
Type Checking with XML Schema in XACT

Christian Kirkegaard and Anders Møller
∗

BRICS
†

Department of Computer Science
University of Aarhus, Denmark
{ck,amoeller}@brics.dk

Abstract
XACT is an extension of Java for making type-safe XML transfor-
mations. Unlike other approaches, XACT provides a programming
model based on XML templates and XPath together with a type
checker based on data-flow analysis.

We show how to extend the data-flow analysis technique used in
the XACT system to support XML Schema as type formalism. The
technique is able to model advanced features, such as type deriva-
tions and overloaded local element declarations, and also datatypes
of attribute values and character data. Moreover, we introduce op-
tional type annotations to improve modularity of the type checking.

The resulting system supports a flexible style of programming
XML transformations and provides static guarantees of validity of
the generated XML data.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs
and Features; D.2.4 [Software Verification]: Valida-
tion; I.7.2 [Document and Text Processing]: Computing
Methodologies

General Terms
Languages, Design, Verification

Keywords
XML, XML Schema, Java, language design, static analysis

1 Introduction
The overall goal of the XACT project is to integrate XML into
general-purpose programming languages, in particular Java, such
that programming of XML transformations can become easier and
safer than with the existing approaches. Specifically, we aim for a
system that supports a high-level and flexible programming style,
permits an efficient runtime model, and has the ability to statically
guarantee validity of generated XML data.

In previous papers, see [15, 14], we have presented the first steps
of our proposal for a system that fulfills these requirements. Our
∗Supported by the Carlsberg Foundation contract number 04-0080.
†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

language, XACT, is an extension of Java where XML fragments
can be manipulated through a notion of XML templates using XPath
for navigation. Static guarantees of validity are provided by a spe-
cial data-flow analysis that builds on a lattice structure of summary
graphs.

The existing XACT system has two significant weaknesses: first,
it only supports DTD as schema language, and it is generally agreed
that DTD has insufficient expressiveness for modern XML applica-
tions; second, the data-flow analysis is a whole-program analysis
that has poor modularity properties and hence does not scale well
to larger programs. In this paper, we present an approach for at-
tacking these issues.

Contributions
We have previously shown a connection between summary graphs
and regular expression types [4, 10]. Also, it is known how reg-
ular expression types are related to RELAX NG schemas [7] and
how schemas written in XML Schema [22, 2] can be translated into
equivalent RELAX NG schemas [12]. We exploit these connections
in this paper. Our main contributions are the following:

• We present a translation from XML Schema to summary
graphs and an algorithm for validating summary graphs rela-
tive to schemas written in XML Schema, all via RELAX NG.
This provides the foundation for using XML Schema as type
formalism in XACT.

• We introduce optional typing in XACT so that XML template
variables can be optionally typed with schema constructs (ele-
ment names and simple or complex types). We show how this
can lead to a validity analysis which is more modular, in the
sense that it avoids iterating over the whole program.

Together, these improvements effectively remedy the weaknesses
mentioned earlier. Furthermore, the results can be seen as indica-
tions of the strength of summary graphs and the use of data-flow
analysis for validating XML transformations.

As an additional contribution, we identify a subset of RELAX
NG that is sufficient for translation from XML Schema and where
language inclusion checking is tractable.

Example
The resulting XACT language can be illustrated by a small toy
program that uses the new features. This program converts a
list of business cards represented in a special XML language into
XHTML, considering only the cards where a phone number is
present:

import dk.brics.xact.*;
import java.io.*;

public class PhoneList {
static {
String[] ns =

{"b", "http://businesscard.org",
"h", "http://www.w3.org/1999/xhtml",
"s", "http://www.w3.org/2001/XMLSchema"};

XML.setNamespaceMap(ns);
}

XML<h:html[s:string TITLE, h:Flow MAIN]> wrapper;

void setWrapper(String color) {
wrapper =

[[<h:html>
<h:head>
<h:title><[s:string TITLE]></h:title>

</h:head>
<h:body bgcolor={color}>
<h:h1><[s:string TITLE]></h:h1>
<[h:Flow MAIN]>

</h:body>
</h:html>]];

}

XML<h:ul> makeList(XML<b:cardlist> x) {
XML r = [[<h:ul><[CARDS]></h:ul>]];
XMLIterator i =

x.select("//b:card[b:phone]").iterator();
while (i.hasNext()) {

XML c = i.next();
r = r.plug("CARDS",

[[<h:li>
<h:b><{c.select("b:name/text()")}></h:b>,
phone: <{c.select("b:phone/text()")}>

</h:li>
<[CARDS]>]]);

}
return r;

}

XML<h:html> transform(String url) {
XML cardlist = XML.get(url, "b:cardlist");
setWrapper("white");
return wrapper.plug("TITLE", "My Phone List")

.plug("MAIN", makeList(cardlist));
}

public static void main(String[] args) {
XML<h:html> x = new PhoneList().transform(args[0]);
System.out.println(x);

}
}

The general syntax for XML template constants and the meaning of
the methods select, plug, get, and various others are described
further in Section 2.

In the first part of the program, some global namespace decla-
rations are made. Schemas for these namespaces are supplied ex-
ternally (the schema for the business card XML language is shown
in Section 3). Then a field wrapper is defined, holding an XML
template that must be an html tree, potentially with TITLE gaps
and MAIN gaps, which may occur in place of fragments of type
string and Flow, respectively (all of appropriate namespaces).
The method setWrapper assigns such an XML template to the
wrapper field. This template has two gaps named TITLE and one
named MAIN. Additionally, it has one code gap where the value of
the color parameter is inserted. The method makeList iterates

through a list of card elements that have phone children and builds
an XHTML list. The method main loads in an XML document
containing a list of business card, invokes the setWrapper method,
then constructs a complete XHTML document by plugging values
into the TITLE and MAIN gaps using the makeList method, and fi-
nally outputs this document.

As an example, the program transforms the input

<cardlist xmlns="http://businesscard.org">
<card>

<name>John Doe</name>
<email>john.doe@widget.inc</email>
<phone>(202) 555-1414</phone>

</card>
<card>

<name>Zacharias Doe</name>
<email>zach@notmail.com</email>

</card>
<card>

<name>Jack Doe</name>
<email>jack@mailorder.edu</email>
<email>jack@geemail.com</email>
<phone>(202) 456-1414</phone>

</card>
</cardlist>

into an XHTML document that looks as follows:

Note that some XML variables in the program are declared by
the type XML, which represents all possible XML templates, and oth-
ers use a more constrained type, such as, the declaration of wrapper
or the signature of makeList. XACT now allows the programmer to
combine these two approaches. The static type checker uses data-
flow analysis to reason about variables that are declared using the
former approach, and it conservatively checks that the annotated
types are preserved by execution of the program. For this program,
one consequence is that the makeList method, whose signature is
fully annotated, can be type checked separately, and invocations of
this method can be type checked without considering its body. (We
discuss fields and side-effects in Section 7.) Also note that the type
checker can now reason about XML Schema types rather that being
limited to DTD.

Related Work
There are numerous other projects having similar goals as XACT;
the paper [19] contains a general survey of different approaches.
The ones that are most closely related to ours are XJ [9], Cω [1],
and XDuce and its descendants [10]. XACT is notably differ-
ent in two ways: first, although variants of XML templates are
widely used in Web application development frameworks, this
paradigm is not supported by other type-safe XML transformation
languages, which typically allow only bottom-up XML tree con-
struction; second, the annotation overhead is minimal since schema
types are only required at input and output, whereas the others re-
quire schema type annotations at all XML variable declarations. We
believe that both aspects in many cases makes the XACT program-
ming style more flexible. Furthermore, our data-flow analysis also
tracks all Java string operations via a separate analysis [6], which
enables XACT to reason about validity of attribute values and char-
acter data. (In fact, an additional consequence of the extensions

described here is that our static analyzer can also model computed
names of elements and attributes.)

With the extensions proposed in this paper, XACT becomes
closer to XJ [9], which also uses XML Schema as type formalism
and XPath for navigation. Still, our use of optional type annotations
avoids a problem that can make the XJ type checker too rigid: with
mandatory type annotations at all variable declarations in XJ it is
impossible to type check a sequence of operations that temporarily
invalidates data. The types that are involved in XML transforma-
tions are often exceedingly complicated and difficult to write down,
and types for intermediate results often do not correspond to named
constructs in preexisting schemas. The benefits of type annotations
are that they can serve as documentation in the programs and they
can lead to faster type checking. By now supporting optional anno-
tations, XACT gets the best from the two worlds.

Moreover, XJ represents XML data as mutable trees, which in-
curs a need for expensive runtime checks to preserve data validity.
In XJ, subtyping is nominal, whereas our approach gives semantic
(or structural) subtyping. A discussion of subtyping can be found
in [8]. Note that although XML Schema does contain mechanisms
for declaring subtyping relationships nominally, the choice of sup-
porting XML Schema as type formalism in XACT does not force
us to use nominal subtyping. We use schemas only as notation for
defining sets of XML values—the internal structure of the notation
being used is irrelevant.

The XDuce language family is based on the notion of regular ex-
pression types. As mentioned earlier, a connection between regular
expression types and a variant of the summary graphs used in our
program analysis is shown in [4]. Also, the formal expressiveness
of regular expression types and RELAX NG both correspond to that
of regular tree languages. We return to these relations in Sections 5
and 6. As XACT, the XTATIC language [8], which is one of the
descendants of XDuce, incorporates XML into an object-oriented
language in an immutable style.

The Cω language adds XML support to C] by combining struc-
tural sequences, unions, and products with objects and simple val-
ues. The basic features of XML Schema may be encoded in the type
system, however little documentation of this is available. Rather
than use full XPath for navigation in XML trees as in XACT, Cω
uses a reminiscent notion of generalized member access that is
closer to ordinary programming notation.

The paper [18] describes a validity analysis for XSLT transfor-
mations, which is also based on summary graphs. The techniques
we present here for handling XML Schema as type formalism can
be transferred seamlessly to that analysis.

The type annotations we introduce are reminiscent of the notion
of programmer–designer contracts proposed in [3]. In both cases,
static declarations constrain how XML templates may be combined
in the programs.

The paper [20] contains a useful classification of schema lan-
guages in terms of categories of tree grammars: DTD corresponds
to local tree grammars where the content model of an element can
only depend on the name of the element; XML Schema corresponds
to the larger category of single-type tree grammars where elements
that are siblings and have the same name must have identical con-
tent models; and RELAX NG corresponds to the even more gen-
eral category of regular tree grammars, which is equivalent to tree
automata. With our new results, XACT supports single-type tree
grammars as type formalism.

Overview
In Sections 2 and 3 we begin by briefly recapitulating the design of
XACT and RELAX NG, and we characterize a subset of RELAX

NG, called Restricted RELAX NG, that we will use as an intermedi-
ate language in the program analysis. Then, in Section 4 we intro-
duce a variant of summary graphs. In Sections 5 and 6 we explain
how schemas written in XML Schema can be converted into sum-
mary graphs via Restricted RELAX NG, how to check validity of
summary graphs relative to Restricted RELAX NG schemas, and
how these results can be used in XACT to provide static guarantees
of XML transformations. In Section 7 we introduce optional typing
using XML Schema constructs and discuss the resulting language
design. Finally, we present our conclusions in Section 8.

Note that we here report on work in progress, and not all of what
we present has yet been implemented and tested in practice so we
cannot at this stage present experimental results. Also, the limited
space prevents us from going into details of our algorithms and of
the systems we build upon—instead, this paper aims to present an
informal overview of our ideas.

2 The XACT Programming Language
We begin with a brief overview of the XACT language as it looks be-
fore adding our new extensions. In XACT, XML data is represented
as templates, which are well-formed XML fragments that may con-
tain gaps in place of elements or attribute values. A gap is either a
name or a piece of code that evaluates to a string or an XML tem-
plate. As an example, the following XML template contains four
gaps: two named TITLE, one named MAIN, and one containing the
expression color:

<h:html>
<h:head>

<h:title><[TITLE]></h:title>
</h:head>
<h:body bgcolor={color}>

<h:h1><[TITLE]></h:h1>
<[MAIN]>

</h:body>
</h:html>

The special immutable class XML corresponds to the set of all pos-
sible XML templates. The central operations on this class are the
following:

constant: a static method that creates a template from
a constant string (the syntax [[foo]] is sugar for
XML.constant("foo") where quotes, whitespace, and gaps
have been transformed);

plug: inserts a given string or template into all gaps of a given
name in this template;

select: returns the sub-templates of this template that are se-
lected by a given XPath expression;

get: a static method that creates a template from a non-constant
string and checks (at runtime) that it is valid relative to a given
constant schema type;

cast: performs a runtime check of validity of this template rela-
tive to a given constant schema type;

analyze: instructs the static type checker to verify that this tem-
plate will always be valid relative to a given schema type when
the program runs; and

toString: converts this template to its textual representation.

A schema type is the name of an element (or, with our extension
from DTD to XML Schema, a simple type or a complex type) that
is declared in a schema. The language of a schema type is defined

as the set of XML documents or document fragments that are valid
relative to the schema type. Note that in this version of XACT, be-
fore incorporating the extensions suggested in this paper, schema
types appear only at get, cast, and analyze operations. In partic-
ular, declarations use the general type XML.

The primary job of the static type checker is to verify that only
valid XML data can occur at program locations marked by analyze
operations, under the assumption that get and cast operations al-
ways succeed. (It also checks properties of plug and select oper-
ations, which is less relevant here.)

3 Defining a Subset of RELAX NG
A RELAX NG schema [7] is essentially a top-down tree automa-
ton that accepts a set of valid XML trees. It is described by
a grammar consisting of recursively defined patterns of various
kinds, including the following: element matches one element
with a given name and with contents and attributes described by
a sub-pattern; attribute similarly matches an attribute; text
matches any character data or attribute value; group, optional,
zeroOrMore, oneOrMore, and choice correspond to concatena-
tion, zero or one occurrence, zero or more occurrences, one or more
occurrences, and union, respectively; empty matches the empty se-
quence of nodes; and notAllowed corresponds to the empty lan-
guage. In addition, the pattern interleave matches all possible
mergings of the sequences that match its sub-patterns.

Note that attributes are described in the same expressions as the
content models. Still, attributes are considered unordered, as al-
ways in XML, and syntactic restrictions prevent an attribute name
from occurring more than once in any element. Mixing attributes
and contents in this way is useful for describing attribute–element
constraints.

To ensure regularity, there is an important restriction on recursive
pattern definitions: recursion is only allowed if passing through an
element pattern.

Element and attribute names can be described with name classes,
which can consist of lists of possible names and wildcards that
match all names, potentially restricted to a certain namespace or
excluding specific names.

To describe datatypes more precisely than with the text pattern,
RELAX NG relies on an external language, usually the datatype
part of XML Schema. Using the data pattern, such datatypes can
be referred to, and datatype facets can be constrained by a parameter
mechanism.

Furthermore, RELAX NG contains various modularization
mechanisms, which we can ignore here. As all other type-safe
XML transformation languages, we also ignore ID and IDREF at-
tributes from DTD and the equivalent compatibility features in RE-
LAX NG.

As mentioned in the introduction, we handle XML Schema via a
translation to RELAX NG, thus using RELAX NG as a convenient
intermediate language that avoids the many complicated technical
details of XML Schema. However, we only use a subset of RELAX
NG, which we call Restricted RELAX NG, being characterized as
follows.

First, we define some terminology that we need. We say that a
pattern p top-level-contains a pattern q if p and q are identical or
p contains q (as a child or further descendant) where contents of
element and attribute patterns are ignored. A content pattern
is a pattern that top-level contains one or more element, data, or
text patterns (or list or value patterns, which we otherwise ig-
nore here for simplicity). An attribute list pattern is a pattern that
top-level contains one or more attribute patterns.

A Restricted RELAX NG schema satisfies the following syntac-
tic requirements:

[single-type grammar] For every element pattern p, any two
element patterns that are top-level-contained by the child of p
and have non-disjoint name classes must have the same (iden-
tical) content. (This requirement limits the notation to single-
type grammars.)

[attribute context insensitivity] No attribute list pattern can be a
choice pattern. Also, every optional attribute list pattern
must have an attribute pattern as child. (This requirement
prohibits context sensitive attribute patterns.)

[interleaved content] Every pattern that has a child that top-level
contains an interleave content pattern must be a group or
element pattern. Also, a group pattern that top-level con-
tains an interleave content pattern must have only one con-
tent pattern child. (This requirement makes it easier to check
inclusion of interleave patterns, as explained in Section 6.)

We here consider ref patterns as abbreviations of the patterns be-
ing referred to. For every element and optional pattern that has
more than one child pattern, we treat the children as implicitly en-
closed by a group pattern. (Also, all mixed patterns are implicitly
desugared to interleave patterns in the usual way.)

Restricted RELAX NG has two important properties: first, it
is sufficient for making an exact and simple embedding of XML
Schema; second, it makes the summary graph validation in Sec-
tion 6 more tractable than using XML Schema directly or support-
ing full RELAX NG.

The following schema written in XML Schema may be used to
describe the input to the example program shown in Section 1:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
xmlns:b="http://businesscard.org"
targetNamespace="http://businesscard.org"
elementFormDefault="qualified">

<element name="cardlist">
<complexType>

<sequence>
<element ref="b:card"

minOccurs="0" maxOccurs="unbounded"/>
</sequence>

</complexType>
</element>

<element name="card" type="b:card_type"/>

<complexType name="card_type">
<sequence>

<element name="name" type="string"/>
<element name="email" type="string"

maxOccurs="unbounded"/>
<element name="phone" type="string"

minOccurs="0"/>
</sequence>

</complexType>

</schema>

Assuming cardlist as root element name, this can be translated
into the following Restricted RELAX NG schema (here using the
compact RELAX NG syntax):

default namespace = "http://businesscard.org"

start = element cardlist { card* }
card = element card { card_type }
card_type = element name { xsd:string },

element email { xsd:string }+,
element phone { xsd:string }?

The translation from XML Schema to Restricted RELAX NG is
exact and the size of the output schema is proportional to the size
of the input schema. Most XML Schema constructs map directly to
RELAX NG, and we will not here explain the details of the trans-
lation. However, a few points are worth mentioning.

First, the all construct maps to the interleave pattern. Be-
cause of the limitations on the use of all in XML Schema, this
does not violate the [interleaved content] requirement.

Second, we can ignore default declarations since we only care
about validation and not of normalization of the input—except that
we treat an attribute or content model as optionally absent if a de-
fault is declared.

Third, wildcards can be converted into name classes. If
processContents of an element wildcard is set to skip, then we
make a recursive pattern that matches any XML tree.

Fourth, the most tricky parts of the translation involve type
derivations and substitution groups. Assume that an element e has
type t and there exists a type t ′ that is derived by extension from t.
In this case, an occurrence of e must match either t or t ′, and in the
latter case e must have a special attribute xsi:type with the value
t ′ (in the former case, the attribute is permitted but not required).
We handle this situation by encoding the xsi:type information in
the element name. More precisely, we create a new element pattern
whose name is the name of e followed by the string %t ′ and whose
content corresponds to the definition of t ′. Each reference to e is
then replaced by a choice between e and the variants with extended
types. The xsi:nil feature is handled similarly. Now assume that
another element f has type t ′ and is declared as in the substitution
group of e. This means that f elements are permitted in place of
e elements. In Restricted RELAX NG, this is expressed simply by
replacing all references to e elements by choices of e and f ele-
ments. Again, because of limitations on the all construct and the
substitution group mechanism in XML Schema, this cannot lead
to violations of the [single-type grammar] requirement, nor of the
general RELAX NG requirement that interleave branches must
be disjoint.

By the translation to Restricted RELAX NG, a schema type cor-
responds to a pattern definition:

• a simple type corresponds to a pattern, which we call a
simple-type pattern, that can only contain the constructs data,
choice, list, and value;

• a complex type corresponds to a pattern, which we call a
complex-type pattern, that consists of a group of two sub-
patterns—one describing a content model and one describing
attributes; and

• an element declaration corresponds to an element pattern that
contains a simple-type pattern or a complex-type pattern.

We use these observations in Section 6.

4 Summary Graphs in Validity Analysis
The static type checker in XACT works in two steps. First, a data-
flow analysis of the whole program is performed, using the standard
data-flow analysis framework [11] but with a highly specialized lat-
tice structure where abstract values are summary graphs. A sum-
mary graph is a finite representation of a potentially infinite set of

XML templates, much like a schema but tailor-made for use in the
program analysis [15]. Second, when the fixed point has been com-
puted, we check that the sets of templates represented by the result-
ing summary graphs are valid relative to the respective schemas.

To allow a smooth integration of XML Schema as a replacement
for DTD, we slightly modify the definition of summary graphs as
explained below and change the summary graph validation algo-
rithm accordingly and to work with Restricted RELAX NG (the
old algorithm supported DTD via an embedding into DSD2 [17]).

A summary graph, as it is defined in [15], has two parts: one that
is set up for the given program and remains fixed during the iterative
data-flow analysis, and one that changes monotonically during the
analysis.

The fixed part contains finite sets of nodes of various kinds: el-
ement nodes (NE), attribute nodes (NA), chardata nodes (NC), and
template nodes (NT). These node sets are determined by the use
of schemas, template constants, and XML operations in the program.
The former three sets represent the possible elements, attributes,
and chardata sequences that may arise when running the program.
The template nodes represent sequences of template gaps, which
either occur explicitly in template constants or implicitly due to
XML operations or schemas. Additionally, the fixed part speci-
fies a number of maps: name assigns a name to each element node
and attribute node; attr : NE → 2NA associates attribute nodes with
element nodes; contents : NE → NT connects element nodes with
descriptions of their contents; and gaps : NT → G∗ associates a se-
quence of gap names from a finite set G with each template node.

The changing part of a summary graph consist of:

• a set of root nodes R ⊆ NE ∪NT ;

• template edges T ⊆ NT ×G× (NT ∪NE ∪NC);

• string edges S : NC ∪NA → REG where REG are all regular
string languages over the Unicode alphabet; and

• a gap presence map P : G → 2NA∪NT ×2NA∪NT ×Γ×Γ where
Γ = 2{OPEN,CLOSED}.

The language of a summary graph is intuitively the set of XML tem-
plates that can be obtained by unfolding it, starting from a root node
and plugging elements, templates, and strings into gaps according
to the edges. A template edge (n1,g,n2) ∈ T informally means that
n2 may be plugged into the g gaps in n1, and a string edge S(n) = L
means that every string in L may be plugged into the gap in n. The
gap presence map, which we will not explain in further detail here,
is needed during the data-flow analysis to determine where template
gaps and attribute gaps occur. (For the curious reader, this is all for-
malized in [15].) We also define the language of an individual node
n in a summary graph: this is simply the language of the modified
summary graph where R is set to {n}.

As an example (borrowed from [15]), we can define a sum-
mary graph whose language is the set of ul lists with zero or more
li items that each contain a string from some language L. As-
sume that the fixed structure is given by NE = {1,4}, NA = /0,
NT = {2,3,5} (where all three are sequence nodes), NC = {6},
contents(1) = 2, contents(4) = 5, attr(1) = attr(4) = /0, name(1) =
{ul}, name(4) = {li}, gaps(2) = items, gaps(3) = g ·items,
and gaps(5) = text. The remaining components are as follows:

R = {1}
T = {(2,items,3),(3,items,3),(3,g,4),(5,text,6)}
S(6) = L

(For simplicity, we ignore the gap presence map.) This can be illus-
trated as follows:

items

items

itemsg
g

text
text

Lul li

1 2 3 4 5 6
items

items items

The boxes represent element nodes, rounded boxes are template
nodes, the circle is a chardata node, and the dots represent poten-
tially open template gaps.

For a given program, the family of summary graphs forms a
finite-height lattice, which is used in the data-flow analysis. To de-
termine the regular string languages used in the string edges, we
use a separate program analysis that provides conservative approx-
imations of the possible values of all string expression in the given
program [6].

We now introduce two small modifications to the definition of
summary graphs:

1. We let the name function return a regular set of names, rather
than a single name. This will be used to more easily model
name classes in Restricted RELAX NG. The definition of un-
folding is generalized accordingly: unfolding an element node
n yields an element whose name can be any string in name(n),
and similarly for attribute nodes. In case an unfolding leads to
an element with two attributes of the same name, one of them
is chosen arbitrarily and overrides the other.
To accommodate attribute declarations that have infinite name
classes and are repeated using zeroOrMore or oneOrMore,
we define the unfolding of an attribute node n where name(n)
is infinite such that it may produce more than one attribute.

2. We distinguish between two kinds of template nodes: se-
quence nodes and interleave nodes. The former have the
meaning of the old template nodes; the latter will be used to
model interleave patterns. We define the unfolding of an
interleave node as all possible interleavings of the unfoldings
of its gaps.

The data-flow transfer functions for operations remain as ex-
plained in [15] with only negligible changes as consequence of the
modifications of the summary graph definition, the only exceptions
being the ones we address in the following section.

Reflecting the [interleaved content] requirement in Restricted
RELAX NG, interleave nodes never appear nested within content
model descriptions1. The translation from Restricted RELAX NG
to summary graphs presented in the next section and the transfer
functions maintain this property of interleave nodes as an invariant.

With the generalization of the name function, we can in fact now
easily model computed names of elements and attributes—provided
that we add operations for this in the XML class, of course, and we
leave that to future work.

5 A Translation from Restricted RELAX NG
to Summary Graphs

To define the transfer functions for the operations get and cast,
we need an algorithm for translating the given schema type into a

1To state this more precisely, we first define that a node A top-
level-contains a node B if A and B are identical or B is reachable
from A where contents of element nodes and attribute nodes are ig-
nored, and a content node is a node that top-level-contains at least
one element node or chardata node. We now require the following:
every node that has a child that top-level contains an interleave con-
tent node must be a sequence or element node, and a sequence node
that top-level contains an interleave content node must have only
one content node child.

summary graph that has the same language. In [15], it is shown
how this can be done for DTD schemas; we now present a modified
algorithm that supports Restricted RELAX NG and then rely on the
translation from XML Schema to Restricted RELAX NG to map
from schema types to patterns.

Intuitively, this translation is straightforward: we may simply
view summary graphs as a graphical representation of Restricted
RELAX NG patterns, provided that we ignore the gap presence
component of the summary graphs and the regularity requirement
in Restricted RELAX NG. Due to the connection between RELAX
NG and regular expression types, this translation can also be seen
as a variant of the translation between regular expression types and
summary graphs shown in [4].

Given a Restricted RELAX NG pattern, we construct a summary
graph fragment as follows:

• First, we observe that name classes and simple-type patterns
all define regular string languages2 . Namespaces are han-
dled by expanding qualified names according to the applicable
namespace declarations.

• For an element pattern, we exploit the syntactic restrictions
described in Section 4. An element pattern generally consists
of a name class, a content model, and a collection of attribute
declarations. Thus, we convert it to an element node e and a
template node t with contents(e) = t. We define name(e) as
the regular string language corresponding to the name class.
The attribute declarations are converted recursively into at-
tribute nodes (as explained below), and attr(e) is set accord-
ingly. The content models is converted recursively into a sum-
mary graph fragment rooted by t.

• An attribute pattern is converted into an attribute node a.
We define name(a) in the same way as for element patterns,
and S(a) is set to the regular string language corresponding to
the sub-pattern describing the attribute values. If the attribute
is declared as optional using the optional pattern, the gap
presence map is set to record this (as in [15]).

• For patterns describing content models of elements, the pat-
terns text, group, optional, zeroOrMore, oneOrMore,
choice, and empty are handled exactly as the equivalent con-
structs in DTD content model definitions in the way explained
in [15]. Intuitively, each pattern corresponds to a tiny sum-
mary graph fragment that unfolds to the same language. A
data pattern becomes a chardata node s where S(s) is the cor-
responding regular string language. The interleave pattern
is translated in the same way as group, except that an inter-
leave node is used instead of a sequence node.

• Finally, the notAllowed pattern can be modeled as a template
node t where gaps(t) = g for some gap name g and t has no
outgoing template edges.

The set of root nodes R contains the single node that corresponds to
the whole pattern being translated. Recursion in pattern definitions
simply results in loops in the summary graph. The constructs from
RELAX NG that we have omitted in the description in Section 3
can be handled in a similar way as those mentioned here. Note that
the translation is exact: the language of the pattern is the same as
the language of the resulting summary graph.

As an example, translating the pattern
2We here ignore a few constraining facets that may be used on

the datatypes float and double. These are uncommon cases that
can be accommodated for without losing precision by slightly aug-
menting the definition of string edges.

element ul { element li { xsd:integer }* }

results in the summary graph shown in Section 4, assuming that L
is the language of strings that match xsd:integer.

6 Validating Summary Graphs
When the data-flow analysis has computed a summary graph for
each XML expression in the XACT program, we check for each
analyze operation that the language of its summary graph is in-
cluded in the language of the specified schema type. If the check
fails, appropriate validity warnings are emitted. The entire analysis
is sound: if no validity warnings show up, the programmer can be
sure that, at runtime, the XML values that appear at the program
points marked by analyze operations will be valid relative to the
given schema types.

The old summary graph analyzer used in XACT is described in
[5]. That algorithm, which supports DTD through an embedding
into DSD2, as mentioned earlier, has proven successful in practice.
We here describe a variant that works with Restricted RELAX NG
instead of DSD2.

Given a summary graph node n ∈ NE ∪NT and a Restricted RE-
LAX NG pattern p where p is an element pattern, a simple-type
pattern, or a complex-type pattern (as defined in Section 3), we wish
to determine whether the language of n is included in the language
of p.

We begin by considering the case where n is not an interleave
node and p is not an interleave pattern. First, a context-free
grammar C is constructed from the part of the summary graph that
is top-level contained by n, considering element and chardata nodes
as terminals, template nodes as nonterminals, and ignoring attribute
nodes. Each chardata node terminal c is then replaced by a regular
grammar equivalent to S(c). If C is not linear, we apply a regu-
lar over-approximation [16] (which we also use in [6]). Thus, we
have a regular string language Ln over element nodes and Unicode
characters that describes the possible unfoldings of n (ignoring at-
tributes). Similarly, p defines a regular string language Lp over
element patterns and Unicode characters. To obtain a common vo-
cabulary, we now replace each element node n′ in Ln by 〈name(n′)〉
(where 〈 and 〉 are some otherwise unused characters), and similarly
for the element patterns in Lp. Then, we check that Ln is included
in Lp with standard techniques for regular string languages. (This
works because of the restriction to single-type grammars.) If this
check fails, a suitable validity error message is generated. Other-
wise, for each pair (n′, p′) of an element node in Ln and an element
pattern in Lp where name(n′) and name(p′) are non-disjoint, we
perform two checks. First, we check recursively that the language
of contents(n′) is included in the language of the content model of
p′. Second, we check that the attributes of n′ match those of p′:
for each attribute node a ∈ attr(n′), each name x ∈ name(a), and
each value y ∈ S(a), a corresponding attribute pattern must oc-
cur in p′—that is, one where x is in the language of its name class
and y is in the language of its sub-pattern; also, attribute pat-
terns occurring in p′ that are not enclosed by optional patterns
must correspond to one of the non-optional attribute nodes. Again,
a suitable validity error message is generated if the check fails.

For interleave nodes and interleave patterns, we exploit the
restriction on these constructs: they cannot appear nested within
content model descriptions. Additionally, in RELAX NG, the sub-
patterns of an interleave pattern must be disjoint (that is, no el-
ement name or text pattern occurs in more than one sub-pattern).
Thus, if p is an interleave pattern, we simply test each sub-
pattern in turn, projecting Ln onto the element names occurring in
the sub-pattern, and then check that all element names occurring

in Ln also occur in one of the sub-patterns. If n is an interleave
node, we use a generalized product construction to check inclusion
(specifically, the shuffleSubsetOf operation in [21]).

To avoid redundant computations (and to ensure termination, in
case of loops in the summary graph or recursive definitions in the
schema) we apply memoization such that a given pair (n, p) is only
processed once. If a loop is detected, we can coinductively assume
that the inclusion holds.

With this algorithm, we check for each root node n ∈ R that its
language is included in the language of the pattern corresponding
to the given schema type.

As an example of the case with an element node and an element
pattern, let n be element node 1 in the summary graph from Sec-
tion 4 and let p be the pattern shown in Section 5:

p = element ul { element li { xsd:integer }* }

The context-free grammar for the contents of Ln has the following
productions (where N2 is the start nonterminal and N4 is the only
terminal):

N2 → Nitems
2

Nitems
2 → N3 | ε

N3 → Ng
3 Nitems

3
Ng

3 → N4
Nitems

3 → N3 | ε

This grammar is linear, so the regular approximation is not applied.
The pattern p contains a single sub-pattern

p′ = element li { xsd:integer }

and by recursively comparing node 4 and p′ we find out that the
language of node 4 is included in the language of p′. We now see
that Ln ⊆ Lp, so we conclude that the language of element node 1
is in fact included in the language of the pattern.

With the exception of the regular approximation of the context-
free grammars mentioned above, the inclusion check is exact. Also,
since the schemas already define only regular languages, the ap-
proximation can only cause a loss of precision if the XML transfor-
mation defined by the XACT program introduces non-regularity in
the summary graphs, and our experience from [15] and [5] indicate
that this rarely results in false errors. In particular, the trivial iden-
tity function, which inputs XML data using get with some schema
type and immediately after applies analyze with the same schema
type, is guaranteed to type check without warnings for any schema
type. Moreover, we could replace the approximation by an algo-
rithm that checks inclusion of a context-free language in a regular
language, if full precision is considered more important than per-
formance.

An obvious alternative approach to the algorithm explained
above would be to exploit the connection with regular expression
types and apply the results from the XDuce project for checking
subtyping between general regular expression types [10] or to build
on Antimirov’s algorithm as in the XOBE project [13]. Our main
argument for choosing the algorithm explained above is that it has
been shown earlier that this approach is efficient for XACT pro-
grams. Also, unlike [23], our algorithm behaves much like existing
XML Schema validators, but validating summary graphs instead of
individual XML documents. Still, the relation between these differ-
ent inclusion checking algorithms is worth a further investigation.

As an interesting side-effect of our approach, we get an inclu-
sion checker for Restricted RELAX NG and hence also for XML
Schema and DTD: given two schemas, S1 and S2, convert S1 to a
summary graph SG using the algorithm described in Section 5 and

then apply the algorithm presented above on SG and S2. (Alter-
natively, the algorithm presented above could be modified to work
directly with Restricted RELAX NG schemas instead of summary
graphs.) Preliminary results indicate that our approach is efficient:
on a standard PC, our implementation finds in a few seconds the
elements in XHTML 1.0 Transitional that are invalid according to
XHTML 1.0 Strict (and conversely, it reveals that Strict does not
imply Transitional, to our surprise). For schemas that go beyond lo-
cal tree grammars and use type derivations and all model groups,
we observe a similarly acceptable performance. Moreover, the val-
idator provides precise error messages in case validation fails.

As an interesting bonus feature, our validator can trivially be ex-
tended to precisely check element prohibitions (for example, that
form elements must not contain form elements in XHTML): in
XACT, we already have a technique for evaluating XPath loca-
tion paths on summary graphs, and element prohibitions can be
expressed as (simple) XPath location paths.

7 Optional Type Annotations
We will now extend XACT with optional type annotations such
that programmers may declare the intended schema types for XML
template variables, method parameters, and return values. Besides
being useful as in-lined documentation of programmer intentions,
type annotations can lead to better modularity properties of the va-
lidity analysis.

Every XML type may now optionally be annotated in the follow-
ing way where S and T1, . . . ,Tn are schema types and g1, . . . ,gn are
gap names:

XML<S[T1 g1, . . . ,Tn gn]>

The semantics of an annotated type is the language described by
S under the assumption that every occurrence of gap gi has been
plugged with a value in the language of schema type Ti.

In XML template constants, every template gap must now have
the form <[T g]>, where T is a schema type and g is the gap name.
This allows us to, at runtime, tag each gap g in an XML template
with a schema type.

In gap annotations in XML declarations and template constants,
we permit Kleene star of a schema type, T*, meaning that the gap
can be filled with a sequence of values from the language of T .
Kleene star annotations are occasionally needed because we cannot
always find existing schema types for sequences of values. As an
example, the XML Schema description of XHTML has no named
content type describing a sequence of li elements. Theoretically,
we could permit type annotations to be arbitrary regular expressions
over schema types or even small inlined XML Schema fragments,
but we have not yet observed the need for this.

Every assignment of an XML template v to a variable x whose
type annotation is t = S[T1 g1, . . . ,Tn gn] must, at runtime, satisfy
three constraints:

• All gaps occurring in v must be declared in t.

• For every gap g occurring in v, the language of its type tag
must be included in the language of the schema type for g as
declared in t.

• The value v must, under the assumption that all gaps were
plugged according to their type tags, belong to the language
of S.

We put similar constraints on return statements and method invoca-
tions, except that for return statements the return value is compared

with the declared return type, and for method invocations every ac-
tual parameter value is compared with the corresponding declared
parameter type. Moreover, every plug operation must respect gap
tags, that is, the value being plugged in to a gap g must belong to
the language of the tag of g.

The following describes a modification of our existing static pro-
gram analysis to support checking of the extra constraints intro-
duced by annotations.

First, the abstract representation of sets of XML templates is
extended to also keep track of the declared schema types of gap
names. For a given XACT program, we let T denote the finite set of
all types mentioned by gap annotations in template constants, and
we introduce a new summary graph component D : G → T map-
ping gap names to their declared type. The language of a summary
graph is not affected by this change.

This leads to extending the data-flow transfer function for the
constant operation to generate a summary graph with mappings
D(g) = T for every gap <T g> occurring in the given XML tem-
plate constant. (A simple syntactical check ensures that in each
template constant all gaps of the same name are declared with iden-
tical schema types.) The transfer function for the plug operation
simply unions the D mappings of its arguments. (Conflicts are
avoided by a check mentioned below.) All other transfer functions
act as the identity on the new D component.

To ensure type consistency of variables declared with annotated
XML types, we must validate all assignments to such variables. We
check, using the validation algorithm described in Section 6, that
the language of the inferred summary graph for the right-hand
side of an assignment is a subset of the language permitted by the
schema type annotation. However, this inclusion check is modi-
fied to treat gaps as if they were plugged with values correspond-
ing to their declared types. More precisely, for every gap g in the
inferred summary graph we apply the algorithm described in Sec-
tion 5 to construct a summary graph fragment SGg corresponding
to the schema type D(g) and then add template edges from all oc-
currences of g to the roots of SGg.

To ensure type consistency of template gaps, we perform an ad-
ditional check of every x.plug(g,y) operation using the summary
graphs SGx and SGy inferred by the data-flow analysis for x and y,
respectively. First, we check that the language of SGy is a subset of
the language of Dx(g) declared for g in SGx using the inclusion al-
gorithm presented in Section 6. Then, we check that all gap names
h occurring in both SGx and SGy are declared with identical types,
that is, Dx(h) = Dy(h).

As a product of the guaranteed type consistency of variables de-
clared with annotated XML types, reading from a variable can now
use the declared type instead of the inferred one. More precisely,
for every read from an XML typed variable x we normally use an
inferred summary graph to describe the set of possible template
values at that program point, but now, since all assignments to x
have already been checked for validity with respect to the declared
schema type for x, we can instead apply the algorithm from Sec-
tion 5 to obtain the summary graph corresponding to the declared
schema type.

Note that the support for type annotations leads to a program-
ming style where the explicit analyze operation is rarely needed—
instead, one may request a static type check by assigning to an an-
notated variable. This is the style required in other XML transfor-
mation languages.

It is well-known that type annotations in programming languages
enable more modular type checking. A component, whose interface
is fully annotated, can be type checked independently of its context,
and type checking the context can be performed without consider-
ing the body of the component. In our setting, this, for example,
corresponds to methods where all XML typed parameters and return

types are annotated, and further, every non-local assignment and
read within the method body involves fields declared with anno-
tated types (the latter to constrain side-effects through field vari-
ables). As discussed in Section 1, annotations also have drawbacks,
however, in XACT, type annotations are optional. This allows the
programmer to mix annotated and unannotated XML types to get the
best from both worlds.

8 Conclusion
We have presented an approach for generalizing the XACT system
to support XML Schema as type formalism and permit optional
type annotations. Compared with other programming languages for
type-safe XML transformations, type annotations are permitted but
not mandatory, which allows the programmer to balance between
the pros and cons of type annotations.

The extension to XML Schema takes advantage of connections
between XML Schema, RELAX NG, and summary graphs. In par-
ticular, it involves a tractable subset of RELAX NG that we use as
an intermediate language in the static analysis.

The ideas presented in this paper will become available in the
next version of the XACT implementation.

References
[1] Gavin Bierman, Erik Meijer, and Wolfram Schulte. The

essence of data access in Cω. In Proc. 19th European Confer-
ence on Object-Oriented Programming, ECOOP ’05, volume
3586 of LNCS. Springer-Verlag, July 2005.

[2] Paul V. Biron and Ashok Malhotra. XML Schema part 2:
Datatypes second edition, October 2004. W3C Recommen-
dation. http://www.w3.org/TR/xmlschema-2/.

[3] Henning Böttger, Anders Møller, and Michael I.
Schwartzbach. Contracts for cooperation between Web
service programmers and HTML designers. Journal of Web
Engineering, 5(1), 2006.

[4] Aske Simon Christensen, Anders Møller, and Michael I.
Schwartzbach. Static analysis for dynamic XML. Technical
Report RS-02-24, BRICS, May 2002. Presented at Program-
ming Language Technologies for XML, PLAN-X ’02.

[5] Aske Simon Christensen, Anders Møller, and Michael I.
Schwartzbach. Extending Java for high-level Web service
construction. ACM Transactions on Programming Languages
and Systems, 25(6):814–875, 2003.

[6] Aske Simon Christensen, Anders Møller, and Michael I.
Schwartzbach. Precise analysis of string expressions. In Proc.
10th International Static Analysis Symposium, SAS ’03, vol-
ume 2694 of LNCS, pages 1–18. Springer-Verlag, June 2003.

[7] James Clark and Makoto Murata. RELAX
NG specification, December 2001. OASIS.
http://www.oasis-open.org/committees/relax-ng/.

[8] Vladimir Gapeyev, Michael Y. Levin, Benjamin C. Pierce,
and Alan Schmitt. The Xtatic experience. Technical Report
MS-CIS-04-24, University of Pennsylvania, October 2004.
Presented at Programming Language Technologies for XML,
PLAN-X ’05.

[9] Matthew Harren, Mukund Raghavachari, Oded Shmueli,
Michael G. Burke, Rajesh Bordawekar, Igor Pechtchanski,
and Vivek Sarkar. XJ: Facilitating XML processing in Java.
In Proc. 14th International Conference on World Wide Web,
WWW ’05, pages 278–287. ACM, May 2005.

[10] Haruo Hosoya and Benjamin C. Pierce. XDuce: A statically
typed XML processing language. ACM Transactions on In-
ternet Technology, 3(2):117–148, 2003.

[11] John B. Kam and Jeffrey D. Ullman. Monotone data flow
analysis frameworks. Acta Informatica, 7:305–317, 1977.
Springer-Verlag.

[12] Kohsuke Kawaguchi. Sun RELAX NG Converter, April
2003. http://www.sun.com/software/xml/developers/

relaxngconverter/.

[13] Martin Kempa and Volker Linnemann. Type checking in
XOBE. In Proc. Datenbanksysteme für Business, Technologie
und Web, BTW ’03, volume 26 of LNI, February 2003.

[14] Christian Kirkegaard, Aske Simon Christensen, and Anders
Møller. A runtime system for XML transformations in Java.
In Proc. Second International XML Database Symposium,
XSym ’04, volume 3186 of LNCS. Springer-Verlag, August
2004.

[15] Christian Kirkegaard, Anders Møller, and Michael I.
Schwartzbach. Static analysis of XML transformations
in Java. IEEE Transactions on Software Engineering,
30(3):181–192, March 2004.

[16] Mehryar Mohri and Mark-Jan Nederhof. Robustness in Lan-
guage and Speech Technology, chapter 9: Regular Approx-
imation of Context-Free Grammars through Transformation.
Kluwer Academic Publishers, 2001.

[17] Anders Møller. Document Structure Description 2.0, De-
cember 2002. BRICS, Department of Computer Science,
University of Aarhus, Notes Series NS-02-7. Available from
http://www.brics.dk/DSD/.

[18] Anders Møller, Mads Østerby Olesen, and Michael I.
Schwartzbach. Static validation of XSL Transformations.
Technical Report RS-05-32, BRICS, 2005.

[19] Anders Møller and Michael I. Schwartzbach. The design
space of type checkers for XML transformation languages.
In Proc. Tenth International Conference on Database The-
ory, ICDT ’05, volume 3363 of LNCS, pages 17–36. Springer-
Verlag, January 2005.

[20] Makoto Murata, Dongwon Lee, and Murali Mani. Taxonomy
of XML schema languages using formal language theory. In
Proc. Extreme Markup Languages, August 2001.

[21] Anders Møller. dk.brics.automaton – finite-state
automata and regular expressions for Java, 2005.
http://www.brics.dk/automaton/.

[22] Henry S. Thompson, David Beech, Murray Maloney, and
Noah Mendelsohn. XML Schema part 1: Structures
second edition, October 2004. W3C Recommendation.
http://www.w3.org/TR/xmlschema-1/.

[23] Akihiko Tozawa and Masami Hagiya. XML Schema contain-
ment checking based on semi-implicit techniques. In Proc.
8th International Conference on Implementation and Appli-
cation of Automata, CIAA ’03, volume 2759 of LNCS, July
2003.

