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Abstract

XML graphs have shown to be a simple and effective formalism for representing
sets of XML documents in program analysis. It has evolved through a six
year period with variants tailored for a range of applications. We present a
unified definition, outline the key properties including validation of XML graphs
against different XML schema languages, and provide a software package that
enables others to make use of these ideas. We also survey the use of XML
graphs for program analysis with four very different languages: XAacT (XML in
Java), Java Servlets (Web application programming), XSugar (transformations
between XML and non-XML data), and XSLT (stylesheets for transforming
XML documents).

1. Introduction

Many interesting programming formalisms deal explicitly with XML doc-
uments. Examples range from domain-specific languages, such as XSLT and
XQuery, to general-purpose languages, such as Java in which XML documents
may be handled by special frameworks or simply as text.

When such programs are the subject of static analyses, it is necessary to
obtain a formal model of sets of XML documents or fragments, typically to rep-
resent conservative approximations of the possible results at specific program
points. Several such models have been proposed, mainly based on the obser-
vation that formal tree languages capture many desired properties since XML
documents are essentially trees [41, 2(]. For practical use, a good and versatile
model aimed at static analysis must satisfy some particular requirements:

e it must capture all features in XML that are relevant for validation, not
just an idealized subset — in particular, we cannot ignore attributes, char-
acter data, or interleaved content models;

e it must be able to express sets of XML documents described by common
schema formalisms, in particular XML Schema [44];

*This article is an extended version of 4] with material from [24].



e it must allow static validation against common schema formalisms and
also navigation with XPath expressions [13];

e it must provide a finite-height lattice structure for use in dataflow analysis
with fixed-point iteration; and

e it must be fully implemented.

In this paper we describe the XML graph model, which meets all these crite-
ria. It has matured through substantial practical experience in building static
analyses of languages that manipulate XML. We also survey four different appli-
cations, showing the versatility of the model. XML graphs are fully implemented
and available in an open source software package.

In Section Bl XML graphs are formally defined. Section Bl describes the
relation to regular expression types and the schema languages RELAX NG and
XML Schema. In Section ll, we show how XML documents and schemas can be
expressed as XML graphs, how to validate an XML graph relative to a schema,
and how to evaluate XPath expressions on XML graphs. Our implementation
is briefly described in Section Bl The survey of applications is in Section [

2. XML Graphs

W3C’s DOM [ll] and XDM [114] both provide a view of XML documents as
unranked, labeled, finite trees. For example, elements correspond to labeled
nodes with children representing the element contents. XML graphs generalize
the notion of XML trees in a number of directions:

e Character data text, attributes values, and element/attribute names are
described by regular string languages rather than by single strings.

e In XML trees, the content of an element is always described as an ordered
sequence. XML graphs add special choice and interleave nodes describing
more general content models.

e XML graphs are, as the name suggests, in general graphs, not trees. In
particular, they can have cycles and multiple roots, and nodes can have
indegree larger than one.

e Some applications (see Section Bl involve a notion of gaps, which are
represented in XML graphs by a variant of choice nodes as explained
below.

A single XML graph generally represents a set of XML documents, namely
those that can be obtained by “unfolding” the XML graph, starting from a root
node, and then following all possible combinations of choices and interleavings
described by the choice and interleave nodes and all possible character data
text, attributes values, and element/attribute names described by the regular
string languages. This is all defined formally in the next section.



Figure 1: Example XML graph.

ExampLE The XML graph shown in Figure [l represents the set of XML docu-
ments consisting of one ul element that contains a sequence of zero or more 11
elements, each containing a numeral (described by the regular language [0—9]T):
We here use a choice node and a sequence node arranged in a cycle for expressing
the unbounded number of 1i elements.

The various applications of XML graphs (or summary graphs, as they were
called in earlier papers) have involved different variants, tailored for the different
needs. We here present a coherent definition of XML graphs that fits closely
with our newest and complete implementation.

An XML graph, x, is a quintuple:

x = (N, R, contents, strings, gaps)

The finite set N' = Ng UN 4 UN7UNsUNeUN7TUNg is a disjoint union of
nodes of various kinds: element nodes (N¢), attribute nodes (N4), text nodes
(NT), sequence nodes (Ns), choice nodes (N¢), interleave nodes (N7), and gap
nodes (Ng). The graph has a set of root nodes R C N.

The map contents describes the outgoing edges for the different kinds of
nodes:

contents : Ng UN4L — N
contents : Ng UNT — N*
contents : Ne U Ng — oN

The map strings : N UN 4 UNg — S, where S is a family of regular string
languages over the Unicode alphabet, assigns sets of strings to nodes of cer-
tain kinds for describing text (character data or attribute values) and names of
elements and attributes.

The notion of gaps is only relevant for some applications of XML graphs;
for others, Ng and the gaps component of x can simply be ignored. Intuitively,
a gap node is a named entity that represents a “missing” fragment in the XML



documents. In the XACT system for manipulating XML data (see Section B1),
this is used for modeling XML templates where gaps can occur in place of
elements or attribute values. The main operation involving gaps in XACT is the
plug operation, which inserts strings or XML data into the gaps, in which case
we say that the gaps have been closed. Another operation can remove gaps; for
an attribute gap this has the effect that the entire attribute is removed.

In an XML graph, the map gaps describes information about gaps:

gaps:g—>2N9><2Ng><1"><1"><T

where G is a finite set of gap names, T is a set of schema type names (equipped
with top and bottom), and T' = 2{OPEN.CLOSED} - Tot open, removed, egaps,
agaps, and type be defined by

gaps(g) = (open(g), removed(g), egaps(g), agaps(g), type(g))

Informally, open and removed specify which nodes may contain open or removed
gaps; egaps and agaps describe the presence of gaps in element contents and
attributes, respectively; and type records the types associated with typed gaps.
The value {OPEN} means that one or more gaps of the given name are present,
{CLOSED} means that none are present, and {OPEN, CLOSED} means that the
gaps are present for some unfoldings but absent for others.

To simplify validation (see Section Hl) we require that interleave nodes never
appear nested within element content model descriptions nor in attribute value
descriptions. This requirement can be stated more precisely as follows. The
surface of a node n is the set of nodes that are reachable from n, including n
itself, where contents of element nodes and attribute nodes are ignored. As an
example, the surface of ¢ in the XML graph in Figure[is {c,s1,s2,e2}. A node
is a content node if its surface contains at least one element node or text node.
In the example, which does not contain attribute nodes, every node except s;
is a content node. We now require that (1) every node that has a child whose
surface contains an interleave content node must be an element or sequence
node, and (2) a sequence node whose surface contains an interleave content
node must have only one content node child. This ensures that interleave nodes
can only occur as roots of element content models. All XML graph constructions
described in the following sections satisfy this requirement, and all operations
on XML graphs preserve the property as an invariant.

ExampLE The XML graph fragment shown in Figure ] describes the same XML
data as the following XML Schema definition:

<element name="E">

<complexType>
<all>
<element name="F" type="..." />
<element name="G" type="..." />
</all>



<attribute name="A" type="..." />
</complexType>
</element>

Figure 2: XML graph fragment for an XML Schema definition.

The complex type corresponds to the sequence node, and the all group is
described by the interleave node. One can easily verify that the requirement
for interleave nodes is satisfied. In the following, we formally define how XML
graphs describe XML data.

The language, L(x), of an XML graph x is a set of finite strings defined by
Lx)={z|IneR: n=z;t; a}

where the unfolding relation, =, is defined inductively according to Figure
Intuitively, the relation n = x ; t ; a holds when unfolding from node n in
the XML graph may produce XML content z, text ¢, and attributes a. The
operator || produces all possible interleavings (i.e. the shuffle) of the given XML
contents; the operator @ merges sets of attributes in all possible ways where,
if two attributes have the same name then one of them overrides the other.
Because of the restrictions on interleave nodes there is no need for a similar
operation on the text component, so the [interleave] rule simply yields the empty
text €. Note that not all constituents of gaps are used in the definition of the
unfolding relation: in XacT (Section B, egaps, agaps, and type are used in
the dataflow transfer functions.

We implicitly assume that entity references have been expanded, treat
CDATA sections as plain character data, and ignore attribute order, process-
ing instructions, and comments, since these features are irrelevant for valida-
tion. XML namespaces are handled by expanding qualified names to the form
{URI}localname.

ExampPLE The XML graph from Figure [l can be described formally as follows.

N: {e17e27sl7527c7t}
R: {el}



n € Ng s € strings(n) contents(n) =>x; t; a

[element]
n=<sa>x</s>;e; D

n € Ny s € strings(n)

[text]
n=s;s; 0

n € Ny s€strings(n) contents(n) =z ;t;a t#Q

attribute
n=e€; €e; s="t" [ ]

n€ NeUNg m € contents(n) m=z;t;a

[choice / gap]
n=x;t;a

n € Ns  contents(n) =my - -my

m; = T;; ti; a; ac€ar® - Pag [sequence]

n==xy - Tk; t1---tx; a

n € Nz contents(n) =mqy---my m; = x;; t;; a;

rEwy || - | a aca® - Da [interleave]

n=2x;¢€;a

n € Ng n € open(g)

[open content gap]

n=<[gl>; ©; @

n € Ny s € strings(n) contents(n) € open(g)

[open attribute gap]
n=e¢; e; s=[g]

n € Ng n € removed(g)
n=e; 0; D

[removed content gap]

n € Ny  contents(n) € removed(g)

[removed attribute]
n=e¢c¢;e; D

Figure 3: Inference rules for unfolding of XML graphs.

contents = [e; ¢, ea —t, s1 €, So — eac, ¢+ {s1,52}]
strings = [e; — {ul}, es — {1i}, t+— L([0 —9]T)]
gaps = ]

Its language contains, for example, these three XML documents:

<ul></ul>
<ul><1i>42</1i></ul>
<ul><1i>42</1i><1i>87</1i></ul>

We call two XML graphs compatible if they agree on the values of N, G,
S, T, and contents(n) for n € Ng U N4 U Ns U Nz. In other words, two



oo

Figure 4: Merging compatible XML graphs.

compatible graphs can differ only on R, contents(n) for n € Ng U Ng (which
we call the variable edges), strings, and gaps. The ordering, denoted C, on
compatible XML graphs is defined pointwise on the components. In this way,
each family of compatible XML graphs is a lattice structure, where LI and I are
respectively pointwise union and intersection [42]. These operations preserve
the interleave property since this structure is fixed for compatible graphs. If we
restrict strings to a finite codomain, then the lattice has finite height. This is
crucial when using XML graphs in dataflow analysis.

ExampLE Figure Bl shows the result of merging two compatible XML graphs
using the least upper bound, denoted LJ, induced by the lattice ordering. In
this case, the operation coincides with language union. Generally, least upper
bound is an upper approximation of language union:

L(x1) U L(x2) E L(x1Ux2)

XML graphs are also closed under language union: simply rename nodes to
avoid conflicts and then join the root sets (gap names should not be renamed
since they may occur in the unfolding of the XML graph). However, XML graphs
are not closed under language intersection since they can describe context-free
content sequences (as explained in Section B2). Note that the full collection of
XML graphs ordered by language inclusion does not form a finite-height lattice.

ExamPLE To demonstrate the use of gap nodes, the following XACT template
can be described by the XML graph shown in Figure B

<html xmlns="http://www.w3.org/1999/xhtml">
<head><title><[TITLE]></title></head>
<body bgcolor=[COLOR]>
<h1><[TITLE]></h1>



< [BODY]>
</body>
</html>

Here, H abbreviates http://www.w3.0rg/1999/xhtml. The gaps information
is: gaps(TITLE) = ({g1,95},@,{OPEN}, @, T). Notice that in this XML graph,
some apparently superfluous choice nodes have been inserted. The XACT pro-
gram analysis uses these when modeling the effect of, for example, operations
that remove the contents of an element, while maintaining XML graph com-
patibility. We return to XACT in Section Bl where we show examples of how
operations on templates are modeled on XML graphs.
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Figure 5: XML graph for an XACT template.

XML graphs are not minimal or unique representations, as in [34]: for a
given XML graph, several (root) nodes may define identical sets of XML trees.
For our applications, equality testing is not a central operation; instead, our
representation is tuned to enable the definition of the finite-height lattices of
compatible XML graphs on which least upper bounds may efficiently be com-
puted.

We later explain the precise meaning of the fundamental operations on XML
graphs: the plug operation in Section Bl validation against a schema in Sec-
tion 2, and XPath evaluation in Section



<card>
<name>John Doe</name>
<email>doe@widget.inc</email>
<logo uri="widget.gif"/>
</card>

widget.gif
doe@widget.inc
John Doe

Figure 6: An XML document represented as an XML graph.

3. Relations to Other Formalisms

Clearly, the notion of XML graphs is closely connected to, in particular,
RELAX NG [14], regular expression types |2(] and regular tree grammars [41].
Intuitively, an XML graph is essentially a graphical representation of those
formalisms.

The main reason for using XML graphs instead of these alternatives is that
(compatible) XML graphs naturally form a lattice structure, as explained above.
Additionally, to be able to express schemas written in XML Schema, we cannot
ignore text, attributes, or interleaved content models. Finally, maintaining the
gap information is important in, for example, the XACT program analyzer (see
Section [B1)). In the following, we provide further details about the technical
differences and similarities with some of these other formalisms.

3.1. XML Documents

Every XML document can be represented as an XML graph with a single-
ton language, as indicated by Figure As mentioned in Section Bl, we are
in line with other formalisms and ignore processing instructions, comments,
CDATA sections, and DOCTYPE declarations as they are rarely relevant for
static analysis of dynamically generated XML data. With this simplification,
an XML document can be translated into an XML graph in a simple top-down
manner: each XML character data node becomes an XML graph text node with
a regular string language containing just the singleton string for the character
contents, and each XML element node becomes an XML graph element node
with a sequence node that leads to the translations of its attribute, element,
or character data node contents. Thus, choice/gap/interleave nodes are never
required for representing individual XML documents.



Figure 7: Non-regular contents.

3.2. Regular Ezpression Types

XML graphs turn out to be closely connected to the regular expression types
of XDuce [19, 2(]: A generalized version of regular expression types has the same
expressive power as a restricted version of XML graphs [d]. Specifically, XML
graphs allow for regular language restrictions on character data appearing in
element contents, which is also not supported by XDuce. Also, interleave nodes
do not have a counterpart in XDuce. Finally, XDuce imposes a right-linearity
restriction on types, unlike XML graphs. In fact, the current implementation
of XDuce forbids top-level type recursion in general.

Using XML graphs, we could construct the XML graph in Figure[dto repre-
sent a set of XML trees with context-free but non-regular contents. Such XML
graphs can occur in the analysis of XACT programs described in Section [E1I).
With a linearity restriction, it would be necessary to use a conservative approx-
imation of the possible content, such as X*Y*, but that could lead to spurious
validation errors when the XML graph is validated against a schema.

Note that, because of the close relation between regular expression types and
regular tree grammars, this discussion also applies to regular tree grammars [13,
7).

Regular expression types, with the right-linearity restriction removed, are
essentially least solutions to recursive equations using the operators () (the
empty value), 1[T] (singleton element), S|T (union), and S, T (sequencing). For
example, the derived operator T* is defined by the equation:

X=T,X | O

The XDuce implementation further allows attributes to be modeled as special
floating elements of the form @a.

A regular expression type defines a set of XML values corresponding to all
finite unfoldings. It is now a simple matter to build inductively an XML graph
that defines the same set of XML values. The five operators are modeled by
XML graphs as follows: () as an empty sequence node, 1[T] as an element
node, S|T as a choice node, S,T as a sequence node, and @a as an attribute
node. In each case, a variable is modeled by an edge to the root node of the
XML graph corresponding to its right-hand side.

ExaMPLE The following regular expression type is represented as shown in
Figure B

10



Figure 8: XML graph for a regular expression type.

type Fld = Rcd*
type Rcd = name[String], folder[F1d]

| name[String], url[String], Sts
type Sts = good[] | broken[]

The inverse translation is equally straightforward (ignoring gap nodes, inter-
leave nodes, and regular string languages). Initially, we assign type variables to
all element nodes, sequence nodes, and choice nodes. Then we define equations
based on the outgoing edges, as shown in Figure @l Finally, for the root nodes
Ry, ..., R, we define the type equation R = Ry | ... | R,, and the type R is
then the final result of the translation. Note that the resulting equations may
violate the top-level recursion restriction of XDuce.

Any analysis that produces XML graphs is thus also able to infer (general-
ized) regular expression types. In this way, the work on XACT (see Section [E1I)
can be viewed as an alternative to XDuce, supporting flow-sensitive type infer-
ence.

3.8. RELAX NG and XML Schema

The RELAX NG schema language [14] is based on regular tree grammars.
A schema in this language consists of recursively defined patterns of various
kinds, including the following: element matches one element with a given name

11



X = String
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Figure 9: From XML graphs to generalized regular expression types.

and with contents and attributes described by a sub-pattern; attribute simi-
larly matches an attribute; text matches any character data or attribute value;
group, optional, zeroOrMore, oneOrMore, and choice correspond to concate-
nation, zero or one occurrence, zero or more OCCUrrences, one or MmMore Occur-
rences, and union, respectively; empty matches the empty sequence of nodes;
and notAllowed corresponds to the empty language. In addition, the pattern
interleave matches all possible mergings of the sequences that match its sub-
patterns.

Note that attributes are described in the same expressions as the content
models. Still, attributes are considered unordered, as always in XML, and syn-
tactic restrictions prevent an attribute name from occurring more than once in
any element. Mixing attributes and contents in this way is useful for describing
attribute—element constraints.

To ensure regularity (as in regular expression types), there is an important
restriction on recursive pattern definitions: recursion is only allowed if passing
through an element pattern.

Element and attribute names can be described with name classes, which can
consist of lists of possible names and wildcards that match all names, potentially

12



restricted to a certain namespace or excluding specific names.

To describe datatypes more precisely than with the text pattern, RELAX
NG relies on an external language, usually the datatype part of XML Schema.
Using the data pattern, such datatypes can be referred to, and datatype facets
can be constrained by a parameter mechanism.

Although RELAX NG is an elegant and powerful schema language, W3C’s
XML Schema is a more widely used alternative. We choose to incorporate XML
Schema via a subset of RELAX NG, as explained in detail below.

Restricted RELAX NG

We connect XML graphs and XML Schema using RELAX NG as a conve-
nient intermediate language that avoids the many complicated technical details
of XML Schema. However, we only use a subset of RELAX NG that is character-
ized as follows. This language, called Restricted RELAX NG, was first presented
n [24]. It has been designed to achieve a compromise in expressiveness: (1) Its
expressiveness is sufficient for making an exact and simple embedding of XML
Schema, as explained below; (2) every Restricted RELAX NG schema can be
converted into an XML graph, as also explained below; and (3) it makes XML
graph validation (Section ELZ) more tractable than using XML Schema directly
or supporting full RELAX NG.

First, we define some terminologyﬂ We say that the surface of a pattern p
is the set of sub-patterns of p, including p itself, where contents of element and
attribute patterns are ignored. A pattern is a content pattern if its surface
contains one or more element, data, or text patterns (or list or value pat-
terns, which we otherwise ignore here for simplicity). A pattern is an attribute
list pattern if its surface contains one or more attribute patterns.

A Restricted RELAX NG schema satisfies the following syntactic require-
ments:

[single-type grammar] For every element pattern p, any two element pat-
terns that are in the surface of the child of p and have non-disjoint name
classes must have the same (identical) content. (This requirement essen-
tially limits the notation to single-type grammars [41], except that we
retain attributes, datatypes, and name classes, and interleave constructs.)

[attribute context insensitivity] No attribute list pattern can be a choice
pattern. Also, every optional attribute list pattern must have an attribute
pattern as child. (This requirement prohibits context sensitive attribute
patterns.)

[interleaved content] Every pattern that has a child whose surface contains
an interleave content pattern must be a group or element pattern.

INotice the similarity with the terminology used in the definition of XML graphs in Sec-
tion

13



Also, a group pattern whose surface contains an interleave content pat-
tern must have only one content pattern child. (This requirement makes
it easier to check inclusion of interleave patterns, as explained in Sec-

tion B2

We here consider ref patterns as abbreviations of the patterns being referred to.
For every element and optional pattern that has more than one child pattern,
we treat the children as implicitly enclosed by a group pattern. Also, all mixed
patterns are implicitly desugared to interleave patterns in the usual way.

From XML Schema to Restricted RELAX NG

Most XML Schema constructs map directly to RELAX NG, and we will not
here explain the details of the translation. However, a few points are worth
mentioning:

1. The all construct maps to the interleave pattern. Because of the limi-
tations on the use of all in XML Schema, this does not violate the [inter-
leaved content| requirement.

2. We can ignore default declarations since we only care about validation and
not of normalization of the input—except that we treat an attribute or
content model as optionally absent if a default is declared.

3. Wildcards can be converted into name classes. If processContents of an
element wildcard is set to skip, then we make a recursive pattern that
matches any XML tree.

4. The most tricky parts of the translation involve type derivations and sub-
stitution groups. Assume that an element e has type ¢ and there exists a
type t' that is derived by extension from ¢. In this case, an occurrence of
e must match either ¢ or ¢/, and in the latter case e must have a special
attribute xsi:type with the value ¢’ (in the former case, the attribute is
permitted but not required). We handle this situation by encoding the
xsi:type information in the element name. More precisely, we create a
new element pattern whose name is the name of e followed by the string
%t" and whose content corresponds to the definition of /. Each reference
to e is then replaced by a choice between e and the variants with extended
types. The xsi:nil feature is handled similarly. Now assume that another
element f has type ¢ and is declared as in the substitution group of e. This
means that f elements are permitted in place of e elements. In Restricted
RELAX NG, this is expressed simply by replacing all references to e ele-
ments by choices of e and f elements. Again, because of limitations on the
all construct and the substitution group mechanism in XML Schema, this
cannot lead to violations of the [single-type grammar| requirement, nor of
the general RELAX NG requirement that interleave branches must be
disjoint.

14



ExaMPLE Consider the following schema written in XML Schema:

<schema xmlns="http://www.w3.o0rg/2001/XMLSchema"
xmlns:b="http://businesscard.org"
targetNamespace="http://businesscard.org"
elementFormDefault="qualified">

<element name="cardlist">
<complexType>
<sequence>
<element ref="b:card"
minOccurs="0" maxOccurs="unbounded"/>
</sequence>
</complexType>
</element>

<element name="card" type="b:card_type"/>

<complexType name="card_type">
<sequence>
<element name="name" type="string"/>
<element name="email" type="string"
maxOccurs="unbounded" />
<element name="phone" type="string"
minOccurs="0"/>
</sequence>
</complexType>

</schema>

(This schema is also used in the XACT example in Section EJl) Assuming
cardlist as root element name, this can be translated into the following Re-
stricted RELAX NG schema, here using the compact RELAX NG syntax:

default namespace = "http://businesscard.org"

start = element cardlist { card* }

card = element card { card_type }

card_type = element name { xsd:string },
element email { xsd:string }+,
element phone { xsd:string }7

A schema type is the name of an element or a (simple or complex) type that is
declared in a schema written in XML Schema. The language, L(t), of a schema
type (or a RELAX NG pattern) ¢ is defined as the set of XML documents or
document fragments that are valid relative to the schema type (or pattern).

By the translation to Restricted RELAX NG, a schema type ¢ corresponds
to a pattern definition p;. The translation from XML Schema to Restricted
RELAX NG is exact in the sense that L£(t) = L(p:). Moreover, the size of the
output schema is proportional to the size of the input schema.

15



From Restricted RELAX NG to XML Graphs

Given a Restricted RELAX NG pattern p, an equivalent XML graph x,,
always with precisely one root node, can be constructed quite easily by a recur-
sive traversal. Again, the translation is exact, that is, L(x,) = L(p), and the
size of the resulting XML graph is proportional to the size of the input schema.

First, we observe that every possible name class n defines a regular string
language L£(n). Namespaces are handled by expanding qualified names accord-
ing to the applicable namespace declarations, as discussed in Section Bl Also,
datatypes defined by data, value, choice, and list define regular string lan-
guages if using the XML Schema datatype libraryE

Most pattern kinds have direct counterparts as nodes in XML graphs. As-
sume, for example, that p is an element pattern with name class n and contains
a pattern c:

p=-element n { ¢ }

In this case, the sub-pattern c is recursively translated into an XML graph with
a root n.. We then add a new element node n,, which becomes the new root,
and we set contents(n,) = n. and strings(n,) = L(n).

A datatype pattern can be transformed into a text node n where strings(n)
is set to the corresponding regular string language. The notAllowed pattern
can be modeled as a choice node with no outgoing edges, and similarly, an
empty pattern becomes a sequence node with no outgoing edges. A zeroOrMore
pattern can be encoded by a choice node and a sequence node arranged in a
cycle.

For interleave patterns, which are translated into interleave nodes, the
[interleaved content] requirement in Restricted RELAX NG ensures that the
requirement on interleave nodes in XML graphs, as defined in Section B is
obeyed.

A ref pattern is handled simply by translating the named pattern being
referred to. As a consequence, recursion in pattern definitions leads to cycles in
the XML graph.

ExamPLE Translating the following pattern (here written using the compact
RELAX NG syntax) results in the XML graph shown in Figure [Ik

element ul { element 1li { xsd:integer { minInclusive="0" } }* }

4. Operations on XML Graphs

The various applications of XML graphs involve a number of interesting
operations, several of which are of general interest. Others are more application

2In practice, we here ignore a few combinations of constraining facets and datatypes, such
as the value facet together with the float datatype, which lead to unwieldy regular languages.
These are uncommon cases that can be accommodated for without losing precision by slightly
augmenting the definition of string edges.

16



specific, such as the operations in the XAcCT analyzer (Section El) that model
a range of basic operations on XML templates as transfer functions on XML
graphs, or the operations in the XSLT analyzer (Section B4 for modeling XSLT
instructions.

An example of an XML graph corresponding to an XML template, as used
in XACT, is seen in Figure XML documents are merely special cases of XML
templates without gaps and can thus similarly be represented as XML graphs,
as shown in Section Bl Additionally, as shown in Section B33, every schema
written in XML Schema or Restricted RELAX NG can be converted into an
equivalent XML graph.

A central operation when XML graphs are used in dataflow analysis is com-
puting the least upper bound of two compatible XML graphs, which is trivial
by the definition in Section Bl As mentioned, XML graphs are also closed un-
der language union but we have never encountered a need for performing this
operation in practice.

4.1. Plugging

The plugging of gaps in XML templates is a central operation that must
be modeled by a similar abstract operation on XML graphs. Figure [ shows
the case where a gap g in an XML template X is being plugged with an XML
template Y (in XACT syntax this would be denoted by X .plug(g,Y)). Note
that X and Y are represented as possibly overlapping nodes in the same XML
graph, but with different sets of root nodes, variable edges, string maps, and
gap maps. The resulting XML graph is obtained by using the roots of X, the
union of the variable edges from X and Y, the union of the strings maps from
X and Y, adding edges from the possibly open gap nodes named g in X to all
the root nodes of Y, updating the status of the g gaps in X to CLOSED, and
finally using the least upper bound of this gaps map with that from Y.

{H}html {H}html

{H}title

\ TITLE

{H}title

\ TITLE ;

Figure 10: Example of abstract plug operation.
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After any construction of a new XML graph, we perform a sharpening oper-
ation. For the parts of the XML graph that are unreachable from the root nodes
we lower the information to L, that is, remove variable edges, reduce string sets
to the empty language, and set the gap maps to @. This will clearly maintain a
sound description but may improve precision through later abstract operations.

4.2. Validation

All our applications of XML graphs involve validation, that is, checking
whether or not every XML document represented by a given XML graph x is
valid relative to a given Restricted RELAX NG pattern p:

L(x) € L(p)

Our algorithm, which was first described in [24], exploits the restrictions in
Restricted RELAX NG. It works much like an ordinary XML Schema processor
by recursively traversing y, starting at the roots, and for each element, attribute,
or text node checking the constraints specified by the schema. This is done
by encoding the surfaces of nodes and the surfaces of patterns as context-free
grammars and finite string automata over a common vocabulary and checking
inclusion of their languages. This is explained in more detail in the following.

Given a pair of XML graph node n and a Restricted RELAX NG pattern p,
we wish to determine whether n = z ; ¢ ; a implies x € L(p) for every XML
content . We begin by considering the case where n is not an interleave node
and p is not an interleave pattern.

1. First, a context-free grammar is constructed from the surface of n, consider-
ing element nodes and text nodes as terminals, choice/sequence/interleave
nodes as nonterminals, and ignoring attribute nodes. Each text node termi-
nal ¢ is then replaced by a regular grammar equivalent to strings(c). Thus,
we have a context-free language L, over the alphabet of element nodes
and Unicode characters, describing the possible unfoldings of n (ignoring
attributes). Similarly, p defines a regular string language L, over element
patterns and Unicode characters.

2. To obtain a common vocabulary, we now replace each element node n’ in
L, by (strings(n’)) (where ( and ) are some otherwise unused symbols),
and similarly for the element patterns in L.

3. Then we check that L, is included in L, with standard techniques for
context-free and regular string languages [43]. If the check fails, a suitable
validity error message is generated. For each pair (n',p’) of an element
node in L,, and an element pattern in L, where strings(n') and the name
class of p’ are non-disjoint, two checks are then performed:

(a) We check that the attributes of n’ match those of p’: For each attribute
node a in the surface if n’, each name x € strings(a), and each value
y € strings(a), a corresponding attribute pattern must occur in the
surface of p’—that is, one where z is in the language of its name class
and y is in the language of its sub-pattern; also, attribute patterns
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occurring in p’ that are not enclosed by optional patterns must cor-
respond to one of the non-optional attribute nodes. Again, a suitable
validity error message is generated if the check fails.

(b) We check recursively that contents(n') is valid relative to the sub-
pattern of p’. Cycles in the XML graph and recursive definitions in
the schema are handled coinductively using memoization.

(Note that correctness of this algorithm depends on the [single-type grammar]
and [attribute context insensitivity] requirements in Restricted RELAX NG.)

For interleave nodes and interleave patterns, we exploit the restrictions
on these constructs. Additionally, in RELAX NG, the sub-patterns of an
interleave pattern must be disjoint (that is, no element name or text pattern
occurs in more than one sub-pattern). Thus, if p is an interleave pattern,
we simply test each sub-pattern in turn, projecting L,, onto the element names
occurring in the sub-pattern, and then check that all element names occurring
in L,, also occur in one of the sub-patterns.

This algorithm validates the XML graph x relative to the schema pattern p
in the sense that no error messages are generated if and only if L(x) C L(p).
The theoretical time complexity is determined by the size of the memoization
table and the time it takes to fill one entry of the table. The table size is the
number of nodes in x times the number of sub-patterns in p. The work required
for each table entry is worst case cubic time, but it depends only on L, and
L,, which usually involve only small parts of the XML graph and the schema,
respectively.

Compared to validation algorithms based on more expressive models [20, 23],
this approach exploits, in particular, the single-type property of the schema to
obtain a simpler algorithm and to provide more informative error messages.

As an interesting side-effect of our approach, we get an inclusion checker for
Restricted RELAX NG and hence also for XML Schema and DTD: Given two
schema types, t; and t3, convert ¢; to an XML graph x;, using the algorithm
described in Section and then apply the validation algorithm above on X,
and ty. Validation succeeds without reporting errors if and only if £(t1) C L(t2).

ExAMPLE Assume that we wish to validate the XML graph shown in Figure [
relative to the pattern p defined by

p = element ul { element 1i { xsd:decimal }* }7
We first produce the context-free grammar for the root node ey:
N, — (ul)

The regular language for p is ((ul))?, and clearly inclusion holds: L., C L,.
We then proceed by constructing the context-free grammar for the content ¢ of
€er:

NC_>N81 |N82
Ns, — €
Ny, — (1i) | N,
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The regular language for the contents of the corresponding ul element pattern is
({(11))*, and again inclusion holds. Continuing recursively, we find out that the
language of node ¢ is included in the language of the sub-pattern xsd:decimal,
so we conclude that all documents represented by the XML graph are in fact
valid relative to the schema.

4.3. XPath Fvaluation

XPath is often used for navigating in XML trees. The ordinary semantics
of XPath expressions can be generalized from working on XML trees to XML
graphs. Given an XPath location path p and an XML graph y, we have an
algorithm that can approximate, for each node n € Ng UN 4UNT in x, whether
or not the corresponding element, attribute, or text is selected by p in L(x),
starting from a root node.

Each node being selected in an XML graph may correspond to many actual
nodes in the possible unfoldings and the results of XPath predicates may depend
on the actual values in unfoldings. Our algorithm supplies detailed answers
that capture the status of a given node with some precision. Each node n €
Ng UN4 U N7 is mapped to one of the following values:

ALL: in every unfolding, every tree node corresponding to n is selected by p;

SOME: in every unfolding, at least one tree node corresponding to n is selected
by p;

DEFINITE: the conditions for ALL and SOME are both satisfied;
NONE: in every unfolding, no tree node corresponding to n is selected by p;

NEVER: the conditions for ALL and NONE are both satisfied, that is, in every
unfolding, no tree node corresponds to n; and

DONTKNOW: none of the above can be determined.

These six values form a partial order:

DONTKNOW
NONE ALL SOME
N NS
NEVER DEFINITE

and the algorithm seeks to provide answers as low as possible, which corresponds
to increased precision.

Only a subset of the full XPath language is handled. We currently restrict
ourselves to the downwards child, descendant-or-self, and attribute axes.
Also, only the predicates that are nested location paths are considered in the
analysis (other expressions correspond to a nondeterministic choice). If required,
the full collection of XPath axes could be handled by a conservative rewriting
into downwards axes as explained in [34)].
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The algorithm evaluates an XPath expression one location step at a time,
first modeling the axis, then the node test, and finally the predicate, as explained
in detail in the article [26].

ExaMPLE The result of evaluating the XPath expression //* on the XML graph
from Figure [l is as follows:

The ul node is part of every unfolding and is always selected by the expression.
The 1i node may be absent in some unfoldings (actually just one) but when
present it is always selected. The text node is present in some unfoldings but is
never selected.

This abstract evaluation of XPath expressions is particularly useful when
analyzing XACT programs. However, it can also be used for extending the XML
graph validator to check element prohibitions (for example, that form elements
cannot be nested in XHTML).

5. Implementation

The Java library dk.brics.schematools [27], consisting of 16,000 lines of
code, provides the following functionality:

e Representation of XML graphs, including various convenience methods for
building, traversing, and storing XML graphs.

e Representation of schemas written in Restricted RELAX NG, including
conversion from DTD and XML Schema and into XML graphs.

e Validation of XML graphs relative to Restricted RELAX NG schemas,
with useful messages when invalidity is detected.

e Evaluation of XPath location path expressions on XML graphs.

e A command-line interface for performing validation and conversion for the
different formalisms, as a supplement to the API.
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Independently of XML graphs, the schema conversion ability fills a niche: Sun’s
RELAX NG Converter [22] supports conversion from XML Schema to RELAX
NG but has several deficiencies; Trang [L0] supports approximating conversion
in the other direction only (in addition to supporting DTD). By combining
schema conversion with validation, dk.brics.schematools can check language
inclusion between schemas written in XML Schema, as explained in Section

6. Four Applications of XML Graphs

XML graphs have proved to be a useful tool in several applications of which
we survey four examples selected from the full range [3, I8, 126, 24, 6, 38§, 13,
25, 31]. They all use different aspects of the package and the languages they
consider span a wide spectrum. Despite their differences, these fully automated
applications follow a common pattern. First, a flow analysis is performed, which
of course depends closely on the particular source language. Second, XML
graphs are constructed for the interesting program points; again, the techniques
for doing this depend on the application domain. Third, the resulting XML
graphs are analyzed, generally using the XML graph validation tool. The XML
graph library is a key component in all these applications.

6.1. XACT

The XACT language extends Java with domain-specific support for manipu-
lating XML documents 26, 24]. Tt is available in an open source implementation
from http://www.brics.dk/Xact/.

It is based of the notion of XML templates, which contain named gaps. Tem-
plates may by plugged together and may be decomposed in various manners
guided by XPath expressions. The templates are implemented as an immutable
datatype in a Java framework. A preprocessor adds a layer of domain-specific
syntax. A comparison between XACT and other languages for XML manipula-
tion is presented in [39].

The following is an example of an XACT program that generates an XHTML
presentation of a phone list extracted from an XML collection of business cards,
in a way that exhibits the various language features:

import dk.brics.xact.*;

public class PhoneList {

@DefaultXPathNamespace
public static final String b =
"http://businesscard.org";

@DefaultConstantNamespace
public static final String h =
"http://wuw.w3.0rg/1999/xhtml";

@Namespace
public static final String s =
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"http://wuww.w3.0rg/2001/XMLSchema" ;
public @Type("h:html[s:string TITLE, h:Flow MAIN]") XML wrapper;

public @Type("h:html") XML
transform(@Type ("b:cardlist") XML cardlist) {
return wrapper.plug("TITLE", "My Phone List")
.plug("MAIN", makeList(cardlist));
}

private XML makeList (XML x) {
XML r = [[<ul><[CARDS]></ul>]];
for (XML c¢ : x.select("card[phone]"))
r = r.plug("CARDS",
[[<1i>
<b><{ c.select("name/text()") }></b>,
phone: <{c.select("phone/text()") }>
</1i>
<[CARDS1>11);
return r.close();

}

private void setDefaultWrapper(String color) {
wrapper = [[<html>

<head>
<title><[s:string TITLE]></title>

</head>

<body bgcolor=[s:string COLOR] >
<h1><[s:string TITLE]></h1>
<[h:Flow MAIN]>

</body></html1>]].plug("COLOR", color);

public static void main(String[] args)
throws java.io.IOException {

PhonelList pp = new PhoneList();
pp.setDefaultWrapper ("white");
XML cardlist = XML.get("cards.xml", "b:cardlist");
XML xhtml = pp.transform(cardlist);
System.out.println(xhtml);

}

}

The XML variable wrapper is by the method setDefaultWrapper initialized
to contain the skeleton for an XHTML document with white background. The
program then reads a collection of business cards from the file cards.xml that is
declared to conform to the type cardlist from the XML schema presented in
Section This collection is transformed by the transform method, which
invokes the makeList method and plugs the result into the wrapper. The
makeList method uses an XPath expression to iterate through those card el-
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ements that contain a phone element as a child. For each of those cards, the
name and phone number are selected and plugged into an 1i element, which
is then accumulated into an XML variable that initially contains an empty ul
element.

The static analysis challenge for XACT is to decide if the possible values of
XML expressions are guaranteed to be valid according to the given (optional)
XML Schema type annotations. In the above example, this includes a guarantee
that the output will always be valid XHTML if the input is a valid collection of
business cards.

XML Graph Construction

Since XACT is an extension of full Java, the analysis must first construct
an ordinary flow graph for the Java program. This is done using the Soot
framework [4€]. Subsequently, we perform a standard dataflow analysis [21]
but with the highly specialized lattice structure of XML graphs described in
Section Bl The transfer functions conservatively model the abstract semantics
of the template operations. While these are certainly intricate in their details,
they are actually conceptually simple. The gaps maps of XML graphs are here
used to keep track of whether gaps in the combined templates are necessarily
or possibly left open by plug operations.

To handle input and cast operations, we need to model XML Schema types
directly as XML graphs, using the embedding described in Section E

ExampLE Consider the following fragment of an XACT program:
X [[<foo><[G]></fo0>]];

y = x.plug("G", [[<bar><[H]></bar><baz><[G]></baz>]];
if (z) y = y.plug("G", [[<fo0>123</fo0>]1]);

When this program is analyzed, every XML value is described by an XML
graph that contains the nodes corresponding to all the template constant that
are used. Thus, all XML graphs used in the analysis of a given program are
compatible. After the first line, the value of the variable x is described by the
following XML graph:

foo seq foo
1 2
.G | [bar ] [baz ] 123
"OPEN ‘
W (e
‘\77/ ‘\77/
OPEN OPEN

Every occurrence of an XML node in templates is represented as an individual
node in the XML graph. This means that the analysis has a notion of poly-
variance at the level of term constructors. The relevant gap information is here
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shown as extra labels on the nodes; for example, n € open(H) where n is the
node with the H gap, and implicitly egaps(G) = {OPEN} because of the left-
most G gap node. Irrelevant parts of an XML graph are simply unreachable
from the roots.

After the second line of the program, the value of the variable y is described
by the following compatible XML graph (using the definitions from Section EZ):

foo

123

The third line describes the variable y as a merge of two XML graphs: one
where z is true and the plug operation is performed, and one where it is not
performed. The resulting XML graph looks as follows:

foo

123

Note that since the leftmost G gap under foo is closed, it is not involved in the
potential plug operation. The fact that the plug operation may not have been
performed in the merged result is modeled by the other G gap being both open
and closed.

XML Graph Analysis

After the dataflow analysis, each XML expression has associated an XML
graph that describes a superset of the possible XML values that may be the
results of runtime evaluation. The XACT tool may use this information to check
a number of properties. Validity of annotations reduces to the static validity
check described in Section Bl Also, for plug operations it can be checked that
an open gap with the given name is present in the XML template. Finally, a
warning is issued if an XPath expression will always result in an empty node
sequence.
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6.2. Java Servlets

The XACT project introduces a novel extension of Java for manipulation
of XML templates. In contrast, the Java Servlets framework works at a lower
level where XML documents are produced one character at a time on an output
stream. (JSP templates are merely converted into servlets.) This poses a sub-
stantially harder problem for static validation since now also well-formedness
of the generated XML documents must be determined by the analysis. Also,
the control flow of the application is more implicit since individual servlets may
transfer control based on string valued URLs. The following example program

shows some of the many challenges that may arise:

public class Entry extends javax.servlet.http.HttpServlet {
protected void doGet (HttpServletRequest request,

}

}

HttpServletResponse response)
throws ServletException, IOException {
HttpSession session = request.getSession();
String url =
response.encodeURL(request.getContextPath()+"/show") ;
session.setAttribute("timestamp", new Date());
response.setContentType("application/xhtml+xml") ;
PrintWriter out = response.getWriter();
Wrapper .printHeader (out, "Enter name", session);
out.print("<form action=\""+url+"\" method=\"POST\">"+
"<input type=\"text\" name=\"NAME\"/>"+
"<input type=\"submit\" value=\"lookup\"/>"+
"</form>");
Wrapper .printFooter (out) ;

public class Show extends javax.servlet.http.HttpServlet {
protected void doPost(HttpServletRequest request,

}

}

HttpServletResponse response)

throws ServletException, IOException {
Directory directory =

new Directory("ldap://ldap.widgets.org");
String name = misc.encodeXML(request.getParameter ("NAME")) ;
response.setContentType("application/xhtml+xml") ;
PrintWriter out = response.getWriter();
Wrapper .printHeader (out, name, request.getSession());
out.print ("<b>Phone:</b> "+directory.phone(name));
Wrapper .printFooter (out) ;

public class Wrapper {
static void printHeader (PrintWriter pw, String title,

HttpSession session) {
pw.print("<html xmlns=\"http://www.w3.o0rg/1999/xhtml\">"+
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"<head><title>"+title+"</title></head><body>"+
"<hr size=\"1\"/>"+
"<div align=\"right\"><small>"+
"Session initiated ["+
session.getAttribute("timestamp")+"]"+
"</small></div><hr size=\"1\"/>"+
"<h3>"+title+"</h3>");

}

static void printFooter (PrintWriter pw) {
pw.print ("<hr size=\"1\"/></body></html>");
}
}

The Wrapper class is responsible for printing headers and footers that define a
common skeleton of all XHTML documents. The program contains two servlets.
The Entry servlet presents the user with an XHTML form, collects the name
of a person, which is then submitted to the second servlet. The Show servlet
reads the name as a parameter, retrieves phone information from an external
databases, and presents the result.

An obvious question is whether the doGet and doPost methods produce
valid XHTML as output? In fact, we would like to verify many other properties
of the above application, but they all hinge on first understanding the generated
XHTML documents. In [25], a program analysis that attacks these problems
is presented, based on XML graphs. The paper [31] discusses the problem of
analyzing SAX stream filters, which, to some extent, can be reduced to analyzing
servlets.

XML Graph Construction

Since the servlets work on strings values, we first employ an existing string
analysis that computes regular languages for the possible values of all string
expressions [d]. This analysis takes into account the basic control flow of the
Java programs.

Well-formedness of the generated XML data is then performed by combining
the theories of balanced grammars by Knuth [2§] and grammar approximations
by Mohri and Nederhof [36]. Finally, the transformed grammar is rather directly
expressed as an XML graph, which summarizes the results of these analyses.

The XML graph for the example program is shown in Figure [Tl

XML Graph Analysis

Once we have XML graphs for the possible contents of the output streams,
we can, again, apply the static validation algorithm to ensure that only valid
XHTML is produced. However, a more specific analysis of these graphs can
answer other interesting questions about servlet applications. By analyzing the
possible values of action URLs in forms it is possible to determine the control
flow between individual servlets. In the above example, this knowledge will allow
us to determine that the timestamp attribute is available in the session state
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Figure 11: XML graph for servlet example.

when the Show servlet is executed. Also, by further analyzing the form fields
inside the generated XHTML documents, we can guarantee that the request
parameter NAME is always present as well.

6.3. XSugar

The XSugar project [(] provides a framework for specifying and maintaining
dual syntax for XML languages. A typical situation of this kind is the XML
schema language RELAX NG [14] that has an alternative, compact, non-XML
syntax [12] (as we have used in the example schemas shown in previous sec-
tions). Other languages with dual syntax include BibTeXML [1&] and the Wiki
notation [30]. As an example, consider the XML document

<students xmlns="http://studentsRus.org/">
<student sid="19701234">
<name>John Doe</name>
<email>john_doe@notmail.org</email>
</student>
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<student sid="19785678">
<name>Jane Dow</name>
<email>dow@bmail.org</email>
</student>
</students>

with the following alternative syntax:

John Doe (john_doe@notmail.org) 19701234
Jane Dow (dow@bmail.org) 19785678

The XML syntax may be specified in XML Schema and the alternative syntax
could be specified through an XSLT stylesheet (generating plain text). However,
this approach has some inherent weaknesses: consistency must be maintained
between the two syntaxes, and a separate translator from alternative to XML
syntax must be programmed. XSugar allows a simultaneous specification of
both syntaxes in the form of a context-free grammar with dual right-hand sides.
For our example, the specification looks as follows:

xmlns = "http://studentsRus.org/"

Name = [a-zA-Z]+(\ [a-zA-Z]+)*
Email = [a-zA-Z._]+\@[a-zA-Z._]+
Id = [0-9]{8}

NL = \r\n|\r|\n

file : [persons p] = <students> [persons p] </>

persons : [person p] [NL] [persons more] =
[person p] [persons morel

person : [Name name] _ "(" [Email email] ")" _ [Id id] =
<student sid=[Id id]>
<name> [Name name] </>
<email> [Email email] </>
</>

The first line declares the namespace associated with the empty prefix. The
next four lines define some regular expressions, which are used for describing
syntactic tokens. For example, Name matches one or more blocks of alphabetic
characters, separated by space characters. The remaining lines define grammar
productions where each nonterminal, such as person, has two right-hand sides.
The first (following the : symbol) uses alternative syntax, while the second
(following the subsequent = symbol) uses XML syntax. The two right-hand sides
must, however, use the same named nonterminals and tokens, which enables an
inductive translation to take place.

The XSugar tool analyzes the grammar to ensure reversibility of this transla-
tion between the two versions, which involves an approximate decision procedure
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for ambiguity of grammars [4]. The remaining problem, which is relevant for
this article, is to decide whether the XSugar specification agrees with an original
XML schema specification of the XML language, such as this one:

<schema xmlns="http://www.w3.o0rg/2001/XMLSchema"
targetNamespace="http://studentsRus.org/"
xmlns:s="http://studentsRus.org/"
elementFormDefault="qualified">

<element name="students">
<complexType>
<sequence minOccurs="0" maxOccurs="unbounded">
<element ref="s:student"/>
</sequence>
</complexType>
</element>

<element name="student">
<complexType>
<sequence>
<element name="name" type="s:Name"/>
<element name="email" type="s:Email"/>
</sequence>
<attribute name="sid" type="s:Id"/>
</complexType>
</element>

<simpleType name="Id">
<restriction base="string">
<pattern value="[0-9]{8}"/>
</restriction>
</simpleType>

<simpleType name="Name">
<restriction base="string">
<pattern value="[a-zA-Z]+( [a-zA-Z]+)*"/>
</restriction>
</simpleType>

<simpleType name="Email">
<restriction base="string">
<pattern value="[a-zA-Z._]+@[a-zA-Z._]+"/>
</restriction>
</simpleType>
</schema>

XML Graph Construction
From an XSugar specification, it is simple to extract an XML graph that
describes all XML documents that can be generated by the XML productions:
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Figure 12: XML graph for XSugar example.

e cach nonterminal becomes a choice node with a child for each of its pro-
ductions;

e a production becomes a sequence node if ordered and an interleave node
if unordered, and a child node is made for each item;

e for a nonterminal item, the node is the one corresponding to the nonter-
minal;

e for a regular expression item, the node is a text node labeled with the
regular expression. and quoted literal items and whitespace items are
treated as regular expression items;

e for an element item, the node is an element node with a corresponding
name and with a sequence child node describing the attributes and con-
tents, and attributes similarly become attribute nodes.

As a simple optimization, we may omit choice nodes and sequence nodes that
have exactly one child. For the student information example, the resulting XML
graph is shown in Figure

XML Graph Analysis

Static validation of the XSugar program is simply obtained by means of the
main algorithm from Section Bl If we had made some mistakes, for example
changed the definition of Id to [0-91{5,8} and swapped the order of the name
and email elements in the XSugar specification, the output would instead be
like this:

*x* Validation error
Source: element {http://studentsRus.org/}student at
students.xsg line 15 column 10
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Schema: students.xsd line 20 column 7
Error: invalid attribute value: sid="00000"

*x* Validation error

Source: element {http://studentsRus.org/}student at
students.xsg line 15 column 10

Schema: students.rng line 16 column 7

Error: invalid contents:
<{http://studentsRus.org/}email/>
<{http://studentsRus.org/}Iname/>

Clearly, such error messages are useful for locating and correcting the errors.

6.4. XSLT

An interesting challenge in the area of static validation is posed by XSLT
stylesheets [L1]: Under the assumption that the input is valid relative to the
input schema, is the output of the transformation always valid relative to the
output schema? This fundamental problem was first solved and implemented
in our paper [38] and generalized to XSLT 2.0 in [29]. Earlier work in this area
provided partial solutions |2, 43, [16] or looked at idealized languages [35, 132,
33, 131]. As an instance of this problem, consider documents such as this:

<registrations xmlns="http://eventsRus.org/registrations/">
<name id="117">John Q. Public</name>
<group type="private" leader="214">
<affiliation>Widget, Inc.</affiliation>
<name id="214">John Doe</name>
<name id="215">Jane Dow</name>
<name id="321">Jack Doe</name>
</group>
<name>Joe Average</name>
</registrations>

which is described by this DTD schema:

<IELEMENT registrations (name|group)*>

<!ELEMENT name (#PCDATA)>

<!'ATTLIST name id ID #REQUIRED>

<!ELEMENT group (affiliation,namex)>

<IATTLIST group type (privatel|government) #REQUIRED>
<VATTLIST group leader IDREF #REQUIRED>

<!ELEMENT affiliation (#PCDATA)>

Consider now the following XSLT stylesheet:

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
xmlns:reg="http://eventsRus.org/registrations/"
xmlns="http://www.w3.org/1999/xhtml">
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<xsl:template match="reg:registrations">
<html>
<head><title>Registrations</title></head>
<body>
<ol><xsl:apply-templates/></ol>
</body>
</html>
</xsl:template>

<xsl:template match="x*">
<1i><xsl:value-of select="."/></1li>
</xsl:template>

<xsl:template match="reg:group">
<1li>
<table border="1">
<thead>
<tr>
<td>
<xsl:value-of select="reg:affiliation"/>
<xsl:if test="@type=’private’">&#174;</xsl:if>
</td>
</tr>
</thead>
<xsl:apply-templates select="reg:name">
<xsl:with-param name="leader" select="@leader"/>
</xsl:apply-templates>
</table>
</1i>
</xsl:template>

<xsl:template match="reg:group/reg:name">
<xsl:param name="leader" select="-1"/>

<tr>
<td>
<xsl:value-of select="."/>
<xsl:if test="$leader=@id">!!!</xsl:if>
</td>
</tr>

</xsl:template>

</xsl:stylesheet>

The root element of the registration document is matched by the first template
which generates an XHTML wrapper and uses apply-templates to process
all child nodes as item of an enclosing ordered list. Ordinary name nodes are
handles by the template with pattern *, which generates its contents as simple
list items. The group nodes are handled by the specific template which generates
a tiny table with the affiliation and a ® symbol if it is a private company. The
group members are through an apply-templates instruction, which also passes
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Figure 13: Flow graph for XSLT example.

the identity of the group leader as a parameter, handled by a special template
that lists them as table rows and adorns the name of the leader with triple
exclamation marks. For the above example document, the resulting XHTML
document is rendered as follows by a standard browser:

1. John Q. Public
Widget, Inc. ®
John Doe !
Jane Dow

2. Jack Doe

3. Joe Average

The question is then whether documents described by the input schema will
always be transformed into valid XHTML documents?

XML Graph Construction

Before the set of possible output documents can be described, it is necessary
to perform a flow analysis of the XSLT stylesheet. Specifically, we wish to
determine for each apply-templates instruction which template rules may
be invoked when processing some input document. In addition, we must also
determine the types and names of the possible context nodes when the template
is instantiated. Our algorithm defines a constraint system that defines this
information, which is then computed using a fixed-point algorithm. A crucial
component in this algorithm is to determine the compatibility between select
and match expressions relative to the paths that are allowed by the input schema.
Our algorithm is heuristic and uses conservative approximations that are guided
by a extensive data mining of a collection of 603 stylesheets with a total of
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Figure 14: XML graph for XSLT example.

187,015 lines of code written by hundreds of different authors. For our example
stylesheet, the flow information is summarized as shown in Figure

Based on this flow graph, the details of the stylesheet and the input schema,
our algorithm constructs an XML graph that describes all possible output doc-
uments. Again, this is done using heuristics that are guided by mining the
extensive stylesheet samples. The XML graph for our example is shown in Fig-
ure [[4 The repeat abbreviates the choice—sequence cycle used earlier, and the
dashed lines indicate template rules in the original stylesheet.

XML Graph Analysis
Once the XML graph has been constructed, we again rely on the validation
algorithm from Section @l In addition to this result, we may analyze the XML
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graph further to provide warnings about select expressions that never hit any-
thing and template rules that are never used. These are not necessarily errors
in the stylesheet, but presumably unintended by the programmer.

7. Conclusion

We have presented XML graphs as a convenient formalism for representing
sets of XML documents. XML graphs have been used in a variety of analyses
of programs that operate on XML data, including the languages XACT, Java
Servlets, XSugar, and XSLT. The implementation is available in an open source
software package.
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