
Type Analysis for JavaScript

Simon Holm Jensen1,⋆, Anders Møller1,⋆,†, and Peter Thiemann2

1 Aarhus University, Denmark
{simonhj,amoeller}@cs.au.dk

2 Universität Freiburg, Germany
thiemann@informatik.uni-freiburg.de

Abstract. JavaScript is the main scripting language for Web browsers,
and it is essential to modern Web applications. Programmers have started
using it for writing complex applications, but there is still little tool
support available during development.
We present a static program analysis infrastructure that can infer de-
tailed and sound type information for JavaScript programs using abstract
interpretation. The analysis is designed to support the full language as
defined in the ECMAScript standard, including its peculiar object model
and all built-in functions. The analysis results can be used to detect
common programming errors – or rather, prove their absence, and for
producing type information for program comprehension.
Preliminary experiments conducted on real-life JavaScript code indicate
that the approach is promising regarding analysis precision on small and
medium size programs, which constitute the majority of JavaScript appli-
cations. With potential for further improvement, we propose the analysis
as a foundation for building tools that can aid JavaScript programmers.

1 Introduction

In 1995, Netscape announced JavaScript as an “easy-to-use object scripting lan-
guage designed for creating live online applications that link together objects
and resources on both clients and servers” [25]. Since then, it has become the de
facto standard for client-side scripting in Web browsers but many other appli-
cations also include a JavaScript engine. This prevalence has lead developers to
write large programs in a language which has been conceived for scripting, but
not for programming in the large. Hence, tool support is badly needed to help
debug and maintain these programs.

The development of sound programming tools that go beyond checking mere
syntactic properties requires some sort of program analysis. In particular, type
analysis is crucial to catch representation errors, which e.g. confuse numbers
with strings or booleans with functions, early in the development process. Type
analysis is a valuable tool to a programmer because it rules out this class of
programming errors entirely.

⋆ Supported by The Danish Research Council for Technology and Production,
grant no. 274-07-0488. †Corresponding author.



Applying type analysis to JavaScript is a subtle business because, like most
other scripting languages, JavaScript has a weak, dynamic typing discipline
which resolves many representation mismatches by silent type conversions. As
JavaScript supports objects, first-class functions, and exceptions, tracking the
flow of data and control is nontrivial. Moreover, JavaScript’s peculiarities present
a number of challenges that set it apart from most other programming languages:

– JavaScript is an object-based language that uses prototype objects to model
inheritance. As virtually all predefined operations are accessed via prototype
objects, it is imperative that the analysis models these objects precisely.

– Objects are mappings from strings (property names) to values. In general,
properties can be added and removed during execution and property names
may be dynamically computed.

– Undefined results, such as accessing a non-existing property of an object, are
represented by a particular value undefined, but there is a subtle distinction
between an object that lacks a property and an object that has the property
set to undefined.

– Values are freely converted from one type to another type with few excep-
tions. In fact, there are only a few cases where no automatic conversion
applies: the values null and undefined cannot be converted to objects and
only function values can be invoked as functions. Some of the automatic
conversions are non-intuitive and programmers should be aware of them.

– The language distinguishes primitive values and wrapped primitive values,
which behave subtly different in certain circumstances.

– Variables can be created by simple assignments without explicit declara-
tions, but an attempt to read an absent variable results in a runtime error.
JavaScript’s with statement breaks ordinary lexical scoping rules, so even
resolving variable names is a nontrivial task.

– Object properties can have attributes, like ReadOnly. These attributes can-
not be changed by programs but they must be taken into account by the
analysis to maintain soundness and precision.

– Functions can be created and called with variable numbers of parameters.
– Function objects serve as first-class functions, methods, and constructors

with subtly different behavior. An analysis must keep these uses apart and
detect initialization patterns.

– With the eval function, a dynamically constructed string can be interpreted
as a program fragment and executed in the current scope.

– The language includes features that prescribe certain structures (the global
object, activation objects, argument objects) in the implementation of the
runtime system. These structures must be modeled in an analysis to obtain
sufficient precision.

This paper reports on the design and implementation of a program ana-
lyzer for the full JavaScript language. In principle, the design is an application
of abstract interpretation using the monotone framework [9, 21]. However, the
challenges explained above result in a complicated lattice structure that forms
the basis of our analysis. Starting from a simple type lattice, the lattice has

2



evolved in a number of steps driven by an observed lack of precision on small
test cases. As the lattice includes precise singleton values, the analyzer dupli-
cates a large amount of the functionality of a JavaScript interpreter including the
implementation of predefined functions. Operating efficiently on the elements of
the lattice is another non-trivial challenge.

The analyzer is targeted at hand-written programs consisting of a few thou-
sand lines of code. We conjecture that most existing JavaScript programs fit into
this category.

One key requirement of the analysis is soundness. Although several recent
bug finding tools for other languages sacrifice soundness to obtain fewer false
positives [5, 12], soundness enables our analysis to guarantee the absence of cer-
tain errors. Moreover, the analysis is fully automatic. It neither requires program
annotations nor formal specifications.

While some programming errors result in exceptions being thrown, other
errors are masked by dynamic type conversion and undefined values. Some
of these conversions appear unintuitive in isolation but make sense in certain
circumstances and some programmers may deliberately exploit such behavior,
so there is no clear-cut definition of what constitutes an “error”. Nevertheless,
we choose to draw the programmer’s attention to such potential errors. These
situations include

1. invoking a non-function value (e.g. undefined) as a function,
2. reading an absent variable,
3. accessing a property of null or undefined,
4. reading an absent property of an object,
5. writing to variables or object properties that are never read,
6. implicitly converting a primitive value to an object (as an example, the

primitive value false may be converted into a Boolean object, and later
converting that back to a primitive value results in true, which surprises
many JavaScript programmers),

7. implicitly converting undefined to a number (which yields NaN that often
triggers undesired behavior in arithmetic operations),

8. calling a function object both as a function and as a constructor (i.e. perhaps
forgetting new) or passing function parameters with varying types (e.g. at
one place passing a number and another place passing a string or no value),

9. calling a built-in function with an invalid number of parameters (which may
result in runtime errors, unlike the situation for user defined functions) or
with a parameter of an unexpected type (e.g. the second parameter to the
apply function must be an array).

The first three on this list cause runtime errors (exceptions) if the operation in
concern is ever executed, so these warnings have a higher priority than the others.
In many situations, the analysis can report a warning as a definite error rather
than a potential error. For example, the analysis may detect that a property read
operation will always result in undefined because the given property is never
present, in which case that specific warning gets high priority. As the analysis

3



is sound, the absence of errors and warnings guarantees that the operations
concerned will not fail. The analysis can also detect dead code.

The following tiny but convoluted program shows one way of using JavaScript’s
prototype mechanism to model inheritance:

function Person(n) {

this.setName(n);

Person.prototype.count++;

}

Person.prototype.count = 0;

Person.prototype.setName = function(n) { this.name = n; }

function Student(n,s) {

this.b = Person;

this.b(n);

delete this.b;

this.studentid = s.toString();

}

Student.prototype = new Person;

The code defines two “classes” with constructors Person and Student. Person
has a static field count and a method setName. Student inherits count and
setName and defines an additional studentid field. The definition and deletion
of b in Student invokes the super class constructor Person. A small test case
illustrates its behavior:

var t = 100026.0;

var x = new Student("Joe Average", t++);

var y = new Student("John Doe", t);

y.setName("John Q. Doe");

assert(x.name === "Joe Average");

assert(y.name === "John Q. Doe");

assert(y.studentid === "100027");

assert(x.count == 3);

Even for a tiny program like this, many things could go wrong – keeping the
different errors discussed above in mind – but our analysis is able to prove that
none of the errors can occur here. Due to the forgiving nature of JavaScript,
errors may surface only as mysterious undefined values. Simple errors, like mis-
spelling prototype or name in just a single place or writing toString instead of
toString(), are detected by the static type analysis instead of causing failure
at runtime. The warning messages being produced by the analysis can help the
programmer not only to detect errors early but also to pinpoint their cause.

Contributions

This work is the first step towards a full-blown JavaScript program analyzer,
which can be incorporated into an IDE to supply on-the-fly error detection
as well as support for auto-completion and documentation hints. It focuses on
JavaScript version 1.5, corresponding to ECMAScript 3rd edition [11], which is

4



currently the most widely used variant of the language and which is a subset of
the upcoming revision of the JavaScript language.

In summary, the contributions of this paper are the following:

– We define a type analysis for JavaScript based on abstract interpretation [9].
Its main contribution is the design of an intricate lattice structure that fits
with the peculiarities of the language. We design the analysis building on
existing techniques, in particular recency abstraction [3].

– We describe our prototype implementation of the analysis, which covers the
full JavaScript language as specified in the ECMAScript standard [11], and
we report on preliminary experiments on real-life benchmark programs and
measure the effectiveness of the various analysis techniques being used.

– We identify opportunities for further improvements of precision and speed
of the analysis, and we discuss the potential for additional applications of
the analysis technique.

Additional information about the project is available online at

http://www.brics.dk/TAJS

2 Related Work

The present work builds on a large body of work and experience in abstract
interpretation and draws inspiration from work on soft typing and dynamic typ-
ing. The main novelty consists of the way it combines known techniques, leading
to the construction of the first full-scale implementation of a high precision pro-
gram analyzer for JavaScript. It thus forms the basis to further investigate the
applicability of techniques in this new domain.

Dolby [10] explains the need for program analysis for scripting languages to
support the interactive completion and error spotting facilities of an IDE. He
sketches the design of the WALA framework [13], which is an adaptable program
analysis framework suitable for a range of languages, including Java, JavaScript,
Python, and PHP. While our first prototype was built on parts of the WALA
framework, we found that the idiosyncrasies of the JavaScript language required
more radical changes than were anticipated in WALA’s design.

Eclipse includes JSDT [7], which mainly focuses on providing instantaneous
documentation and provides many shortcuts for common programming and doc-
umentation patterns as well as some refactoring operations. It also features some
unspecified kind of prototype-aware flow analysis to predict object types and thus
enable primitive completion of property names. JSEclipse [1] is another Eclipse
plugin, which includes built-in knowledge about some popular JavaScript frame-
works and uses the Rhino JavaScript engine to run parts of the code to improve
support for code completion. Neither of these plugins can generate warnings for
unintended conversions or other errors discussed above.

Program analysis for scripting languages has evolved from earlier work on
type analysis for dynamically typed languages like Scheme and Smalltalk [6, 31,
16]. These works have clarified the need for a type structure involving union types

5



and recursive types. They issue warnings and insert dynamic tests in programs
that cannot be type checked. MrSpidey [14] is a flow-based implementation of
these ideas with visual feedback about the location of the checks in a program-
ming environment. In contrast, our analysis only reports warnings because the
usefulness of checks is not clear in a weakly typed setting.

Thiemann’s typing framework for JavaScript programs [30] has inspired the
design of the abstract domain for the present work. That work concentrates on
the design and soundness proof, but does not present a typing algorithm. In
later work, Heidegger and Thiemann [17] propose a recency-based type system
for a core language of JavaScript, present its soundness proof, sketch an inference
algorithm, and argue the usefulness of this concept.

Anderson and others [2] present a type system with an inference algorithm
for a primitive subset of JavaScript based on a notion of definite presence and
potential absence of properties in objects. Their system does not model type
change and the transition between presence and absence of a property is harder
to predict than in a recency-based system.

Furr and others [15] have developed a typed dialect of Ruby, a scripting
language with features very similar to JavaScript. Their approach requires the
programmer to supply type annotations to library functions. Then they employ
standard constraint solving techniques to infer types of user-defined functions.
There is support for universal types and intersection types (to model overload-
ing), but these types can only be declared, not inferred. They aim for simplicity
in favor of precision also to keep the type language manageable, whereas our
design aims for precision. Their paper contains a good overview of further, more
pragmatic approaches to typing for scripting languages like Ruby and Python.

Similar techniques have been applied to the Erlang language by Marlow and
Wadler [24] as well as by Nyström [27]. These ideas have been extended and im-
plemented in a practical tool by Lindahl and Sagonas [23]. Their work builds on
success typings, a notion which seems closely related to abstract interpretation.

One program analysis that has been developed particularly for JavaScript is
points-to analysis [20]. The goal of that analysis is not program understanding,
but enabling program optimization. The paper demonstrates that the results
from the analysis enable partial redundancy elimination. The analysis is flow
and context insensitive and it is limited to a small first-order core language. In
contrast, our analysis framework deals with the entire language and performs
points-to analysis as part of the type analysis. As our analysis is flow and context
sensitive, it yields more precise results than the dedicated points-to analysis.

Balakrishnan and Reps [3] were first to propose the notion of recency in
abstract interpretation. They use it to create a sound points-to analysis with
sufficient precision to resolve the majority of virtual method calls in compiled
C++ code. Like ourselves, they note that context sensitivity is indispensable
in the presence of recency abstraction. However, the rest of their framework
is substantially different as it is targeted to analyzing binary code. Its value
representation is based on a stride domain and the interprocedural part uses a
standard k-limited call-chain abstraction.

6



Shape analysis [28] is yet more powerful than recency abstraction. For ex-
ample, it can recover strongly updatable abstractions for list elements from a
summary description of a list data structure. This capability is beyond recency
abstraction. However, the superior precision of shape analysis requires a much
more resource-intensive implementation.

Finally, our analysis uses abstract garbage collection. This notion has been
investigated in depth in a polyvariant setting by Might and Shivers [26], who
attribute its origin to Jagannathan and others [19]. They, as well as Balakrishnan
and Reps [3], also propose abstract counting which is not integrated in our work
as the pay-off is not yet clear.

3 Flow Graphs for JavaScript

The analysis represents a JavaScript program as a flow graph, in which each node
contains an instruction and each edge represents potential control flow between
instructions in the program. The graph has a designated program entry node
corresponding to the first instruction of the global code in the program. Instruc-
tions refer to temporary variables, which have no counterpart in JavaScript, but
which are introduced by the analyzer when breaking down composite expressions
and statements to instructions. The nodes can have different kinds:

declare-variable[x]: declares a program variable named x with value undefined.
read-variable[x, v]: reads the value of a program variable named x into a tempo-

rary variable v.
write-variable[v, x]: writes the value of a temporary variable v into a program

variable named x.
constant[c, v]: assigns a constant value c to the temporary variable v.
read-property[v1, v2, v3]: performs an object property lookup, where v1 holds the

base object, v2 holds the property name, and v3 gets the resulting value.
write-property[v1, v2, v3]: performs an object property write, where v1 holds the

base object, v2 holds the property name, and v3 holds the value to be written.
delete-property[v1, v2, v3]: deletes an object property, where v1 holds the base

object, v2 holds the property name, and v3 gets the resulting value.
if[v]: represents conditional flow for e.g. if and while statements.
entry[f, x1, . . . , xn], exit, and exit-exc: used for marking the unique entry and

exit (normal/exceptional) of a function body. Here, f is the (optional) func-
tion name, and x1, . . . , xn are formal parameters.

call[w, v0, . . . , vn], construct[w, v0, . . . , vn], and after-call[v]: A function call is rep-
resented by a pair of a call node and an after-call node. For a call node, w

holds the function value and v0, . . . , vn hold the values of this and the pa-
rameters. An after-call node is returned to after the call and contains a single
variable for the returned value. The construct nodes are similar to call nodes
and are used for new expressions.

return[v]: a function return.
throw[v] and catch[x]: represent throw statements and entries of catch blocks.
<op>[v1, v2] and <op>[v1, v2, v3]: represent unary and binary operators, where

the result is stored in v2 or v3, respectively.

7



This instruction set is reminiscent of the bytecode language used in some in-
terpreters [18] but tailored to program analysis. Due to the limited space, we
here omit the instructions related to for-in and with blocks and settle for this
informal description of the central instructions. They closely correspond to the
ECMAScript specification – for example, read-property is essentially the [[Get]]
operation from the specification.

We distinguish between different kinds of edges. Ordinary edges correspond
to intra-procedural control flow. These edges may be labeled to distinguish
branches at if nodes. Each node that may raise an exception has an exception

edge to a catch node or an exit-exc node. Finally, call and return edges describe
flow from call or construct nodes to entry nodes and from exit nodes to after-call
nodes.

All nodes as well as ordinary edges and exception edges are created before
the fixpoint iteration starts, whereas the call and return edges are added on the
fly when data flow is discovered, as explained in Section 4.

4 The Analysis Lattice and Transfer Functions

The classical approach of abstract interpretation [9] and the monotone frame-
work [21] requires a lattice of abstract states. Our lattice structure is similar to
a lattice used for constant propagation with JavaScript’s type structure on top.
Numbers and strings are further refined to recognize array indices. For objects,
the analysis performs a context-sensitive flow analysis that discovers points-to
information.

For a given flow graph, we let N denote the set of nodes, T is the set of tem-
porary variables, and L is the set of object labels corresponding to the possible
allocation sites (including construct nodes, constant nodes for function declara-
tions, and objects defined in the standard library).

Abstract values are described by the lattice Value:

Value = Undef × Null × Bool × Num × String × P(L)

The components of Value describe the different types of values.

Undef =
undef

Null =
null

Bool = falsetrue

bool

Num =
0 ... 4294967295 ...−42 −1.87 1.2 ...

UInt NotUInt

Num

NaN−Inf +Inf

INF
String =

"foo""0"..."4294967295"

string

UIntString

... "bar"

NotUIntString

For example, the abstract value (⊥, null,⊥,⊥, baz, ∅) describes a concrete value
that is either null or the string “baz”, and (undef,⊥,⊥,⊥,⊥, {ℓ42, ℓ87}) de-
scribes a value that is undefined or an object originating from ℓ42 or ℓ87.

8



Objects are modeled as follows:

Obj = (P →֒ Value × Absent × Attributes × Modified) × P(ScopeChain)

Here, P is the infinite set of property names (i.e. all strings). The partial map
provides an abstract value for every possible property name. There are four spe-
cial property names: [[Prototype]], [[Value]], default index, and default other.
The former two correspond to the internal properties used by ECMAScript; de-

fault index and default other are always in the domain of the map and provide
an abstract value for all property names that are not in the domain of the map
(hence the map is effectively total): default index covers property names that
match UIntString (array indices), and default other covers all other strings. This
distinction is crucial when analyzing programs involving array operations. Sec-
tion 4.3 explains the ScopeChain component, which models the special internal
property [[Scope]].

Each value stored in an object has additional components. Absent models
potentially absent properties, Modified is related to interprocedural analysis as
explained in Section 4.3, and Attributes models the property attributes Read-
Only, DontDelete, and DontEnum.

Absent =
absent

Modified =
modified

Attributes = ReadOnly × DontDelete × DontEnum

ReadOnly = notRORO DontDelete = notDDDD DontEnum = notDEDE

An abstract state consists of an abstract store, which is a partial map from
object labels to abstract objects, together with an abstract stack:

State = (L →֒ Obj) × Stack × P(L) × P(L)

The last two object label sets in State are explained in Section 4.3.
The stack is modeled as follows:

Stack = (T → Value) × P(ExecutionContext) × P(L)

ExecutionContext = ScopeChain × L × L

ScopeChain = L∗

The first component of Stack provides values for the temporary variables. The
P(ExecutionContext) component models the top-most execution context3 and
the P(L) component contains object labels of all references in the stack. An
execution context contains a scope chain, which is here a sequence of object

3 The ECMAScript standard [11] calls a stack frame an execution context and also
defines the terms scope chain and variable object.

9



labels, together with two additional object labels that identify the variable object
and the this object.

Finally, we define the analysis lattice, which assigns a set of abstract states
to each node (corresponding to the program points before the nodes):

AnalysisLattice = V × N → State

V is the set of version names of abstract states for implementing context sen-
sitivity. As a simple heuristic, we currently keep two abstract states separate if
they have different values for this, which we model by V = P(L).

The lattice order is defined as follows: For the components of Value, the Hasse
diagrams define the lattice order for each component. All maps and products are
ordered pointwise, and power sets are ordered by subset inclusion – except the
last P(L) component of State, which uses ⊇ instead of ⊆ (see Section 4.3).

These definitions are the culmination of tedious twiddling and experimenta-
tion. Note, for example, that for two abstract stores σ1 and σ2 where σ1(ℓ) is un-
defined and σ2(ℓ) is defined (i.e. the object ℓ is absent in the former and present in
the latter), the join simply takes the content of ℓ from σ2, i.e. (σ1⊔σ2)(ℓ) = σ2(ℓ),
as desired. Also, for every abstract store σ and every ℓ where σ(ℓ) = (ω, s) is
defined, we have absent set in ω(default index) and in ω(default other) to reflect
the fact that in every object, some properties are absent. Thereby, joining two
stores where an object ℓ is present in both but some property p is only present
in one (and mapped to the bottom Value in the other) results in a store where
ℓ is present and p is marked as absent (meaning that it is maybe absent).

The analysis proceeds by fixpoint iteration, as in the classical monotone
framework, using the transfer functions described in Section 4.1. The initial
abstract state for the program entry node consists of 161 abstract objects (mostly
function objects) defined in the standard library.

We omit a formal description of the abstraction/concretization relation be-
tween the ECMAScript specification and this abstract interpretation lattice.
However, we note that during fixpoint iteration, an abstract state never has
dangling references (i.e. in every abstract state σ, every object label ℓ that ap-
pears anywhere within σ is always in the domain of the store component of σ).
With this invariant in place, it should be clear how every abstract state describes
a set of concrete states.

The detailed models of object structures represented in an abstract state
allows us to perform abstract garbage collection [26]. An object ℓ can safely be
removed from the store unless ℓ is reachable from the abstract call stack. This
technique may improve both performance and precision (see Section 5).

Section 5 contains an illustration of the single abstract state appearing at
the final node of the example program after the fixpoint is reached.

4.1 Transfer Functions

For each kind of node n in the flow graph, a monotone transfer function maps
an abstract state before n to a abstract state after n. In addition, we provide

10



a transfer function for each predefined function in the ECMAScript standard
library. Some edges (in particular, call and return edges) also carry transfer
functions. As usual, the before state of node n is the join of the after states of
all predecessors of n.

The transfer function for read-property[vobj , vprop, vtarget] serves as an illus-
trative example. If vobj is not an object, it gets converted into one. If vobj ab-
stracts many objects, then the result is the join of reading all of them. The read
operation for a single abstract object descends the prototype chain and joins
the results of looking up the property until the property was definitely present
in a prototype. If vprop is not a specific string, then the default index and de-

fault other fields of the object and its prototypes are also considered. Finally,
the temporary variable vtarget is overwritten with the result; all temporaries can
be strongly updated. As this example indicates, it is essential that the analysis
models all aspects of the JavaScript execution model, including prototype chains
and type coercions.

A special case is the transfer function for the built-in functions eval and
Function that dynamically construct new program code. The analyzer cannot
model such a dynamic extension of the program because the fixpoint solver
requires N and L to be fixed. Hence, the analyzer issues a warning if these
functions are used. This approach is likely satisfactory as these functions are
mostly used in stylized ways, e.g. for JSON data, according to a study of existing
JavaScript code [22].

4.2 Recency Abstraction

A common pattern in JavaScript code is creating an object with a constructor
function that adds properties to the object using write-property operations. In
general, an abstract object may describe multiple concrete objects, so such oper-
ations must be modeled with weak updates of the relevant abstract objects. Sub-
sequent read-property operations then read potentially absent properties, which
quickly leads to a proliferation of undefined values, resulting in poor analysis
precision. Fortunately, a solution exists which fits perfectly with our analysis
framework: recency abstraction [3].

In essence, each allocation site ℓ (in particular, those identified by the con-
struct instructions) is described by two object labels: ℓ@ (called the singleton)
always describes exactly one concrete object (if present in the domain of the
store), and ℓ∗ (the summary) describes an unknown number of concrete ob-
jects. Typically, ℓ@ refers to the most recently allocated object from ℓ (hence the
name of the technique), and ℓ∗ refers to older objects – however the addition of
interprocedural analysis (Section 4.3) changes this slightly.

In an intra-procedural setting, this mechanism is straightforward to incorpo-
rate. Informally, the transfer function for a node n of type construct[v] joins the
n@ object into the n∗ object, redirects all pointers from n@ to n∗, sets n@ to an
empty object, and assigns n@ to v. Henceforth, v refers to a singleton abstract
object, which permits strong updates.

11



The effect of incorporating recency abstraction on the analysis precision is
substantial, as shown in Section 5.

4.3 Interprocedural Analysis

Function calls have a remarkably complicated semantics in JavaScript, but each
step can be modeled precisely with our lattice definition. The transfer function
for a call node n, call[w, v0, . . . ], extracts all function objects from w and then,
as a side-effect, adds call edges to the entry nodes of these functions and return
edges from their exit nodes back to the after-call node n′ of n. To handle exception
flow, return edges are also added from the exit-exc nodes to n′

exc
, where n′ has

an exception edge to n′
exc

. The call edge transfer function models parameter
passing. It also models the new execution context being pushed onto the call
stack. The base object, v0, is used for setting this and the scope chain of the
new execution context (which is why we need P(ScopeChain) in Obj).

A classical challenge in interprocedural analysis is to avoid flow through
infeasible paths when a function is called from several sites [29]. Ignoring this
effect may lead to a considerable loss of precision. We use the Modified component
of Obj to keep track of object properties that may have been modified since the
current function was entered. For an abstract state σm at an exit node m with
a return edge to an after-call node n′, which belongs to a call node n, the edge
transfer function checks whether the definitely non-modified parts of σm are
inconsistent with σn, in which case it can safely discard the flow. (A given object
property that is non-modified in σm is consistent with σn if its abstract value
according to σn is less than or equal to its value according to σm.) If consistent,
the transfer function replaces all non-modified parts of σm by the corresponding
potentially more precise information from σn, together with the abstract stack.
When propagating this flow along return edges, we must take into account the
use of recency abstraction to “undo” the shuffling of singleton and summary
objects. To this end, two sets of object labels are part of State to keep track
of those object labels that are definitely/maybe summarized since entering the
current function.

4.4 Termination of the Analysis

The usual termination requirement that the lattice should have finite height
does not apply here, now even for a fixed program. We informally argue that the
analysis nevertheless always terminates by the following observations: (1) The
length of the ScopeChain object label sequences is always bounded by the lexical
nesting depth of the program being analyzed. (2) The number of abstract states
maintained for each node is solely determined by the choice of context sensitivity
criteria. The simple heuristic proposed in Section 4 ensure the sizes of these sets
to be bounded for any program. (3) The partial map in Obj has a potentially
unbounded domain. However, at any point during fixpoint iteration a property
name p can only occur in the domain if it was put in by a write-variable or write-
property instruction. The property name for such an instruction comes from a

12



temporary variable whose value is drawn from Value and coerced to String. In
case that value is not a constant string, the use of default index and default other

ensures that the domain is unmodified, and there are clearly only finitely many
nodes that contain such an instruction. Together, these observations ensure that
a fixpoint will be reached for any input program. The theoretical worst case com-
plexity is obviously high, because of the complex analysis lattice. Nevertheless,
our tool analyzes sizable programs within minutes, as shown in the next section.

5 Experiments

Our prototype is implemented on top of the JavaScript parser from Rhino [4]
with around 17,000 lines of Java code. For testing that the prototype behaves
as expected on the full JavaScript language, we have collected a corpus of more
than 150 programs. These test programs are mostly in the range 5–50 lines of
code and include 28 example programs4 from Anderson et al. [2].

For the Anderson programs, our analysis detects all errors without spurious
warnings and provides type information consistent with that of Anderson [2].
Our own programs were written to exercise various parts of the system and to
provoke certain error messages, so it is not surprising that the analysis handles
these well.

Running the analysis on the example program from Section 1 results in two
warnings. First, the analysis correctly detects that the expression s.toString()

involves a coercion from a primitive type to an object (which was deliberate
by the programmer, in this case). Second, the analysis is able to prove that
y.studentid is a string after the call to y.setName, but not that the string is
a particular string, which results in a warning at the second assert statement.
The reason is that setName is called twice on the same object with different
strings (once through the constructor and once directly). A stronger heuristic
for context sensitivity might resolve this issue.

Figure 1 shows the abstract state for the final program point of the example
program, as obtained by running the prototype implementation. Each box de-
scribes an abstract object. For this simple program, each of them is a singleton
(see Section 4.2). Edges correspond to references. For obvious reasons, only the
used parts of the standard library are included in the illustration. The activation
objects that are used during execution of the function calls have been removed
by the abstract garbage collection. GLOBAL describes the global object, which
also acts as execution context for the top-level code. OBJECT PROTOTYPE
and FUNCTION PROTO model the prototype objects of the central built-in
objects Object and Function, respectively. F Person, F Student, and F 0 cor-
respond to the three functions defined in the program, and F Person PROTO,
F Student PROTO, and F 0 PROTO are their prototype objects. Finally, L0 and
L1 describe the two Student objects being created. The special property names
[[Prototype]], [[Scope]], and [[Value]] are the so-called internal properties. For an

4 http://www.doc.ic.ac.uk/~cla97/js0impl/

13



OBJECT_PROTO

...

constructor :  {F_0}

[[Prototype]]: {OBJECT_PROTO}

[[Value]]: NaN

F_0_PROTO

[[Prototype]]: {FUNCTION_PROTO}

prototype: {F_0_PROTO}

length: 1

[[Scope]]:  {(GLOBAL)}

F_0

F_Student

length: 2

prototype: {F_Student_PROTO}

[[Prototype]]: {FUNCTION_PROTO}

[[Scope]]:  {(GLOBAL)}

L0

student id:  "100026"

name: "Joe Average"

[[Prototype]]: {F_Student_PROTO}

L1

student id:  "100027"

name: str ing

[[Prototype]]: {F_Student_PROTO}

F_Student_PROTO

name: undef ined

[[Prototype]]: {F_Person_PROTO}

F_Person_PROTO

count: 3

constructor: {F_Person}

[[Value]]: NaN

FUNCTION_PROTO

[[Prototype]]: {OBJECT_PROTO}

...

GLOBAL

Student:  {F_Student}

Person: {F_Person}

t :  100027

x :  { L 0 }

y :  { L1 }

[[Prototype]]: {OBJECT_PROTO}

...

F_Person

length: 1

prototype: {F_Person_PROTO}

[[Prototype]]: {FUNCTION_PROTO}

[[Scope]]:  {(GLOBAL)}

[[Prototype]]: {OBJECT_PROTO}

setName: {F_0}

Fig. 1. Abstract state for the final program point of the example program.

example prototype chain, consider the object referred to by the variable x using
the global object as variable object. Its prototype chain consists of L0, followed
by F Student PROTO and F Person PROTO, which reflects the sequence of ob-
jects relevant for resolving the expression x.count. As the illustration shows,
even small JavaScript programs give rise to complex object structures, which
our analysis lattice captures in sufficient detail.

The tool also outputs a call graph for the program in form of the call edges
that are produced during fixpoint iteration, which can be useful for program
comprehension.

The Google V8 benchmark suite5 is our main testbed to evaluate the precision
of the analysis on real code. It consists of four complex, standalone JavaScript
programs. Although developed for testing performance of JavaScript interpreters,
they are also highly demanding subjects for a static type analysis. In addition,
we use the four most complex SunSpider benchmarks6.

Clearly we do not expect to find bugs in such thoroughly tested programs, so
instead we measure precision by counting the number of operations where the
analysis does not produce a warning (for different categories), i.e. is capable of
proving that the error cannot occur at that point.

For the richards.js benchmark (which simulates the task dispatcher of
an operating system), the analysis shows for 95% of the 58 call/construct nodes

5 http://v8.googlecode.com/svn/data/benchmarks/v1/
6 http://www2.webkit.org/perf/sunspider-0.9/sunspider.html

14



that the value being invoked is always a function (i.e. category 1 from Section 1).
Moreover, it detects one location where an absent variable is read (category 2).
(In this case, the absent variable is used for feature detection in browsers.) This
situation definitely occurs if that line is ever executed, and there are no spurious
warnings for this category. Next, it shows for 93% of the 259 read/write/delete-
property operations that they never attempt to coerce null or undefined into
an object (category 3). For 87% of the 156 read-property operations where the
property name is a constant string, the property is guaranteed to be present. As
a bonus, the analysis correctly reports 6 functions to be dead, i.e. unreachable
from program entry. We have not yet implemented checkers for the remaining
categories of errors discussed in the introduction. In most cases, the false posi-
tives appear to be caused by the lack of path sensitivity.

The numbers for the benchpress.js benchmark (which is a collection of
smaller benchmarks running in a test harness) are also encouraging: The analysis
reports that 100% of the 119 call/construct operations always succeed without
coercion errors, 0 warnings are reported about reading absent variables, 89% of
the 113 read/write/delete-property operations have no coercion errors, and for
100% of the 48 read-property operations that have constant property names, the
property being read is always present.

The third benchmark, delta-blue.js (a constraint solving algorithm), is
larger and apparently more challenging for type analysis: 78% of the 182 call and
construct instructions are guaranteed to succeed, 8 absent variables are correctly
detected (all of them are functions that are defined in browser APIs, which we do
not model), 82% of 492 read/write/delete-property instructions are proved safe,
and 61% of 365 read-property with constant names are shown to be safe. For
this benchmark, many of the false positives would likely be eliminated by better
context sensitivity heuristics.

The results for the first three V8 benchmarks and the four SunSpider bench-
marks are summarized in Figure 2. For each of the categories discussed above,
the table shows the ratio between precise answers obtained and the number of
nodes of the relevant kind.

lines
call / variable property fixed-property

construct read access read

richards.js 529 95% 100% 93% 87%
benchpress.js 463 100% 100% 89% 100%
delta-blue.js 853 78% 100% 82% 61%

3d-cube.js 342 100% 100% 92% 100%
3d-raytrace.js 446 99% 100% 94% 94%
crypto-md5.js 291 100% 100% 100% 100%
access-nbody.js 174 100% 100% 93% 100%

Fig. 2. Analysis precision.

15



The fourth (and largest) V8 benchmark, cryptobench.js, presently causes
our prototype to run out of memory (with a limit of 512MB). For the other
benchmarks, analysis time is less than 10 seconds, except 3d-raytrace.js and
delta-blue.js which require 30 seconds and 6 minutes, respectively. Although
analysis speed and memory consumption have not been key objectives for this
prototype, we naturally pursue this matter further. Most likely, the work list
ordering used by the fixpoint solver can be improved.

We can disable various features in the analysis to obtain a rough measure of
their effect. Disabling abstract garbage collection has little consequence on the
precision of the analysis on these programs, however it is cheap to apply and
it generally reduces memory consumption. Using recency abstraction is crucial:
With this technique disabled, the analysis of richards.js can only guarantee
that a constant property is present in 2 of the 156 read-property nodes (i.e. less
than 2%, compared to 87% before) and the number of warnings about potential
dereferences of null or undefined rises from 19 to 90. These numbers confirm
our hypothesis that recency abstraction is essential to the precision of the anal-
ysis. The Modified component of State is important for some benchmarks; for
example, the number of warnings about dereferences of null or undefined in
3d-raytrace.js rises from 21 to 61 if disabling this component. Finally, we
observe that context sensitivity has a significant effect on e.g. delta-blue.js.

6 Conclusion

Scripting languages are a sweet-spot for applying static analysis techniques:
There is yet little tool support for catching errors before code deployment and
the programs are often relatively small. Our type analyzer is the first sound
and detailed tool of this kind for real JavaScript code. The use of the monotone
framework with an elaborate lattice structure, combined with recency abstrac-
tion, results in an analysis with good precision on demanding benchmarks.

We envision an IDE for JavaScript programming with features known from
strongly typed languages, such as highlighting of type-related errors and support
for precise content assists and safe refactorings. This goal requires further work,
especially to improve the analysis speed. Our primary objectives for the proto-
type have been soundness and precision, so there are plenty of opportunities for
improving performance. For example, we currently use a naive work list heuristic
and the representation of abstract states employs little sharing.

In further experiments, we want to investigate if there is a need for even
higher precision. For example, the String component could be replaced by regular
languages obtained using a variant of string analysis [8]. It may also be fruitful
to tune the context sensitivity heuristic or incorporate simple path sensitivity.

Another area is the consideration of the DOM, which is heavily used by most
JavaScript programs. Our work provides a basis for modeling the different DOM
implementations provided by the main browsers and hence for catching browser
specific programming errors. Additionally, it paves the way for analyzing code
that uses libraries (Dojo, Prototype, Yahoo! UI, FBJS, jQuery, etc.). With these

16



further challenges ahead, the work presented here constitutes a starting point
for developing precise and efficient program analysis techniques and tools that
can detect errors (recall the list from Section 1) and provide type information
for JavaScript programs used in modern Web applications.

Acknowledgments We thank Julian Dolby and Stephen Fink for contributing
the WALA framework to the research community, which helped us in the early
phases of the project. Our work also benefited from inspiring discussions about
JavaScript with Lars Bak and the Google Aarhus team.

References

1. Adobe. JSEclipse. http://labs.adobe.com/technologies/jseclipse/.
2. Christopher Anderson, Paola Giannini, and Sophia Drossopoulou. Towards type

inference for JavaScript. In Proc. 19th European Conference on Object-Oriented

Programming, ECOOP ’05, volume 3586 of LNCS. Springer-Verlag, July 2005.
3. Gogul Balakrishnan and Thomas W. Reps. Recency-abstraction for heap-allocated

storage. In Proc. 13th International Static Analysis Symposium, SAS ’06, volume
4134 of LNCS. Springer-Verlag, August 2006.

4. Norris Boyd et al. Rhino: JavaScript for Java. http://www.mozilla.org/rhino/.
5. William R. Bush, Jonathan D. Pincus, and David J. Sielaff. A static analyzer

for finding dynamic programming errors. Software: Practice and Experience,
30(7):775–802, June 2000. John Wiley & Sons.

6. Robert Cartwright and Mike Fagan. Soft typing. In Proc. ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, PLDI ’91, June
1991.

7. Bradley Childs. JavaScript development toolkit (JSDT) features.
http://live.eclipse.org/node/569, July 2008.

8. Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Precise
analysis of string expressions. In Proc. 10th International Static Analysis Sympo-

sium, SAS ’03, volume 2694 of LNCS, pages 1–18. Springer-Verlag, June 2003.
9. Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model

for static analysis of programs by construction or approximation of fixpoints. In
Proc. 4th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’77, pages 238–252, 1977.
10. Julian Dolby. Using static analysis for IDE’s for dynamic languages, 2005. The

Eclipse Languages Symposium.
11. ECMA. ECMAScript Language Specification, 3rd edition. ECMA-262.
12. Dawson R. Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. Checking sys-

tem rules using system-specific, programmer-written compiler extensions. In 4th

Symposium on Operating System Design and Implementation, OSDI ’00. USENIX,
October 2000.

13. Stephen Fink and Julian Dolby. WALA – The T.J. Watson Libraries for Analysis.
http://wala.sourceforge.net/.

14. Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Stephanie Weirich, and
Matthias Felleisen. Catching bugs in the web of program invariants. In Proc.

ACM SIGPLAN Conference on Programming Language Design and Implementa-

tion, PLDI ’96, pages 23–32, 1996.

17



15. Michael Furr, Jong-hoon (David) An, Jeffrey S. Foster, and Michael Hicks. Static
type inference for Ruby. In Proc. 24th Annual ACM Symposium on Applied Com-

puting, SAC ’09, Object Oriented Programming Languages and Systems Track,
March 2009.

16. Justin O. Graver and Ralph E. Johnson. A type system for Smalltalk. In Proc. 17th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’90, pages 136–150, 1990.
17. Phillip Heidegger and Peter Thiemann. Recency types for dynamically-typed

object-based languages. In Proc. International Workshops on Foundations of

Object-Oriented Languages, FOOL ’09, January 2009.
18. Apple Inc. Squirrelfish bytecodes. http://webkit.org/specs/squirrelfish-

3bytecode.html.
19. Suresh Jagannathan, Peter Thiemann, Stephen Weeks, and Andrew Wright. Sin-

gle and loving it: Must-alias analysis for higher-order languages. In Proc. 25th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,

POPL ’98, pages 329–341, 1998.
20. Dongseok Jang and Kwang-Moo Choe. Points-to analysis for JavaScript. In Proc.

24th Annual ACM Symposium on Applied Computing, SAC ’09, Programming Lan-

guage Track, March 2009.
21. John B. Kam and Jeffrey D. Ullman. Monotone data flow analysis frameworks.

Acta Informatica, 7:305–317, 1977. Springer-Verlag.
22. Rasmus Kromann-Larsen and Rune Simonsen. Statisk analyse af JavaScript: Ind-

ledende arbejde. Master’s thesis, Department of Computer Science, University of
Aarhus, 2007. (In Danish).

23. Tobias Lindahl and Konstantinos Sagonas. Practical type inference based on suc-
cess typings. In Proc. 8th ACM SIGPLAN International Conference on Principles

and Practice of Declarative Programming, PPDP ’06, pages 167–178, 2006.
24. Simon Marlow and Philip Wadler. A practical subtyping system for Erlang. In

Proc. 2nd ACM SIGPLAN International Conference on Functional Programming,

ICFP ’97, pages 136–149, 1997.
25. Sun Microsystems and Netscape Inc. Netscape and Sun announce Javascript(TM),

the open, cross-platform object scripting language for enterprise networks and the
internet. http://sunsite.nus.sg/hotjava/pr951204-03.html, 1995.

26. Matthew Might and Olin Shivers. Improving flow analyses via ΓCFA: abstract
garbage collection and counting. In Proc. 11th ACM SIGPLAN International

Conference on Functional Programming, ICFP ’06, 2006.
27. Sven-Olof Nyström. A soft-typing system for Erlang. In Proc. 2nd ACM SIGPLAN

Erlang Workshop, ERLANG ’03, pages 56–71, 2003.
28. Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric shape analysis

via 3-valued logic. ACM Transactions on Programming Languages and Systems,
24(3):217–298, 2002.

29. Micha Sharir and Amir Pnueli. Two approaches to interprocedural dataflow analy-
sis. In Program Flow Analysis: Theory and Applications, pages 189–233. Prentice-
Hall, 1981.

30. Peter Thiemann. Towards a type system for analyzing JavaScript programs. In
Proc. Programming Languages and Systems, 14th European Symposium on Pro-

gramming, ESOP ’05, April 2005.
31. Andrew K. Wright and Robert Cartwright. A practical soft type system for Scheme.

ACM Transactions on Programming Languages and Systems, 19(1):87–152, 1997.

18


