after the the first if-else statement.

The present analysis is also called an independent attribute analysis as the ab-
stract value of the file is independent of the abstract value of the boolean flag.
What we need is a relational analysis that can keep track of relations between
variables. This can be achieved by generalizing the analysis to maintain multi-
ple abstract states per program point. IfL is the original lattice as defined above,
we replace it by

L′′ = P 7→ L

where P is a finite set of path contexts. A path context is here a predicate over
the program state. (For instance, a condition expression in TIP defines such a
predicate.) In general, each statement is then analyzed in |P | different path con-
texts, each describing a set of paths that lead to the statement. For the example
above, we can use P = {flag = 0, flag 6= 0}.

The constraints for open, close, and entry are:

[[open()]] = λp.{open}

[[close()]] = λp.{closed}
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[[entry]] = λp.{closed}

The constraints for assignments make sure that flag gets special treatment:

[[flag = 0]] = [flag = 0 7→
⋃
p∈P

JOIN (v)(p), flag 6= 0 7→ ∅]

[[flag = n]] = [flag 6= 0 7→
⋃
p∈p

JOIN (v)(p), flag = 0 7→ ∅]

[[flag = E]] = λq.
⋃
p∈P

JOIN (v)(p)

Here, n is an intconst other than 0 andE is a non-intconst expression, and JOIN
is defined pointwise:

JOIN (v)(p) =
⋃

w∈pred(v)

[[w]](p)

The situation [[v]](p) = ∅ corresponds to p being an infeasible path context at v.
For assert, we also give special treatment to flag:

[[assert(flag)]] = [flag 6= 0 7→ JOIN (v)(flag 6= 0), flag = 0 7→ ∅]

Notice the small but important difference from the constraint for the case flag
= 1. As before, the case for negated expressions is similar.

Exercise 6.5: Give an appropriate constraint for assert(!flag).

Finally, for any other node v, including other assert nodes, the constraint keeps
the dataflow information for different path contexts apart but otherwise simply
propagates and joins the information:

[[v]] = λp.JOIN (v)(p)

Although this is sound, we could make more precise constraints for assert
nodes by recognizing other patterns that fit into the abstraction given by the
lattice.

For our specific program, the following constraints are generated:

[[entry]] = λp.{closed}
[[condition]] = [[entry]]
[[assert(condition)]] = [[condition]]
[[open()]] = λp.{open}
[[flag = 1]] =

[
flag 6= 0 7→

⋃
p∈P [[open()]](p), flag = 0 7→ ∅

]
[[assert(!condition)]] = [[condition]]
[[flag = 0]] =

[
flag = 0 7→

⋃
p∈P [[assert(!condition)]](p), flag 6= 0 7→ ∅

]
[[...]] = λp.

(
[[flag = 1]](p) ∪ [[flag = 0]](p)

)
[[flag]] = [[...]]
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[[assert(flag)]] = [flag 6= 0 7→ [[flag]](flag 6= 0), flag = 0 7→ ∅]
[[close()]] = λp.{closed}
[[assert(!flag)]] = [flag = 0 7→ [[flag]](flag = 0), flag 6= 0 7→ ∅]
[[exit]] = λp.

(
[[close()]](p) ∪ [[assert(!flag)]](p)

)
The minimal solution is, for each [[v]](p):

flag = 0 flag 6= 0
[[entry]] {closed} {closed}
[[condition]] {closed} {closed}
[[assert(condition)]] {closed} {closed}
[[open()]] {open} {open}
[[flag = 1]] ∅ {open}
[[assert(!condition)]] {closed} {closed}
[[flag = 0]] {closed} ∅
[[...]] {closed} {open}
[[flag]] {closed} {open}
[[assert(flag)]] ∅ {open}
[[close()]] {closed} {closed}
[[assert(!flag)]] {closed} ∅
[[exit]] {closed} {closed}

The analysis produces the lattice element [flag = 0 7→ {closed}, flag 6= 0 7→
{open}] for the program point after the first if-else statement. The constraint
for the assert(flag) statement will eliminate the possibility that the file is
closed at that point. This ensures that close is only called if the file is open,
as desired.

Exercise 6.6: For the present example, the basic lattice L is a defined as a
powerset of a finite set A. Show that P 7→ 2A is isomorphic to 2P×A. (This
explains why such analyses are called relational.)

Exercise 6.7: Describe a variant of the example program above where the
present analysis would be improved if combining it with constant propaga-
tion.

In general, the program analysis designer is left with the choice of P . Of-
ten P consists of combinations of predicates that appear in conditionals in the
program. This quickly results in an exponential blow-up: for k predicates, each
statement may need to be analyzed in 2k different path contexts. In practice,
however, there is usually much redundancy in these analysis steps. Thus, in ad-
dition to the challenge of reasoning about the assert predicates relative to the
lattice elements, it requires a considerable effort to avoid too many redundant
computations in path sensitive analysis. One approach is iterative refinement
where P is initially a single universal path context, which is then iteratively re-
fined by adding relevant predicates until either the desired properties can be
established or disproved or the analysis is unable to select relevant predicates
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and hence gives up.

Exercise 6.8: Assume that we change the rule for open from

[[open()]] = λp.{open}

to
[[open()]] = λp. if JOIN (v)(p) = ∅ then ∅ else {open}

Argue that this is sound and for some programs more precise than the orig-
inal rule.

Exercise 6.9: The following is a variant of the previous example program:

if (condition) {

flag = 1;

} else {

flag = 0;

}

...

if (condition) {

open();

}

...

if (flag) {

close();

}

Show how a path sensitive analysis can prove for this variant that close is
called if and only if open has been called.

Exercise 6.10: Construct yet another variant of the open/close example pro-
gram where the desired property can only be established with a choice of P
that includes a predicate that does not occur as a conditional expression in
the program source. (Such a program may be challenging to handle with the
iterative refinement technique.)





Chapter 7

Interprocedural Analysis

So far, we have only analyzed the body of a single function, which is called
an intraprocedural analysis. We now consider interprocedural analysis of whole
programs containing multiple functions and function calls.

7.1 Interprocedural Control Flow Graphs

We use the subset of the TIP language containing functions, but still ignore
pointers. As we shall see, the CFG for an entire program is then quite simple
to obtain. It becomes more complicated when adding function pointers, which
we discuss in later chapters.

First we construct the CFGs for all individual function bodies as usual. All
that remains is then to glue them together to reflect function calls properly. We
need to take care of parameter passing, return values, and values of local vari-
ables across calls. For simplicity we assume that all function calls are performed
in connection with assignments:

x = f(E1,. . . ,,En);

Exercise 7.1: Show how any program can be rewritten to have this form by
introducing new temporary variables.

In the CFG, we represent each function call statement using two nodes: a
call node representing the connection from the caller to the entry of f, and an
after-call node for the exit of f back to the caller:
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x = 

1
  = f(E ,...,E )n

Next, we represent each return statement

return E;

as an assignment using a special variable named result:

result = E

We can now glue together the caller and the callee as follows:

result = E

f(b , ..., b )

x = 

1
  = f(E ,...,E )n

1                   n

The connection between the call node and its after-call node is represented by a
special edge, which we need for propagating abstract values for local variables
of the caller.

With this interprocedural CFG in place, we can apply the monotone frame-
work. Examples are given in the following sections.
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Exercise 7.2: How many edges may the interprocedural CFG contain in a
program with n CFG nodes?

7.2 Example: Interprocedural Sign Analysis

Recall the intraprocedural sign analysis from Sections 4.1 and 5.2. This analysis
models values with the lattice Sign :

?

+ 0 −

and abstract states are represented by the map lattice Vars 7→ Sign .
To make the analysis interprocedural, we define constraints for function en-

tries and exits. For an entry node v of a function f(b1,..., bn) we consider
the abstract states for all callers pred(v) and model the passing of parameters
E1, . . . , En:

[[v]] =
⊔
w∈pred(v)⊥[b1 7→ eval([[w]], E1), . . . , bn 7→ eval([[w]], En)]

For an after-call node v that stores the return value in the variable x and where
v′ is the accompanying call node, the dataflow can be modeled by the following
constraint:

[[v]] = [[v′]][x 7→ [[w]](result)] where w ∈ pred(v)

We use the fact that an after-call node v has precisely one predecessor w ∈
pred(v). The constraint obtains the abstract values of the local variables from
the call node v′ and the abstract value of result from w.

In a backward analysis, one would consider the call node and the function
exit node rather than the function entry node and the after-call node. Also
notice that we exploit the fact that the variant of the TIP language we consider
here does not have global variables, a heap, nested functions, nor higher-order
functions.





Chapter 8

Control Flow Analysis

If we introduce higher-order functions, objects, or function pointers into the
programming language, then control flow and dataflow suddenly become in-
tertwined. At each call site, it is no longer trivial to see which code is being
called. The task of control flow analysis is to approximate conservatively the in-
terprocedural control flow graph for such languages.

8.1 Closure Analysis for the λ-calculus
Control flow analysis in its purest form can best be illustrated by the classical
λ-calculus:

E→ λid.E
| id
| E E

and later we shall generalize this technique to the full TIP language. For sim-
plicity we assume that all λ-bound variables are distinct. To construct a CFG
for a term in this calculus, we need to compute for every expression E the set of
closures to which it may evaluate. A closure can be modeled by a symbol of the
form λid that identifies a concrete λ-abstraction. This problem, called closure
analysis, can be solved using a variation of the monotone framework. However,
since the intraprocedural control flow is trivial in this language, we might as
well perform the analysis directly on the AST.

The lattice we use is the powerset of closures occurring in the given term
ordered by subset inclusion. For every syntax tree node v we introduce a con-
straint variable [[v]] denoting the set of resulting closures. For an abstraction
λid.E we have the constraint:

λid ∈ [[λid.E]]
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(the function may certainly evaluate to itself) and for an application E1E2 the
conditional constraint:

λid ∈ [[E1]]⇒
(
[[E2]] ⊆ [[id]] ∧ [[E]] ⊆ [[E1E2]]

)
for every closure λid.E (the actual argument may flow into the formal argu-
ment, and the value of the function body is among the possible results of the
function call).

Exercise 8.1: Show how the resulting constraints can be transformed into
standard monotone inequations and solved by a fixed-point computation.

8.2 The Cubic Algorithm

The constraints for closure analysis are an instance of a general class that can be
solved in cubic time. Many problems fall into this category, so we will investi-
gate the algorithm more closely.

We have a finite set of tokens {t1, . . . , tk} and a finite set of variables x1, . . . , xn
whose values are sets of tokens. Our task is to read a collection of constraints of
the form t∈x or t∈x⇒ y⊆z and produce the minimal solution.

Exercise 8.2: Show that a unique minimal solution exists, since solutions are
closed under intersection.

The algorithm is based on a simple data structure. Each variable is mapped to
a node in a directed acyclic graph (DAG). Each node has an associated bitvector
belonging to {0, 1}k, initially defined to be all 0’s. Each bit has an associated list
of pairs of variables, which is used to model conditional constraints. The edges
in the DAG reflect inclusion constraints. The bitvectors will at all times directly
represent the minimal solution. An example graph may look like:

x

x

x

x

(x ,x )2 4

1

4

3

2

Constraints are added one at a time. A constraint of the form t ∈ x is handled
by looking up the node associated with x and setting the corresponding bit to 1.
If its list of pairs was not empty, then an edge between the nodes corresponding
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to y and z is added for every pair (y, z) and the list is emptied. A constraint of
the form t ∈ x⇒ y ⊆ z is handled by first testing if the bit corresponding to t in
the node corresponding to x has value 1. If this is so, then an edge between the
nodes corresponding to y and z is added. Otherwise, the pair (y, z) is added to
the list for that bit.

If a newly added edge forms a cycle, then all nodes on that cycle are merged
into a single node, which implies that their bitvectors are unioned together and
their pair lists are concatenated. The map from variables to nodes is updated
accordingly. In any case, to reestablish all inclusion relations we must propagate
the values of each newly set bit along all edges in the graph.

To analyze the time complexity this algorithm, we assume that the numbers
of tokens and variables are bothO(n). This is clearly the case in closure analysis
of a program of size n.

Merging DAG nodes on cycles can be done at mostO(n) times. Each merger
involves at most O(n) nodes and the union of their bitvectors is computed in
time at most O(n2). The total for this part is O(n3).

New edges are inserted at most O(n2) times. Constant sets are included at
most O(n2) times, once for each t ∈ x constraint.

Finally, to limit the cost of propagating bits along edges, we imagine that
each pair of corresponding bits along an edge are connected by a tiny bitwire.
Whenever the source bit is set to 1, that value is propagated along the bitwire
which then is broken:

1 1

0

0

0

0

1

0

0

1

0

1

Since we have at mostn3 bitwires, the total cost for propagation isO(n3). Adding
up, the total cost for the algorithm is also O(n3). The fact that this seems like a
lower bound as well is referred to as the cubic time bottleneck.

The kinds of constraints covered by this algorithm is a simple case of the
more general set constraints, which allows richer constraints on sets of finite
terms. General set constraints are also solvable but in time O(22

n

).

8.3 Control Flow Graphs for Function Pointers
Consider now our tiny language where we allow functions pointers. For a com-
puted function call:

E→ (E)(E1,. . .,En)

we cannot see from the syntax which functions may be called. A coarse but
sound CFG could be obtained by assuming that any function with the right
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number of arguments could be called. However, we can do much better by
performing a control flow analysis. Note that a function call id(E1,. . .,En)may
be seen as syntactic sugar for the general notation (id)(E1,. . .,En).

Our lattice is the powerset of the set of tokens containing id for every func-
tion name id, ordered by subset inclusion. For every syntax tree node vwe intro-
duce a constraint variable [[v]] denoting the set of functions or function pointers
to which v could evaluate. For a constant function name id we have the con-
straint:

id ∈ [[id]]

for assignments id=E we have the constraint:

[[E]] ⊆ [[id]]

and, finally, for computed function calls we have for every definition of a func-
tion f with arguments a1, . . . , an and return expression E′ the constraint:

f ∈ [[E]] ⇒
(
[[Ei]] ⊆ [[ai]] ∧ [[E′]] ⊆ [[(E)(E1, . . . ,En)]]

)
A still more precise analysis could be obtained if we restricted ourselves to ty-
pable programs and only generated constraints for those functions f for which
the call would be type correct.

Given this inferred information, we construct the CFG as before but with
edges between a call site and all possible target functions according to the con-
trol flow analysis. Consider the following example program:

inc(i) { return i+1; }

dec(j) { return j-1; }

ide(k) { return k; }

foo(n,f) {

var r;

if (n==0) { f=ide; }

r = (f)(n);

return r;

}

main() {

var x,y;

x = input;

if (x>0) { y = foo(x,inc); } else { y = foo(x,dec); }

return y;

}

The control flow analysis generates the following constraints:

inc ∈ [[inc]]
dec ∈ [[dec]]
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ide ∈ [[ide]]
[[ide]] ⊆ [[f]]
[[(f)(n)]] ⊆ [[r]]
inc ∈ [[f]]⇒ [[n]] ⊆ [[i]] ∧ [[i+1]] ⊆ [[(f)(n)]]
dec ∈ [[f]]⇒ [[n]] ⊆ [[j]] ∧ [[j-1]] ⊆ [[(f)(n)]]
ide ∈ [[f]]⇒ [[n]] ⊆ [[k]] ∧ [[k]] ⊆ [[(f)(n)]]
[[input]] ⊆ [[x]]
[[foo(x,inc)]] ⊆ [[y]]
[[foo(x,dec)]] ⊆ [[y]]
foo ∈ [[foo]]
foo ∈ [[foo]]⇒ [[x]] ⊆ [[n]] ∧ [[inc]] ⊆ [[f]] ∧ [[r]] ⊆ [[foo(x,inc)]]
foo ∈ [[foo]]⇒ [[x]] ⊆ [[n]] ∧ [[dec]] ⊆ [[f]] ∧ [[r]] ⊆ [[foo(x,dec)]]

The nonempty values of the least solution are:

[[inc]] = {inc}
[[dec]] = {dec}
[[ide]] = {ide}
[[f]] = {inc, dec, ide}
[[foo]] = {foo}

On this basis, we can construct the following monovariant interprocedural CFG
for the program:
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var x,y

x = input

x > 0

save−1−x=x save−2−x=x

save−1−y=y save−2−y=y

n = x n = x

f = inc f = dec

x=save−1−x x=save−2−x

y=save−1−y y=save−2−y

y = call−1 y = call−2

ret−main=y

call−1=ret−foo

call−2=ret−foo

var r

n==0

f = ide

save−3−r=r

r=save−3−r

r = call−3

ret−foo=r

ret−inc=i+1 ret−dec=j−1 ret−ide=k

call−3=ret−inc call−3=ret−dec call−3=ret−ide

which then can be used as basis for subsequent interprocedural static analyses.

8.4 Control Flow in Object Oriented Languages

A language with function pointers or higher-order functions must use the kind
of control flow analysis described in the previous sections to obtain a reasonably
precise CFG. For common object-oriented languages, such as Java or C#, it is
also useful, but the added structure provided by the class hierarchy and the type
system permits some simpler alternatives. In the object-oriented setting the
question is which method implementations may be executed at a given method
invocation site:

x.m(a,b,c)

The simplest solution is to scan the class library and select any method named
m whose signature accepts the types of the actual arguments. A better choice,
called Class Hierarchy Analysis (CHA), is to consider only the part of the class hi-
erarchy that is spanned by the declared type of x. A further refinement, called
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Rapid Type Analysis (RTA), is to restrict further to the classes of which objects are
actually allocated. Yet another technique, called Variable Type Analysis (VTA),
performs intraprocedural control flow analysis while making conservative as-
sumptions about the remaining program.

These techniques are of course much faster than full-blown control flow
analysis, and for real-life programs they are often sufficiently precise.





Chapter 9

Pointer Analysis

The final extension of the TIP language introduces simple pointers and dynamic
memory. Since our toy version of malloc only allocates a single cell, we can-
not build arbitrary structures in the heap. However, the main problems with
pointers are amply represented in the language fragment that we consider.

9.1 Points-To Analysis

The most important information that must be obtained is the set of possible cells
that the pointers may point to. There are of course arbitrarily many possible
locations during execution, so we must select some finite representatives. The
canonical choice is to introduce an abstract cell id for every variable named id
and an abstract cell malloc-i, where i is a unique index, for each occurrence of
a malloc operation in the program. We use Cell to denote the set of such cells
for the given program, and we use Loc to denote the set of abstract locations of
the cells, written &c ∈ Loc for every c ∈ Cell .

The first points-to analyses that we shall study are flow-insensitive. The end
result of such an analysis is a function pt that for each pointer variable p returns
the set pt(p) of cells it may point to. We must of course perform a conservative
analysis, so these sets will in general be too large.

Given this information, many other facts can be approximated. If we wish
to know whether pointer variables p and q may be aliases, then a safe answer is
obtained by checking whether pt(p) ∩ pt(q) is nonempty.

An almost-trivial analysis, called address taken, is to use all possible cells,
except that id is only included if the expression &id occurs in the given program.
This only suffices for very simple applications, so more ambitious approaches
are usually preferred. If we restrict ourselves to typable programs, then any
points-to analysis could be improved by removing those locations whose types
are not equal to that of the pointer variable.



68 9 POINTER ANALYSIS

9.2 Andersen’s Algorithm

One approach to points-to analysis is quite similar to control flow analysis. For
each cell c we introduce a constraint variable [[c]] ranging over sets of locations.

The analysis assumes that the program has been normalized so that every
pointer manipulation is of one of the six kinds:

1) id = malloc
2) id1 = &id2

3) id1 = id2

4) id1 = *id2

5) *id1 = id2

6) id = null

Exercise 9.1: Show how this normalization can be performed systematically
by introducing fresh temporary variables.

For each of these pointer manipulations we then generate constraints:

id = malloc: &malloc-i ∈ [[id]]
id1 = &id2: &id2 ∈ [[id1]]
id1 = id2: [[id2]] ⊆ [[id1]]

id1 = *id2: &α ∈ [[id2]]⇒ [[α]] ⊆ [[id1]]
*id1 = id2: &α ∈ [[id1]]⇒ [[id2]] ⊆ [[α]]

The last two constraints are generated for every location &α ∈ Loc, but we need
in fact only consider those whose addresses are actually taken in the given pro-
gram. The null assignment is ignored, since it corresponds to the trivial con-
straint ∅ ⊆ [[id]]. Since these constraints match the requirements of the cubic
algorithm, they can be solved in timeO(n3). The resulting points-to function is
defined as:

pt(p) = {α ∈ Cell | &α ∈ [[p]]}

Consider the following example program:

var p,q,x,y,z;

p = malloc;

x = y;

x = z;

*p = z;

p = q;

q = &y;

x = *p;

p = &z;

Andersen’s algorithm generates these constraints:
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&malloc-1 ∈ [[p]]
[[y]] ⊆ [[x]]
[[z]] ⊆ [[x]]
&α ∈ [[p]] ⇒ [[z]] ⊆ [[α]]
[[q]] ⊆ [[p]]
&y ∈ [[q]]
&α ∈ [[p]] ⇒ [[α]] ⊆ [[x]]
&z ∈ [[p]]

The nonempty values in the least solution are:

pt(p) = {malloc-1, y, z}
pt(q) = {y}

which gives a quite precise result. Note that while this algorithm is flow in-
sensitive, the directionality of the constraints implies that the dataflow is still
modeled with some accuracy.

9.3 Steensgaard’s Algorithm

A popular alternative is Steensgaard’s algorithm, which performs a coarser
analysis essentially by viewing assignments as being bidirectional. The anal-
ysis can be expressed elegantly using term unification. We use a term variable
[[c]] for every cell c and a term constructor &t representing a pointer to t. (Notice
the change in notation compared to Section 9.2: here, [[c]] is a term variable and
does not directly denote a set of locations.)

id = malloc: [[id]] = &[[malloc-i]]
id1 = &id2: [[id1]] = &[[id2]]
id1 = id2: [[id1]] = [[id2]]

id1 = *id2: [[id2]] = &α ∧ [[id1]] = α
*id1 = id2: [[id1]] = &α ∧ [[id2]] = α

Each α denotes a fresh term variable.
As usual, term constructors satisfy the general term equality axiom:

&α1 = &α2 ⇒ α1 = α2

The resulting points-to function is defined as:

pt(p) = {t ∈ Cell | [[p]] = &[[t]]}

For the previous example program, Steensgaard’s algorithm generates the
following constraints:

[[p]] = &[[malloc-1]]
[[x]] = [[y]]
[[x]] = [[z]]
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[[p]] = &α1 [[z]] = α1

[[p]] = [[q]]
[[q]] = &[[y]]
[[x]] = α2 [[p]] = &α2

[[p]] = &[[z]]

This in turn implies that:

pt(p) = pt(q) = {malloc-1, y, z}

which is less precise than Andersen’s algorithm, but using the faster algorithm.

9.4 Interprocedural Points-To Analysis

If function pointers are distinguished from other pointers, then we can per-
form an interprocedural points-to analysis by first computing an interproce-
dural CFG as described earlier and then running either Andersen’s or Steens-
gaard’s algorithm. If, however, function pointers may have indirect references
as well then we need to perform the control flow analysis and the points-to
analysis simultaneously to resolve for example the function call:

(***x)(1,2,3);

To express the combined algorithm, we make the syntactic simplification that
all function calls are of the form:

id1 = (id2)(a1,. . . , an);

where idi and ai are variables. Similarly, all return expressions are assumed to
be just variables.

Exercise 9.2: Show how to perform these simplifications in a systematic man-
ner.

Andersen’s algorithm is already similar to control flow analysis, and it can sim-
ply be extended with the appropriate constraints. A reference to a constant
function f generates the constraint:

f ∈ [[f ]]

The computed function call generates the constraint

f ∈ [[id2]]⇒
(
[[a1]] ⊆ [[x1]] ∧ . . . ∧ [[an]] ⊆ [[xn]] ∧ [[id]] ⊆ [[id1]]

)
for every occurrence of a function definition

f (x1,. . .,xn) { . . .return id; }

This will maintain the precision of the control flow analysis.
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9.5 Example: Null Pointer Analysis

We are now also able to define an analysis that detects nulldereferences. Specif-
ically, we want to ensure that *id is only executed when id is not null. Let us
consider intraprocedural analysis, so we can ignore function calls.

As before, we assume that the program is normalized, so that all pointer
manipulations are of these kinds:

1) id = malloc
2) id1 = &id2

3) id1 = id2

4) id1 = *id2

5) *id1 = id2

6) id = null

The basic lattice we use, called Null , is:

NN

?

where NN means definitely not null and ? represents values that may be null.
We then form the following map lattice:

Cell 7→ Null

For every CFG node v we introduce a constraint variable [[v]] denoting an ele-
ment from the map lattice. We shall use each constraint variable to describe an
abstract state for the program point immediately after the node.

For all nodes that do not involve pointer operations we have the constraint:

[[v]] = JOIN (v)

where
JOIN (v) =

⊔
w∈pred(v)

[[w]]

For a heap load operation id1 = *id2 we need to model the change of the
program variable id1. Our abstraction has a single abstract cell for id1. With the
assumption of intraprocedural analysis, that abstract cell represents a single
concrete cell. (With an interprocedural analysis, we would need to take into
account that each stack frame at runtime has an instance of the variable.) For the
expression *id2 we can ask the points-to analysis for the possible cells pt(id2).
With these observations, we can give a constraint for heap load operations:

id1 = *id2: [[v]] = load(JOIN (v), id1, id2)
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where
load(σ, id1, id2) = σ[id1 7→

⊔
α∈pt(id2)

σ(α)]

Similar reasoning gives constraints for the other operations that affect pointer
variables:

id = malloc: [[v]] = JOIN (v)[id 7→ NN, malloc-i 7→ ?]
id1 = &id2: [[v]] = JOIN (v)[id1 7→ NN]
id1 = id2: [[v]] = JOIN (v)[id1 7→ JOIN (v)(id2)]

id = null: [[v]] = JOIN (v)[id 7→ ?]

Exercise 9.3: Explain why the above four constraints are monotone and sound.

For a heap store operation *id1 = id2 we need to model the change of what-
ever id1 points to. That may be multiple abstract cells, namely tpt(id1). More-
over, each abstract heap cell malloc-imay describe multiple concrete cells. In
the constraint for heap store operations, we must therefore join the new abstract
value into the existing one for each affected cell in pt(id1):

*id1 = id2: [[v]] = store(JOIN (v), id1, id2)

where
store(σ, id1, id2) = σ [α 7→

α∈pt(id1)
σ(α) t σ(id2) ]

The situation we here see at heap store operations where we model an as-
signment by joining the new abstract value into the existing one is called a weak
update. In contrast, in a strong update the new abstract value overwrites the ex-
isting one, which we see in the null pointer analysis at all operations that mod-
ify program variables. Strong updates are obviously more precise than weak
updates in general, but it may require more elaborate analysis abstractions to
detect situations where strong update can be applied soundly.

After performing the null pointer analysis of a given program, a pointer
dereference *id at a program point v is guaranteed to be safe if

JOIN (v)(id) = NN

The precision of this analysis depends of course on the quality of the underlying
points-to analysis.

Consider the following buggy example program:

p = malloc;

q = &p;

n = null;

*q = n;

*p = n;
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Andersen’s algorithm computes the following points-to sets:

pt(p) = {malloc-1}
pt(q) = {p}
pt(n) = ∅

Based on this information, the null pointer analysis generates the following
constraints:

[[p=malloc]] = ⊥[p 7→ NN, malloc-1 7→ ?]
[[q=&p]] = [[p=malloc]][q 7→ NN]
[[n=null]] = [[q=&p]][n 7→ ?]
[[*q=n]] = [[n=null]][p 7→ [[n=null]](p) t [[n=null]](n)]
[[*p=n]] = [[*q=n]][malloc-1 7→ [[*q=n]](malloc-1) t [[*q=n]](n)]

for which the least solution is:

[[p=malloc]] = [p 7→ NN, q 7→ ⊥, n 7→ ⊥, malloc-1 7→ ?]
[[q=&p]] = [p 7→ NN, q 7→ NN, n 7→ ⊥, malloc-1 7→ ?]
[[n=null]] = [p 7→ NN, q 7→ NN, n 7→ ?, malloc-1 7→ ?]
[[*q=n]] = [p 7→ ?, q 7→ NN, n 7→ ?, malloc-1 7→ ?]
[[*p=n]] = [p 7→ ?, q 7→ NN, n 7→ ?, malloc-1 7→ ?]

By inspecting this information, an analysis could statically detect that when
*q=n is evaluated, which is immediately after n=null, the variable q is definitely
non-null. On the other hand, when *p=n is evaluated, we cannot rule out the
possibility that pmay contain null.

Exercise 9.4: Show an alternative constraint for heap load operations using
weak update, together with an example program where the modified analy-
sis then gives a result that is less precise than the analysis presented above.

Exercise 9.5: Show an (unsound) alternative constraint for heap store oper-
ations using strong update, together with an example program where the
modified analysis then gives a wrong result.

9.6 Example: Shape Analysis

So far, we have viewed the heap as an amorphous structure and only answered
questions about stack based variables. The heap can be analyzed in more detail
using shape analysis. Note that we can produce interesting heaps, even though
the malloc operation only allocates a single heap cell. An example of a non-
trivial heap is:
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x

y

z

where x, y, and z are program variables. We will seek to answer questions about
disjointness of the structures contained in program variables. In the example
above, x and y are not disjoint whereas y and z are.

Shape analysis requires a more ambitious lattice of shape graphs, which are
directed graphs in which the nodes are the abstract cells for the given program
and the edges correspond to possible pointers. Shape graphs are ordered by
inclusion of their sets of edges. Thus,⊥ is the graph without edges and> is the
completely connected graph. Formally, our lattice is then

2Cell×Cell

ordered by the usual subset inclusion. For every CFG node v we introduce a
constraint variable [[v]] denoting a shape graph that describes all possible stores
after that program point. For the nodes corresponding to the various pointer
manipulations we have the constraints:

id = malloc: [[v]] = JOIN (v)↓ id ∪ {(id, malloc-i)}
id1 = &id2: [[v]] = JOIN (v)↓ id1 ∪ {(id1, id2)}
id1 = id2: [[v]] = assign(JOIN (v), id1, id2)

id1 = *id2: [[v]] = load(JOIN (v), id1, id2)
*id1 = id2: [[v]] = store(JOIN (v), id1, id2)
id = null: [[v]] = JOIN (v)↓ id

and for all other nodes the constraint:

[[v]] = JOIN (v)

where
JOIN (v) =

⋃
w∈pred(v)

[[w]]

σ↓x = {(s, t) ∈ σ | s 6= x}

assign(σ, x, y) = σ↓x ∪ {(x, t) | (y, t) ∈ σ}

load(σ, x, y) = σ↓x ∪ {(x, t) | (y, s) ∈ σ, (s, t) ∈ σ}

store(σ, x, y) = σ ∪ {(s, t) | (x, s) ∈ σ, (y, t) ∈ σ}
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Notice that the constraint for heap store operations uses weak update.

Exercise 9.6: Explain the above constraints.

Consider now the following program:
var x,y,n,p,q;

x = malloc; y = malloc;

*x = null; *y = y;

n = input;

while (n>0) {

p = malloc; q = malloc;

*p = x; *q = y;

x = p; y = q;

n = n-1;

}

After the loop, the analysis produces the following shape graph:

x

malloc−3

malloc−1

malloc−4

malloc−2

y

p q

From this result we can safely conclude that x and ywill always be disjoint.
Note that our shape analysis also computes a flow sensitive points-to map

that for each program point v is defined by:

pt(p) = {t | (p, t) ∈ [[v]]}

This analysis is more precise than Andersen’s algorithm, but clearly also more
expensive to perform. As an example, consider the program:
x = &y;

x = &z;

After these statements, Andersen’s algorithm would predict that pt(x) = {y, z}
whereas the shape analysis computes pt(x) = {z} for the final program point.
This flow sensitive points-to information could be used to boost the nullpointer
analysis. However, an initial flow insensitive points-to analysis would still be
required to construct a CFG for programs using function pointers. Conversely,
if we have another points-to analysis, then it may be used to boost the preci-
sion of the shape analysis by restricting the locations considered in the load
and store functions. Alternatively, we could perform on-the-fly points-to and
control flow analysis during a dataflow analysis by suitably augmenting the
lattice.
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9.7 Example: Escape Analysis

We earlier lamented the escaping stack cell error displayed by the program:

baz() {

var x;

return &x;

}

main() {

var p;

p=baz(); *p=1;

return *p;

}

which was beyond the scope of the type system. Having performed the sim-
ple shape analysis, we can easily perform an escape analysis to catch such errors.
We just need to check that the possible cells for return expressions in the shape
graph cannot reach arguments or variables defined in the function itself, since
all other locations must then necessarily reside in earlier frames on the invoca-
tion stack.


