
Precise Analysis of String Expressions

Aske Simon Christensen, Anders Møller?, and Michael I. Schwartzbach

BRICS??, Department of Computer Science
University of Aarhus, Denmark
{aske,amoeller,mis}@brics.dk

Abstract. We perform static analysis of Java programs to answer a
simple question: which values may occur as results of string expressions?
The answers are summarized for each expression by a regular language
that is guaranteed to contain all possible values. We present several ap-
plications of this analysis, including statically checking the syntax of
dynamically generated expressions, such as SQL queries. Our analysis
constructs flow graphs from class files and generates a context-free gram-
mar with a nonterminal for each string expression. The language of this
grammar is then widened into a regular language through a variant of
an algorithm previously used for speech recognition. The collection of
resulting regular languages is compactly represented as a special kind of
multi-level automaton from which individual answers may be extracted.
If a program error is detected, examples of invalid strings are automat-
ically produced. We present extensive benchmarks demonstrating that
the analysis is efficient and produces results of useful precision.

1 Introduction

To detect errors and perform optimizations in Java programs, it is useful to
know which values that may occur as results of string expressions. The exact
answer is of course undecidable, so we must settle for a conservative approxima-
tion. The answers we provide are summarized for each expression by a regular
language that is guaranteed to contain all its possible values. Thus we use an
upper approximation, which is what most client analyses will find useful.

This work is originally motivated by a desire to strengthen our previous
static analysis of validity of dynamically generated XML documents in the JWIG
extension of Java [4], but it has many other applications. Consider for example
the following method, which dynamically generates an SQL query for a JDBC
binding to a database:

public void printAddresses(int id) throws SQLException {

Connection con = DriverManager.getConnection("students.db");

String q = "SELECT * FROM address";

? Supported by the Carlsberg Foundation contract number ANS-1069/20
?? Basic Research in Computer Science (www.brics.dk),

funded by the Danish National Research Foundation.

if (id!=0) q = q + "WHERE studentid=" + id;

ResultSet rs = con.createStatement().executeQuery(q);

while(rs.next()){ System.out.println(rs.getString("addr")); }

}

The query is built dynamically, so the compiler cannot guarantee that only
syntactically legal queries will be generated. In fact, the above method compiles
but the query will sometimes fail at runtime, since there is a missing space
between address and WHERE. In general, it may range from tedious to difficult
to perform manual syntax checking of dynamically generated queries.

Our string analysis makes such derived analyses possible by providing the
required information about dynamically computed strings. We will use the term
string operations when referring to methods in the standard Java library that
return instances of the classes String or StringBuffer.

Outline

Our algorithm for string analysis can be split into two parts:

– a front-end that translates the given Java program into a flow graph, and
– a back-end that analyzes the flow graph and generates finite-state automata.

We consider the full Java language, which requires a considerable engineering
effort. Translating a collection of class files into a sound flow graph is a laborious
task involving several auxiliary static analyses. However, only the front-end is
language dependent, hence the string analysis can be applied to other languages
than Java by replacing just the front-end. The back-end proceeds in several
phases:

– The starting point is the flow graph, which gives an abstract description of a
program performing string manipulations. The graph only has def-use edges,
thus control flow is abstracted away. Flow graph nodes represent operations
on string variables, such as concatenation or substring.

– The flow graph is then translated into a context-free grammar with one
nonterminal for each node. Flow edges and operations are modeled by ap-
propriate productions. To boost precision, we use a special kind of grammar
in which string operations are explicitly represented on right-hand sides.
The resulting grammar defines for each nonterminal the possible values of
the string expression at the corresponding flow graph node.

– The context-free grammar is then transformed into a mixed left- and right-
recursive grammar using a variant of the Mohri-Nederhof algorithm [11],
which has previously been used for speech recognition.

– A program may contain many string expressions, but typically only few ex-
pressions, called hotspots, for which we actually want to know the regular
language. For this reason, we introduce the multi-level automaton (MLFA),
which is a compact data structure from which individual answers may be
extracted by need. Extensive use of memoization helps to make these com-
putations efficient. An MLFA is a well-founded hierarchical directed acyclic
graph (DAG) of nondeterministic finite automata.

All regular and context-free languages are over the Unicode alphabet, which we
denote Σ. The core of the algorithm is the derivation of context-free grammars
from programs and the adaptation of the Mohri-Nederhof algorithm [11], which
provides an intelligent means of approximating a context-free language by a
larger regular language. Naive solutions to this problem will not deliver sufficient
precision in the analysis.

In programs manipulating strings, concatenation is the most important string
operation — and in our analysis this operation is the one that we are able to
model with the highest precision, since it is an inherent part of context-free
grammars. We represent other string operations using less precise automata
operations or character set approximations.

The translation from flow graph to multi-level automaton is linear-time. The
extraction of a deterministic finite-state automaton (DFA) for a particular string
expression is worst-case doubly exponential: one for unfolding the DAG and
one for determinizing and minimizing the resulting automaton. In the case of
a monovariant analysis, the flow graph obtained from a Java program is in the
worst case quadratic in the size of the program, but for typical programs, the
translation is linear.

We provide a Java runtime library with operations for selecting the expres-
sions that are hotspots, casting a string expression to the language of a specified
regular expression, and for probing regular language membership. This library
serves several purposes: 1) It makes it straightforward to apply our analysis tool.
2) In the same way normal casts affect type checking, the “regexp” cast oper-
ation can affect the string analysis since the casts may be assumed to succeed
unless cast exceptions are thrown. This is useful in cases where the approxima-
tions made by the analysis are too rough, and it allows explicit specification of
assertions about strings that originate from outside the analyzed program. 3)
Even without applying the string analysis, the operations can detect errors, but
at runtime instead of at compile-time.

In Section 2, we describe related work and alternative approaches. Section 3
defines flow graphs as the connection between the front-end and the back-end of
the analysis. In Section 4, a notion of context-free grammars extended with oper-
ation productions is defined, and we show how to transform flow graphs into such
grammars. Section 5 explains how a variant of the Mohri-Nederhof algorithm can
be applied to approximate the grammars by strongly regular grammars. These
are in Section 6 translated into MLFAs that efficiently allow minimal determin-
istic automata to be extracted for the hotspots of the original program. Section 7
sketches our implementation for Java, and Section 8 describes examples of string
analysis applications and a number of practical experiments.

We describe in what sense the algorithm is sound; however, due to the lim-
ited space, we omit proofs of correctness of the translation steps between the
intermediate representations.

Contributions

The contributions in this paper consist of the following:

– Formalization of the general framework for this problem and adaptation of
the Mohri-Nederhof algorithm to provide solutions.

– Development of the MLFA data structure for compactly representing the
resulting family of automata.

– A technique for delaying the approximation of special string operations to
improve analysis precision.

– A complete open source implementation for the full Java language supporting
the full Unicode alphabet.

– A Java runtime library for expressing regular language casts and checks.
– Experiments to demonstrate that the implementation is efficient and pro-

duces results of useful precision.

Running Example

In the following sections we illustrate the workings of the various phases of the
algorithm on this tricky program:

public class Tricky

{

String bar(int n, int k, String op) {

if (k==0) return "";

return op+n+"]"+bar(n-1,k-1,op)+" ";

}

String foo(int n) {

StringBuffer b = new StringBuffer();

if (n<2) b.append("(");

for (int i=0; i<n; i++) b.append("(");

String s = bar(n-1,n/2-1,"*").trim();

String t = bar(n-n/2,n-(n/2-1),"+").trim();

return b.toString()+n+(s+t).replace(’]’,’)’);

}

public static void main(String args[]) {

int n = new Random().nextInt();

System.out.println(new Tricky().foo(n));

}

}

It computes strings of the form ((((((((8*7)*6)*5)+4)+3)+2)+1)+0) in a
manner suitably convoluted to challenge our analysis.

2 Related Work

As far as we know, this straightforward problem of statically determining the
possible values of string expressions has not really been explored before. We
therefore choose to provide a discussion explaining why it cannot readily be
solved using standard techniques: abstract interpretation or set constraints.

In both of those approaches, our work in obtaining a flow graph for string op-
erations in Java programs would essentially have to be duplicated; the differences
lie in the subsequent analysis of this flow graph.

Using the standard monotone framework for abstract interpretation [7, 13],
the lattice of regular languages would be used to model abstract string values and
all string operations would be given an abstract semantics. The standard fixed-
point iteration over the flow graph would, however, fail to provide a solution since
the lattice of regular languages has infinite height. Thus, we would at some stage
be required to perform a widening step. Finding an intelligent way of generalizing
a regular language into a useful larger language becomes the stumbling block for
this approach. Note that the context-free language defined by a grammar is in
fact obtained as the fixed-point of a series of finite approximants. Thus, our
application of the Mohri-Nederhof algorithm may be viewed as a technique for
jumping directly to a larger regular limit point.

Using set constraints [2], strings would be represented as linear terms with
a constructor for each Unicode character. With this encoding, regular tree lan-
guages coincide with regular string languages. In the standard approach, each
occurrence of an expression in the flow graph would be modeled by a set variable.
String operations should then be modeled through appropriate set constraints
on these variables. However, several of the operations we consider cannot be
captured with any degree of precision by the permitted constraint operators. In
particular, concatenation is not allowed: with such an operation, set constraints
would no longer define regular tree languages [6]. Thus, we are returned to the
problem that we solve in this paper: the flow graph inherently defines a context-
free language, which must subsequently be given a regular approximation.

A different approach is described in [17], which introduces the λre -calculus
where string expressions are typed by regular languages. This calculus allows
in principle limited type inference (types of recursive functions must be given
explicitly), but no algorithm is provided. Intriguingly, the paper refers to the
Mohri-Nederhof algorithm as a possible venue for future work. In our approach,
we use flow analysis rather than type inference. Thus, λre compares to our
present work as XDuce [10] does to our previous work on JWIG [3].

There is of course much work in speech recognition related to the Mohri-
Nederhof algorithm, but we refer to their paper [11] for this discussion.

In our previous work on JWIG [4], we used a simple string analysis that keeps
track of finite sets of strings but widens to Σ∗ at the slightest provocation. We
believe that this simple algorithm has been used in many other places but has
not been formally published.

Some work on machine learning is vaguely related to the problem we at-
tack [14]: regular languages are inferred not from a flow graph but from a number
of examples and answers to queries. We see no way of applying these techniques
to our problem.

Other program analysis techniques also extract context-free grammars from
programs [15], however, their grammars usually represent possible execution
traces and never string values.

Finally, we note that another well-known combination of strings and program
analysis is unrelated to our work. In [8] the problem is to detect memory errors
in manipulations of C-like string pointers, and the actual characters occurring
in strings are irrelevant to the results.

3 Definition of Flow Graphs

A flow graph captures the flow of strings and string operations in a program
while abstracting everything else away. The nodes in such a graph represent
variables or expressions, and the edges are directed def-use edges that represent
the possible data flow [1]. More precisely, a flow graph consists of a finite set N
of nodes of the following kinds:

– Init: construction of a string value, for instance from a constant or the
Integer.toString method, and is associated a symbol reg that denotes
a regular language [[reg]] representing the possible strings.

– Join: an assignment or other join location.
– Concat: a string concatenation.
– UnaryOp: a unary string operation, for instance setCharAt or reverse, with

an associated symbol op1 denoting a function [[op1]] : Σ∗ → Σ∗. Non-string
arguments to string operations are considered to be part of the function
symbols.

– BinaryOp: a binary string operation, for instance insert, with an associated
symbol op2 denoting a function [[op2]] : Σ∗ ×Σ∗ → Σ∗.

Init nodes have no incoming edges, Join nodes may have an arbitrary number
of incoming edges, each UnaryOp node has exactly one incoming edge, and each
Concat and BinaryOp node has an ordered pair of incoming edges that represent
flow into the respective arguments. Note that our notion of flow graphs is essen-
tially a static single assignment (SSA) form where the Join nodes correspond to
Φ functions. The flow graph for the Tricky example looks as follows:

10

1

9

7 6

12

16

14

2

5

18

22

11

21

23

20

4

19

8

3

1517

13

trim

concat

concat

""

concat

" "

concat

concat

concat

"("

"]"

concat

concat

 "+"

"*"

concat replace1],)[]

<int>

The rightmost node corresponds to the single hotspot at println.
The semantics of a flow graph is defined as the least solution to a constraint

system, similarly to the approach in [4]. The result is a map
F : N → Σ∗, such that F (n) for every node n contains all possible values of the
source program expression or variable that corresponds to n. The constraints
are generated according to the following rules:

F (n) ⊇ [[reg]] for each Init node n
F (n) ⊇ F (m) for each edge from a node m to a Join node n
F (n) ⊇ F (m)F (p) for each Concat node n with edges from (m, p)
F (n) ⊇ [[op1]](F (m)) for each UnaryOp node n with edge from m
F (n) ⊇ [[op2]](F (m), F (p)) for each BinaryOp node n with edges from (m, p)

4 Construction of Context-Free Grammars

From the flow graph, we construct a special context-free grammar such that each
flow graph node n ∈ N is associated a nonterminal An. This grammar has the
following property: For each node n, the language L(An) (that is, the language
of the grammar with An as start nonterminal) is the same as F (n).

First, we define a context-free grammar with operation productions as a gram-
mar where the productions are of the following kinds:

X → Y [unit]
X → Y Z [pair]
X → reg [regular]
X → op1(Y) [unary operation]
X → op2(Y,Z) [binary operation]

where X , Y , and Z are nonterminals. The language of such a grammar is defined
as one would expect: For a production X → reg, X can derive all strings in
[[reg]]. For a unary operation X → op1(Y), X can derive [[op1]](α) if Y can
derive α ∈ Σ∗, and similarly for binary operations. Note that the language is
not necessarily context-free because of the operation productions.

The translation from flow graphs to grammars is remarkably simple: For each
node n, we add a nonterminal An and a set of productions corresponding to the
incoming edges of n:

– For an Init node with language reg, add An → reg .
– For a Join node, add An → Am for each node m with an edge to n.
– For a Concat node, add An → Am Ap where m and p are the two nodes

that correspond to the pair of incoming edges of n.
– For a UnaryOp node with operation op1, add An → op1(Am) where m is

the node having an edge to n.
– For a BinaryOp node with operation op2, add An → op2(Am, Ap) where m

and p are the two nodes that correspond to the pair of incoming edges of n.

The size of the resulting grammar is linear in the size of the flow graph. For the
Tricky example it looks as follows:

X1 → X4 X1 → X15 X1 → X19 X2 → trim(X5)
X3 → X19 X3 → X15 X3 → X4 X4 → ""

X5 → X4 X5 → X6 X6 → X7 X13 X7 → X18 X5

X8 → X1 X17 X9 → "]" X10 → X2 X2 X11 → <int>

X12 → replace[],)](X10) X13 → " " X14 → X1 X11 X15 → X17

X17 → "(" X16 → X14 X12 X18 → X22 X9 X19 → X3 X17

X20 → "+" X21 → "*" X22 → X23 X11 X23 → X20

X23 → X21

The indices correspond to the node numbers in the flow graph. The regular lan-
guage symbols are defined as expected: For example, [["+"]] = {+} and [[<int>]]
is specified by the regular expression 0|(-?[1-9][0-9]*) (in Unix regexp no-
tation).

5 Regular Approximation

We wish to approximate the grammar generated in the previous section with
a regular grammar whose language contains that of the original. The central
idea in our approach is based on the well-known fact that left-linear and right-
linear context-free grammars effectively define regular languages [9]. This result
extends to strongly regular grammars, as explained below.

As in the Mohri-Nederhof algorithm [11], we first find the strongly connected
components of the grammar by viewing it as a graph with nonterminals as nodes
and for each production an edge from the left-hand nonterminal to those on the
right-hand side. For the Tricky example, the following graph is obtained:

9

22

13

18 67

2 1210

16

14

8

4

19

17

1

521

23

20

3

15

11

Notice the resemblance with the flow graph shown in Section 3. The two marked
node groups correspond to the nontrivial strongly connected components.

The Mohri-Nederhof approximation algorithm requires that for all opera-
tion productions, the nonterminals occurring on the right-hand side belong to
a component different from the left-hand nonterminal. For this reason, we first
eliminate all cycles that contain operation productions: For each unary opera-
tion op1 being used, we require a character set approximation [[op1]]C : 2Σ → 2Σ

where [[op1]]C(S) contains the set of characters that may occur in [[op1]](x) for a
string x ∈ S∗, and similarly for binary operations. Using these approximations in
a simple fixed point computation on the grammar, we find for each nonterminal
X a set C(X) ⊆ Σ containing all characters that may appear in the language
of X . For each cycle we replace one operation production with X → r where
r denotes the regular language C(X)∗. After this transformation, the strongly
connected components are recomputed. For the Tricky example, neither the
trim nor the replace operation occurs on a cycle.

A component M is right-generating if there exists a pair production A → B C
such that A and B are in M , and M is left-generating if there exists a pair pro-
duction A → B C such that A and C are in M . Each component now has one
of four types: simple if it is neither right- nor left-generating, left-linear if it is
right-generating but not left-generating, right-linear if it is left-generating but
not right-generating, and non-strongly-regular otherwise. A context-free gram-
mar is strongly regular if it has no non-strongly-regular components. The key
observation of Mohri and Nederhof is that the desired approximation of the whole
grammar can be obtained by a simple transformation of the non-strongly-regular
components.

We adapt the Mohri-Nederhof algorithm to our form of grammar by trans-
forming each non-strongly-regular component M into a right-linear one as fol-
lows: For each nonterminal A in M , add a fresh nonterminal A′. If A corresponds
to a hotspot or is used in another component than M , then add a production
A′ → e where e denotes {ε}. (Intuitively, A′ represents substrings that may be
recognized immediately after the substrings that are recognized by A.) Then
replace all productions having A as left-hand side as follows:

A → X A → X A′

A → B A → B, B′ → A′

A → X Y A → R A′, R → X Y
A → X B A → X B, B′ → A′

A → B X A → B, B′ → X A′

A → B C A → B, B′ → C, C′ → A′

A → reg A → R A′, R → reg
A → op1(X) A → R A′, R → op1(X)
A → op2(X, Y) A → R A′, R → op2(X, Y)

Here, A, B, and C are nonterminals within M , X and Y are nonterminals outside
M , and each R is a freshly generated nonterminal. Intuitively, when considering
a specific component M we may view the nonterminals outside M as terminals.
Since all cycles with operation productions already have been eliminated, the
operation arguments cannot belong to M .

As a result of this transformation, the component is now right-linear, its
size is proportional to the original one, and it is constructed in linear time. In
contrast to Mohri and Nederhof’s application where the grammar always has
one fixed start nonterminal, our application requires regular approximation for
all nonterminals that correspond to hotspots. By construction, the language of a
hotspot nonterminal in the original grammar is always a subset of the language
of the same nonterminal in the approximated grammar.

We require for each unary operation op1 being used a conservative regular ap-
proximation (e.g. in the form of an automaton operation) [[op1]]R : REG → REG,
where REG is the family of regular languages — and similarly for the binary
operations. When the operations used in the grammar are replaced by their ap-
proximating counterparts, the language of each nonterminal is guaranteed to be
regular.

The restriction on adding the A′ → e productions is essential for our appli-
cation. As an example, consider the grammar:

S → T S | a
T → S +

which accepts strings of the form a+a+...+a and could be constructed from a
tiny recursive Java method. Without the restriction, T ′ → e would be added,
so the resulting grammar would accept, for example, the string a+, which is an
unacceptably rough approximation. Instead, the presented algorithm produces
an approximation corresponding to the regular expression a(+a)∗, which is the
best we could hope for.

The Tricky example contains one non-strongly-regular component consist-
ing of {X5, X6, X7}, and the approximation algorithm transforms the grammar
into the following:

X1 → X4 X1 → X15 X1 → X19 X2 → trim(X5)

X3 → X19 X3 → X15 X3 → X4 X4 → ""

X5 → X4 X ′
5 X5 → X6 X ′

6 → X ′
5 X6 → X7

X ′
7 → X13 X ′

6 X7 → X18 X5 X ′
5 → X ′

7 X8 → X1 X17

X9 → "]" X10 → X2 X2 X11 → <int> X12 → replace[],)](X10)

X13 → " " X14 → X1 X11 X15 → X17 X16 → X14 X12

X17 → "(" X18 → X22 X9 X19 → X3 X17 X20 → "+"

X21 → "*" X22 → X23 X11 X23 → X20 X23 → X21

X ′
5 → ""

with again X16 corresponding to the hotspot. For the replace[],)] operation,
the regular approximation [[replace[],)]]]R is defined as an automaton operation
that transforms one automaton into another by replacing all ’]’ transitions by
’)’ transitions, where we use automata with partial transition functions. The
character set approximation [[replace[],)]]]C transforms one set of characters
into another by removing ’]’ and adding ’)’ if ’]’ occurred originally. However,
it is not used in this example since the operation does not occur in a cycle.

Notice the different sources of imprecision in the regular approximation: The
Mohri-Nederhof transformation handles concatenation operations that occur in

non-strongly-regular components. Other string operations are handled by the
regular approximations specified as automata operations. The character set ap-
proximation, which is the most rough approximation in use, is used to break
cycles of operation productions.

6 Multi-Level Finite Automata

As in [11], we extract automata from strongly regular grammars. However, since
we consider the language of more than one nonterminal and have the special
operation productions, we use a novel formalism, multi-level finite automata
(MLFA), with two important properties: 1) A strongly regular grammar can
be translated into an equivalent MLFA in linear time, and 2) from the MLFA,
we can efficiently extract a minimal deterministic (normal) automaton for each
hotspot.

We define an MLFA to consist of a finite set of states Q and a set of transitions
δ ⊆ Q× T ×Q where T is a set of labels of the following kinds:

– reg
– ε

– (p, q)
– op1(p, q)
– op2((p1, q1), (p2, q2))

where each p and q are states from Q. There must exist a level map ` : Q → N

such that:

– (s, (p, q), t) ∈ δ ⇒ `(s) = `(t) > `(p) = `(q),
– (s, op1(p, q), t) ∈ δ ⇒ `(s) = `(t) > `(p) = `(q), and
– (s, op2((p1, q1), (p2, q2)), t) ∈ δ ⇒ `(s) = `(t) > `(pi) = `(qi) for i = 1, 2.

That is, the states mentioned in a transition label are always at a lower level
than the endpoints of the transition, and the endpoints are at the same level.
The language L of a single transition is defined according to its kind:

L(reg) = [[reg]]
L(ε) = {ε}
L((p, q)) = L(p, q)
L(op1(p, q)) = [[op1]]R(L(p, q))
L(op2((p1, q1), (p2, q2))) = [[op2]]R(L(p1, q1),L(p2, q2))

Let δ(q, x) = {p ∈ Q | (q, t, p) ∈ T ∧ x ∈ L(t)} for q ∈ Q and x ∈ Σ∗, and let
δ̂ : Q×Σ∗ → 2Q be defined by:

δ̂(q, ε) = δ(q, ε)
δ̂(q, x) = {r ∈ Q | r ∈ δ(p, z) ∧ p ∈ δ̂(q, y) ∧ x = yz ∧ z 6= ε} for x 6= ε

The language L(s, f) of a pair s, f ∈ Q of start and final states where `(s) = `(f)
is defined as L(s, f) = {x ∈ Σ∗ | f ∈ δ̂(s, x)}. This is well-defined because of the
existence of the level map.

A strongly regular grammar produced in the previous section is transformed
into an MLFA as follows: First, a state qA is constructed for each nonterminal
A, and additionally, a state qM is constructed for each strongly connected com-
ponent M . Then, for each component M , transitions are added according to the
type of M and the productions whose left-hand side are in M . For a simple or
right-linear component:

A → B (qA, ε, qB)
A → X (qA, Ψ(X), qM)
A → X B (qA, Ψ(X), qB)
A → X Y (qA, Ψ(X), p), (p, Ψ(Y), qM)
A → reg (qA, reg , qM)
A → op1(X) (qA, op1(Ψ(X)), qM)
A → op2(X, Y) (qA, op2(Ψ(X), Ψ(Y)), qM)

For a left-linear component:

A → B (qB , ε, qA)
A → X (qM , Ψ(X), qA)
A → B X (qB , Ψ(X), qA)
A → X Y (qM , Ψ(X), p), (p, Ψ(Y), qA)
A → reg (qM , reg , qA)
A → op1(X) (qM , op1(Ψ(X)), qA)
A → op2(X, Y) (qM , op2(Ψ(X), Ψ(Y)), qA)

Each p represents a fresh state. The function Ψ maps each nonterminal into a
state pair: If A belongs to a simple or right-linear component M , then Ψ(A) =
(qA, qM), and otherwise Ψ(A) = (qM , qA). The essence of this construction is the
standard translation of right-linear or left-linear grammars to automata [9]. The
construction is correct in the sense that the language L(A) of a nonterminal A
is equal to L(Ψ(A)). We essentially follow Mohri and Nederhof, except that they
construct an automaton for a fixed start nonterminal and do not have the unary
and binary operations.

Given a hotspot from the source program, we find its flow graph node n,
which in turn corresponds to a grammar nonterminal An that is associated with
a pair of states (s, f) = Ψ(An) in an MLFA F . From this pair, we extract
a normal nondeterministic automaton U whose language is L(s, f) using the
following algorithm:

– For each state q in F where `(q) = `(s), construct a state q′ in U . Let s′ and
f ′ be the start and final states, respectively.

– For each transition (q1, t, q2) in F where `(q1) = `(q2) = `(s), add an equiv-
alent sub-automaton from q′1 to q′2: If t = reg, we use a sub-automaton
whose language is [[reg]], and similarly for t = ε. If t = (p, q), then the
sub-automaton is the one obtained by recursively applying the extraction

algorithm for L(p, q). If t = op1(p, q), the language of the sub-automaton is
[[op1]]R(L(p, q)), and similarly for t = op2((p1, q1), (p2, q2)).

This constructively shows that MLFAs define regular languages. The size of U
is worst-case exponential in the size of F since the sub-automata may be dupli-
cated. Since we subsequently determinize and minimize U , the size of the final
DFA is worst-case doubly exponential, however, our experiments in Section 8
indicate that such blowups do not occur naturally. Our implementation uses
memoization such that the automaton for a state pair (s, f) is only computed
once. This reuse of computations is important for programs with many hotspots,
especially if these involve common subcomputations.

We can now see the benefit of representing the unary and binary operations
throughout all phases instead of, for instance, applying the character set approx-
imation on all operations at an early stage: Those operations that in the flow
graph do not occur in loops are modeled with higher precision than otherwise
possible. For example, the insert method can be modeled quite precisely with
an automaton operation, whereas that is difficult to achieve on the flow graph
or grammar level.

To summarize, the whole translation from Java programs to DFAs is sound:
Flow graphs are constructed such that they conservatively model the Java pro-
grams, and the regular approximation of grammars is also conservative. Both
the translation from flow graphs to context-free grammars, the translation from
strongly regular grammars to MLFAs, and the extraction of DFAs from MLFAs
are exact. Together, this implies that if a Java program at some program point
may produce a particular string during execution, then this string is guaranteed
to be accepted by the automaton extracted for the program point.

7 Implementation for Java

Our implementation works for the full Java language, which makes the transla-
tion to flow graphs quite involved and beyond the scope of this paper. Hence,
we settle for a rough sketch.

We use the Soot framework [18] to parse class files and compute interproce-
dural control flow graphs. We give a precise treatment of String, StringBuffer,
and multidimensional arrays of strings. Using a null-pointer analysis, we limit
proliferation of null strings. The construction of the flow graphs further requires
a constant analysis, a liveness analysis, a may-must alias analysis, and a reaching
definitions analysis – all in interprocedural versions that conservatively take care
of interaction with external classes.

Our analysis tool is straightforwardly integrated with client analyses, such
as the ones described in the next section. Furthermore, it is connected to the
runtime library mentioned in Section 1 such that regexp casts are fed into the
analysis and the designated hotspots are checked.

8 Applications and Experiments

We have performed experiments with three different kinds of client analyses.
Our motivating example is to boost our previously published tool for ana-

lyzing dynamically generated XML in the JWIG extension of Java [4]. This tool
uses a primitive string analysis as a black box that is readily upgraded to the
one developed in this work.

Another example is motivated by the Soot framework [18] that we use in
our implementation. Here a string analysis can be used to improve precision of
call graphs for Java programs that use reflection through the Class.forName
method.

Finally, it is possible to perform syntax checking of expressions that are
dynamically generated as strings, as in the example in Section 1.

In all three cases we provide a number of benchmark programs ranging from
small to medium sized. Each benchmark contains many string expressions, but
only few of those are hotspots. For each benchmark we report the number of
lines of Java code, the total number of string expressions, the number of hotspots
considered, the number of seconds to compute the MLFA, the total number of
seconds to provide automata for all hotspots, and the maximal memory con-
sumption (in MB) during this computation. The timings do not include time
used by Soot to load and parse the class files, which typically takes 5-30 seconds
for the programs considered. The accuracy of the analysis is explained for each
kind of application. All experiments are performed on a 1 GHz Pentium III with
1 GB RAM running Linux.

8.1 Tricky

The Tricky benchmark is the example we followed in the previous sections, gen-
erating strings of the form: ((((((((8*7)*6)*5)+4)+3)+2)+1)+0). The analy-
sis runs in 0.9 seconds and uses 26 MB of memory. The regular approximation
that we compute is (in Unix regexp notation) \(*<int>([+*]<int>\))* where
<int> abbreviates 0|(-?[1-9][0-9]*). This is a good result, but with a poly-
variant analysis, the two calls to the bar method could be distinguished and the
result further sharpened to \(*<int>(*<int>\))*(\+<int>\))*.

8.2 JWIG Validity Analysis

The five smaller JWIG benchmarks are taken from the JWIG Web site. The
three larger ones are a game management system (MyreKrig), a portal for a day
care institution (Arendalsvej), and a system for management of the JAOO 2002
conference (JAOO). The hotspots correspond to places where strings are plugged
into XML templates.

Example Lines Exps Hotspots MLFA Total Memory
Chat 67 86 5 0.597 0.603 34
Guess 77 50 4 0.577 0.581 34
Calendar 89 116 6 0.712 0.828 34
Memory 169 144 3 0.833 6.656 45
TempMan 323 220 9 0.845 0.890 33
MyreKrig 579 1,248 56 3.700 5.480 51
Arendalsvej 3,725 5,517 274 20.767 35.473 102
JAOO 3,764 9,655 279 39.721 86.276 107

The time and memory consumptions are seen to be quite reasonable. The preci-
sion is perfect for these ordinary programs, where only URL syntax, integers and
scalar values must be checked to conform to the requirements of XHTML 1.0.
We use the DSD2 schema language [12] which is expressive enough to capture
these requirements on string values. Compared to our previous string analysis,
we are able to validate more strings, such as dynamically built URL strings. The
string analysis typically takes 10-20% of the total JWIG analysis time.

8.3 Reflection Analysis

These benchmarks are culled from the Web by searching for programs that
import java.lang.reflect and selecting non-constant uses of Class.forName
which also constitute the hotspots.

Example Lines Exps Hotspots MLFA Total Memory
Switch 21 45 1 1.155 1.338 25
ReflectTest 50 95 2 1.117 1.220 25
SortAlgorithms 54 31 1 0.997 1.214 25
CarShop 56 30 2 0.637 0.656 25
ValueConverter 1,718 438 4 4.065 4.127 36
ProdConsApp 3,496 1,909 3 12.160 13.469 80

Again, the time and memory consumptions are unremarkable. Without a client
analysis, it is difficult to rate the precision. In simple cases like SortAlgorithms
and CarShop we find the exact classes, and in some like ValueConverter we fail
because strings originate from external sources.

8.4 Syntax Analysis

Many Java programs build string expressions that are externally interpreted, a
typical example being SQL queries handled by JDBC, as the example in Sec-
tion 1. At present, no static syntax checking is performed on such expressions,
which is a potential source of runtime errors. We can perform such checking
by approximating the allowed syntax by a regular subset which is then checked
to be a superset of the inferred set of strings. For SQL, we have constructed a
regular language that covers most common queries and translates into a DFA
with 631 states.

The benchmarks below are again obtained from the Web. Most originate
from database textbooks or instruction manuals for various JDBC bindings.
The hotspots correspond to calls of executeQuery and similar methods.

Example Lines Exps Hotspots MLFA Total Memory Errors False Errors
Decades 26 63 1 0.669 1.344 27 0 0
SelectFromPer 51 50 1 1.442 1.480 27 0 0
LoadDriver 78 154 1 0.942 0.981 28 0 0
DB2Appl 105 59 2 0.736 0.784 27 0 0
AxionExample 162 37 7 0.800 1.008 29 0 0
Sample 178 157 4 0.804 1.261 28 0 0
GuestBookServlet 344 320 4 1.741 3.167 33 1 0
DBTest 384 412 5 1.688 2.387 31 1 0
CoercionTest 591 1,133 4 4.457 5.664 42 0 0

As before, the analysis runs efficiently. All hotspots except two are validated
as constructing only correct SQL syntax, and encouragingly, the two remaining
correspond to actual errors. The GuestBookServlet builds a string value with
the construction "’" + email + "’", where email is read directly from an input
field in a Web form. Our tool responds by automatically generating the shortest
counterexample:

INSERT INTO comments (id,email,name,comment,date) VALUES (0,’’’,’’,’’,’’)

which in fact points to a severe security flaw.
XPath expressions [5] are other examples where static syntax checking is

desirable. Also, arguments to the method Runtime.exec could be checked to
belong to a permitted subset of shell commands.

Finally, we could use our technique to attack the problem of format string vul-
nerabilities considered in [16]. In our approach, format strings that were tainted
by outside values would be recognized possibly to evaluate to illegal strings. The
precision of this approach is left for future work. Compared to the use of type
qualifiers, our technique is more precise for string operations but it is less flow
sensitive.

9 Conclusion

We have presented a static analysis technique for extracting a context-free gram-
mar from a program and apply a variant of the Mohri-Nederhof approxima-
tion algorithm to approximate the possible values of string expressions in Java
programs. The potential applications include validity checking of dynamically
generated XML, improved precision of call graphs for Java programs that use
reflection, and syntax analysis of dynamically generated SQL expressions.

Our experiments show that the approach is efficient and produces results
of useful precision on realistic benchmarks. The open source implementation to-
gether with documentation and all benchmark programs are available at
http://www.brics.dk/JSA/.

References

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers – Principles, Tech-
niques, and Tools. Addison-Wesley, November 1985.

[2] Alex Aiken. Introduction to set constraint-based program analysis. Science of
Computer Programming, 35:79–111, 1999.

[3] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Static anal-
ysis for dynamic XML. Technical Report RS-02-24, BRICS, May 2002. Presented
at Programming Language Technologies for XML, PLAN-X, October 2002.

[4] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Extending
Java for high-level Web service construction. ACM Transactions on Programming
Languages and Systems, 2003. To appear.

[5] James Clark and Steve DeRose. XML path language, November 1999. W3C
Recommendation. http://www.w3.org/TR/xpath.

[6] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and
M. Tommasi. Tree automata techniques and applications, 1999. Available from
http://www.grappa.univ-lille3.fr/tata/.

[7] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of fix-
points. In Proc. 4th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’77, pages 238–252, 1977.

[8] Nurit Dor, Michael Rodeh, and Mooly Sagiv. Cleanness checking of string ma-
nipulations in C programs via integer analysis. In Proc. 8th International Static
Analysis Symposium, SAS ’01, volume 2126 of LNCS. Springer-Verlag, July 2001.

[9] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, April 1979.

[10] Haruo Hosoya and Benjamin C. Pierce. XDuce: A typed XML processing lan-
guage. In Proc. 3rd International Workshop on the World Wide Web and
Databases, WebDB ’00, volume 1997 of LNCS. Springer-Verlag, May 2000.

[11] Mehryar Mohri and Mark-Jan Nederhof. Robustness in Language and Speech
Technology, chapter 9: Regular Approximation of Context-Free Grammars
through Transformation. Kluwer Academic Publishers, 2001.

[12] Anders Møller. Document Structure Description 2.0, December 2002. BRICS,
Department of Computer Science, University of Aarhus, Notes Series NS-02-7.
Available from http://www.brics.dk/DSD/.

[13] Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program
Analysis. Springer-Verlag, October 1999.

[14] Rajesh Parekh and Vasant Honavar. DFA learning from simple examples. Machine
Learning, 44:9–35, 2001.

[15] Thomas Reps. Program analysis via graph reachability. Information and Software
Technology, 40(11-12):701–726, November/December 1998.

[16] Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting
format string vulnerabilities with type qualifiers. In Proc. 10th USENIX Security
Symposium, 2001.

[17] Naoshi Tabuchi, Eijiro Sumii, and Akinori Yonezawa. Regular expression types
for strings in a text processing language. In Proc. Workshop on Types in Pro-
gramming, TIP ’02, 2002.

[18] Raja Vallee-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne
Gagnon, and Phong Co. Soot – a Java optimization framework. In Proc. IBM
Centre for Advanced Studies Conference, CASCON ’99. IBM, November 1999.

