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Abstract—A well-known approach to statically analyze li-
braries without having access to their client code is to model all
possible clients abstractly using a most-general client. In dynamic
languages, however, a most-general client would be too general:
it may interact with the library in ways that are not intended
by the library developer and are not realistic in actual clients,
resulting in useless analysis results. In this work, we explore the
concept of a reasonably-most-general client, in the context of a
new static analysis tool REAGENT that aims to detect errors in
TypeScript declaration files for JavaScript libraries.

By incorporating different variations of reasonably-most-
general clients into an existing static analyzer for JavaScript,
we use REAGENT to study how different assumptions of client
behavior affect the analysis results. We also show how REAGENT
is able to find type errors in real-world TypeScript declaration
files, and, once the errors have been corrected, to guarantee that
no remaining errors exist relative to the selected assumptions.

I. INTRODUCTION

TypeScript has become a popular alternative to JavaScript
for web application development. TypeScript provides static
type checking, but libraries are still implemented mostly in
JavaScript. These libraries use separate type declaration files
to describe the typed APIs towards the TypeScript application
developers. The DefinitelyTyped repository contains 5 677 such
type declaration files as of February 2019 [1]. Previous work
has shown that there are numerous mismatches between the
type declarations in these files and the library implementations,
causing spurious type errors and misleading IDE suggestions
when used by application developers [12], [16], [28].

Existing approaches in the literature for detecting such mis-
matches include TSCHECK [12], TSTEST [17], and TPD [28].
TSCHECK applies light-weight static analysis of the library
functions, but the analysis is unsound, and errors can therefore
be missed. Also, TSCHECK only reports an error if an inferred
function result type is disjoint from the declared one, which
makes TSCHECK miss even more errors. TSTEST is based on
automated testing and as such inherently underapproximates
the possible behaviors of libraries, resulting in no more than
50% statement coverage of the library code on average [17].
TPD similarly uses dynamic analysis, although with existing
test suites to drive execution instead of automated testing, and
therefore also misses many errors.

Another line of work involves static analysis for JavaScript.
By conservatively over-approximating the possible behavior
of the program being analyzed, static analysis tools can
in principle detect all type errors exhaustively. FLOW uses
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fast type inference, but it is incapable of reasoning about
unannotated library code [9]. Similarly to TypeScript, FLOW
relies on type declaration files for interacting with untyped
library code, and FLOW blindly trusts these files to be correct.
Several static analyzers have been specifically designed to
detect type-related errors in JavaScript programs, without
requiring type annotations. State-of-the-art tools are TAJS [4],
[13], SAFE [22], and JSAI [14]. However, these analyzers
have not been designed for analyzing libraries without client
code, and they do not exploit or check TypeScript types.

Although previous approaches have been proven useful for
finding mismatches between the TypeScript declaration file and
the JavaScript implementation of a given library, none of them
can guarantee that they find all possible type mismatches that
a realistic client may encounter when using the declaration file
and the library. In this work we present a novel framework that
aims to complement existing techniques by having the ability
to exhaustively find all possible type mismatches, or prove that
there are none, relative to certain reasonable assumptions.

The approach we take is to build on an existing static type
analysis tool for JavaScript, specifically the TAJS analyzer.
The first challenge is that such tools have been designed with
a closed-world assumption, i.e., where the entire program
is available for the analysis, whereas we need to analyze
library code without having access to client code. In the
past, the problem of analyzing an open program using an
analysis designed with a closed-world-assumption has been
addressed through the notion of a most-general client for the
library [3], [25]. A most-general client is an artificial program
that interacts with the library in all possible ways, thereby
soundly modeling all possible actual clients. However, we
find that the concept of a most-general client does not work
well for a dynamic language like JavaScript. Due to the poor
encapsulation mechanisms in JavaScript, clients can in principle
interfere with the library in ways that are not intended by the
library developer and are not realistic in actual clients. As
a simple example, a most-general client may overwrite parts
of the library itself or the standard library that the library
relies on, thereby breaking its functionality and rendering the
static analysis results useless. For this reason, we introduce
the concept of a reasonably-most-general client that restricts
the capabilities of the artificial client. Our framework provides
a methodology for library developers to exhaustively detect
possible type mismatches under different assumptions of the
client behavior.



Existing static type analysis tools for JavaScript, including
TAJS, have not been designed with support for TypeScript type
declarations, however, it turns out that TypeScript’s notion of
types fits quite closely with the abstract domains used by TAJS.
A bigger challenge is that the TypeScript type declarations
for libraries are written in separate files, with no clear link
between, for example, the type declaration for a function and
the code that implements that function. JavaScript libraries
initialize themselves dynamically, often in complicated ways
that are difficult to discover statically. To this end, we adapt the
feedback-directed approach by TSTEST, which incrementally
discovers the relation between the type declarations and the
library implementation, to a static analysis setting.

By building on an existing static analysis tool for JavaScript,
we naturally inherit some of its limitations (as well as any
improvements made in the future). Although much progress
has been made to such tools within the last decade, JavaScript
libraries are notoriously difficult to analyze statically, even
when considering simple clients [4], [20], [22], [24]. The goal
of this paper is not to improve the underlying static analysis tool,
but to explore how such a tool can be leveraged to exhaustively
find errors in TypeScript declaration files. Usually, when
JavaScript analyzers encounter difficulties regarding scalability
and precision, they do not degrade gracefully but fail with an
error message about a catastrophic loss of precision, inadequate
memory, or a timeout. To partly remedy this problem, our
framework selective stops the analysis of problematic functions.

In summary, the contributions of our work are the following.

o We introduce the concept of a reasonably-most-general client
(RMGC) that restricts the traditional notion of most-general
clients to enable static analysis of JavaScript libraries (Sec-
tion IIT). Some of the restricting assumptions that we consider
are necessary for the analysis to have meaningful results;
others provide a trade-off between generality of the RMGC,
i.e. what errors can possibly be found, and false positives in
the analysis results.

e« We discuss how to incorporate abstract models of the
different variations of RMGCs on top of an existing static
analysis tool (TAJS) that has originally been designed for
whole-program JavaScript analysis, thereby enabling open-
world analysis of JavaScript libraries (Section V). By adding
support for creating abstract values from TypeScript types
and, conversely, type-checking abstract values according to
TypeScript types, the resulting analysis tool can exhaustively
detect errors in TypeScript declaration files for JavaScript
libraries. We adapt the feedback-directed technique from
TSTEST to incrementally discover the relation between the
type declarations in the TypeScript declaration files and the
program code in the JavaScript implementation.

o We experimentally evaluate our tool, REAGENT, on 10 real-
world libraries (Section VI). REAGENT uses TAJS largely
unmodified, and we believe it could easily be ported to
similar analyzers, such as SAFE or JSAI. With REAGENT,
we detected and fixed type errors in these 10 libraries (totaling
27 lines changed across 7 libraries), with the guarantee that

the fixed declaration files do not contain any remaining type
errors, under the assumptions of the RMGC. Moreover, we
investigate the impact of each optional assumption of the
RMGC by evaluating the trade-off between generality of
the RMGC and accuracy of the analysis.

II. MOTIVATING EXAMPLE

To motivate our approach, we begin by describing an
example from the semver library,! which is a small library for
handling version numbers according to the semantic versioning
scheme. A simplified portion of the library implementation is
shown in Figure la. The constructor in line 1 returns a SemVer
object if the argument string matches the semantic versioning
scheme. The DefinitelyTyped repository hosts a declaration file
for semver, a small part of which is shown in Figure 1b. Our
goal is to detect mismatches between the declaration file and
the implementation of the library. For this reason, we need to
consider how clients may interact with the library.

Because of the dynamic nature of JavaScript, a client of
the library could in principle interact with the library in ways
that are not possible with statically typed languages. A most-
general client interacting with the SemVer library would perform
every possible action, including replacing the format function
(declared in line 15) with a function that just returns a constant
string. The format function in SemVer is responsible for creating
and setting the version property of the SemVer class (line 16),
and thus replacing format will cause all objects created by
the SemVer constructor to lack the version property. A most-
general client will thus find that the declaration file, which
states that the version property is present, may be erroneous. If
the library developer did not intend for clients to overwrite the
format function, and no client developer would ever consider
doing so, then the missing version property is a false positive.

Our reasonably-most-general client (RMGC) works under
a set of assumptions, described in Section III, that restrict the
actions performed compared to a truly “most general” client.
One of these assumptions includes that the RMGC does not
overwrite library functions, and under this assumption the false
positive related to the version property would not occur.

It is nontrivial for any automated technique that relies
on concrete execution to provide sufficient coverage of the
possible behavior of semver. For instance, the simple random
string generator in TSTEST will generate a string matching
the semantic versioning scheme with a probability of around
1/10'3, and without such a string, no SemVer object will ever be
created, so most of the library will remain untested. By the use
of abstract interpretation, we overcome the shortcomings of
the techniques that rely on concrete executions. This approach
allows us to evaluate the SemVer constructor abstractly with
an indeterminate string value passed as parameter. When the
SemVer constructor is evaluated abstractly, the condition in
line 5 is considered as possibly succeeding by the abstract
interpreter, so that an abstract SemVer object is constructed and
returned, which is necessary to test the rest of the library.

Thttps://github.com/npm/node-semver



function SemVer(version) {

if (version.length > MAX_LENGTH) throw new TypeError()
var m = version.trim() .match(REGEXP);
if (!m) throw new TypeError();

// numberify any prerelease numeric ids
this.prerelease = m[4].split(’.’).map((id) => {
if (/7[0-9]+$/.test(id) && +id >= 0O && +id < MAX_INT)
return +id;
return id;
b
this. format(Q);
}
SemVer.prototype.format = function() {
this.version =
this.major + ’.’ + this.minor + ’
if (this.prerelease.length)
this.version += ’-’ + this.prerelease.join(’.’);
return this.version;

1

(a) A simplified version of the SemVer constructor.
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22 export class SemVer {

23 constructor(version: string | SemVer);

24 major: number;

25 minor: number;

26 patch: number;

27 version: string;

28 prerelease: string[];

29 format(): string;

30 compare(other: string | SemVer): 1 | 0 | -1;
31 }

(b) The declaration for SemVer from the TypeScript declaration file.

32
33

for path: SemVer.new().prerelease.[numberIndexer]
Expected string or undefined but found number

(c) Error reported by REAGENT for the prerelease property.

Figure 1: Implementation and declaration file of the semver library.

An example of a type mismatch that is not easily de-
tectable by techniques that rely on concrete executions, but
is found by our abstract RMGC, is a mismatch related to
the prerelease property declared in line 28. The correct type
for the prerelease property is (string | number)[], since a
conversion to number is attempted for every element of the
array during the initialization of the SemVer object (lines 8—12).
The type violation reported by REAGENT for this error is
shown in Figure lc.

The downside of using abstract interpretation is that
REAGENT is sometimes overly conservative and may report
type violations in situations where no concrete execution could
lead to a type mismatch. However, in return, it finds all possible
mismatches, relative to the RMGC assumptions.

III. REASONABLY-MOST-GENERAL CLIENTS

A most-general client (MGC) uses a library by reading and
writing its object properties and invoking its functions and
constructors. We refer to such possible uses as actions.

A library can be stateful, so the behavior of its functions
may depend on actions that have been performed previously, so
an MGC must perform any possible sequence of actions, not
just single actions. Some of the function invocations performed
by the MGC involve callback functions that originate from
the MGC and may similarly perform arbitrary actions. An
MGC may invoke the functions of a library with arguments of
any type, even if the declaration file declares that the function
should be called with arguments of a specific type. However,
the declaration file describes a contract between the library
and the client. If we know that the client does not break this
contract, then the library can be blamed for any type errors
that are encountered.

A reasonably-most-general client (RMGC) does the same as
an MGC, but with certain restrictions that ensure both that the
RMGC does not break the contract in the declaration file, and
that the RMGC does not interact with the library in ways that
are unrealistic and unintended by the library developer. The

first two assumptions we describe next are necessary for the
RMGC to work meaningfully, whereas three other assumptions
are optional and ultimately depend on what guarantees the user
of our analysis wants.

A. Respecting declared types

A necessary assumption is that an RMGC respects declared
types: If a function in a library is declared as receiving, e.g.,
numbers as its arguments, then the RMGC only calls the
function with numbers. Otherwise we would be unable to
blame the library and its type declaration file for any type
mismatch that occurs when the client uses the library.

Assumption 1. [RESPECT-TYPES] An RMGC respects the
types declared in the type declaration file, when passing values
to the library.

Note that because TypeScript’s type system is inherently
unsound [6], this assumption is not the same as requiring that
the client passes the TypeScript type check without warnings.

A consequence of this assumption is that the set of possible
actions is bounded by the types that appear in the declaration
file, which is useful when we in Section V define the notions
of abstract RMGCs and action coverage.

B. Preserving the library

As motivated in Section II, TypeScript clients can in principle
overwrite library functions (like the format function in the
example), but it is clearly unreasonable to blame the library
for type errors that result from that. A possible approach is
to expect that properties that are intended to be read-only are
declared as such in the declaration file. TypeScript properties
are writable by default but can be declared with the modifier
readonly or const. However, authors of declaration files rarely
use these modifiers. Additionally, some features, such as class
methods, cannot easily be declared as read-only.”

2t is possible to create a read-only method by declaring it as a property
with a function type, but this feature is rarely used.



Overwriting properties of standard libraries, specifically
the ECMAScript standard library, the browser DOM API,
and the Node.js API, may similarly cause the library under
test to malfunction. For instance, the SemVer constructor
from the motivating example depends on the functionality of
the String.prototype.trim function from the ECMAScript
standard library. Only a few of the properties of the standard
libraries are marked as read-only. Sometimes some of these non-
read-only properties are overwriten on purpose, for example
to improve support of certain features in outdated browsers by
loading polyfills.® Still, both regarding the library under test
and the standard libraries, it is reasonable to assume that a
library does not depend on the client to overwrite functions in
the library, which justifies the following assumption.

Assumption 2. [PRESERVE-LIBRARIES] An RMGC consid-
ers all properties of the standard libraries and all properties
declared with a non-primitive type* from the library under test
as read-only and thus never writes to those properties.

This assumption does not prevent the RMGC from writing to
library properties declared with primitive types (such properties
are occasionally used for library configuration purposes). In
contrast, writing to an undeclared property is considered a
type error in TypeScript, so the RESPECT-TYPES assumption
ensures that the RMGC never does so.

C. Obtaining values for property writes and function arguments

Whenever an RMGC passes an argument to a library
function or writes to a property of a library object, a value of
the declared type is needed. There are two ways the RMGC
can obtain such a value: either the value originates from
the library (and the client receives the value via a function
call, for example), or the value is constructed by the RMGC
itself. We refer to these as library-constructed values and
client-constructed values, respectively. Even an MGC cannot
construct all possible values itself—for example, a library-
constructed value may be a function that has access to the
internal state of the library via its free variables—so we need
to take both kinds of value constructions into account.

TypeScript is structurally typed, meaning that when a
function is declared as taking an argument of some object type,
then the type system allows the function to be called as long
as the argument is an object of the right structure. According
to the RESPECT-TYPES assumption, an RMGC should pass
any structurally correct client-constructed or library-constructed
value of the desired type. However, that is not always the intent
of the library developers, as the structural types may not fully
describe what is expected from the arguments. For instance,
the structural types in TypeScript cannot describe prototype
inheritance, and sometimes a library assumes other invariants
about values constructed by the library itself.

3https://www.w3.0rg/2001/tag/doc/polyfills
4The primitive types in TypeScript are boolean, string, number,
undefined, symbol, and null

Example 1. In the code below, taken from the Leaflet
library,’ the value of this.options.tileSize is supplied by
the client, and the tileSize property is declared to have type
L.Point | number. If tileSize is set to a value that has the
same structure as L.Point but is not constructed by the L.Point
constructor, then the instanceof check in line 3 in the program
will fail, resulting in an invalid L.Point being constructed.
var getTileSize = function () {

1

2 var s = this.options.tileSize;

3 return s instanceof L.Point ? s :
4

}

new L.Point(s, s);

The following assumption may better align with the intended
use of such a library.

Assumption 3. [PREFER-LIBRARY-VALUES - optional]
When passing values of non-primitive types to the library,
an RMGC uses library-constructed values if possible; client-
constructed values are only used if the RMGC is unable to
obtain library-constructed values of the desired types according
to the type declaration file.

A recent study of JavaScript object creation [29] has found
that it rarely happens that the same property read in a program
uses objects that were created at different program locations,
suggesting that the PREFER-LIBRARY-VALUES assumption is
satisfied by most clients in practice.

String values are optionally handled in a special way. Since
a string provided by the RMGC might be used in a property
lookup on an object in the library, a string that is the name
of a property defined on, for example, Object.prototype may
result in a property of Object.prototype being accessed. The
(perhaps implicit) assumption of the library developer in this
case might be that clients do not use strings that are property
names of prototype objects from the standard library, as such
accesses could have unintended consequences.

Example 2. In the simplified code below taken from the
loglevel library,’ the getLogger function (line 3) makes
sure that only one Logger of a given name is constructed, by
checking if a property of that name is defined on the _loggers
object (lines 4-5). If a Logger has already been constructed
it is returned (line 8), and otherwise a new one is created
(line 6). However, if the name is, for example, toString then
the property lookup in line 4 will return the toString method
defined on Object.prototype, and that method will then be
returned by getLogger resulting in a type mismatch.

1 declare function getLogger(name: string) : Logger
2 var _loggers = {};

3 function getLogger(name) {

4 var logger = _loggers[name];

5 if (!logger) {

6 logger = _loggers[name] = new Logger(...);

7 }

8 return logger;

9 1}

This observation motivates the following assumption.

Shttps://github.com/Leaflet/Leaflet
Shttps://github.com/pimterry/loglevel



Assumption 4. [NO-PROTOTYPE-STRINGS — optional] An
RMGC does not construct strings that coincide with the names
of properties of the prototype objects in the standard libraries.

Another issue is that TypeScript’s type system supports width
subtyping, which means that for an object to match a type,
the object should have all the properties declared by the type,
and any undeclared property in the type can be present in the
object and have any value. Therefore it seems natural that when
an RMGC constructs an object of some type, the constructed
object may also have undeclared properties.

However, since these undeclared properties can have arbitrary
values, false positives might appear if the library reads one of
these undeclared properties.

Example 3. In the simplified example below from the uuid
library,7 the v4 function obtains random numbers from the
opts object (line 4) and puts them into the buf array (line 6).
The opts object can have two different types (declared in
line 1). The v4 function attempts to detect which of the two
types the concrete opts object has, and uses this to create an
array of random numbers (line 4). A client can choose to use
the second variant of the opts object that only has declared
a rng property, but because of width subtyping the client is
technically allowed to add a property random of any type to
that object. If the client chooses to call v4 with such an opts
object, then the property read opts.random can read any value,
which in turn can cause a false positive when non-number
values are written to the buf array (line 6).

1 type Opts = {random: number[]} | {rng(): number[]};
2 declare function v4(opts: Opts, buf: number[]) : number[]

3 function v4(opts, buf) {

4 var rnds = opts.random || (opts.rng || _rng)Q;
5 for (var i = 0; i < 16; i++) {

6 buf[i] = rnds[i];

7 }

8 return buf;

9 3

We therefore leave it as an optional assumption whether
client-constructed objects should have undeclared properties.

Assumption 5. [NO-WIDTH-SUBTYPING - opfional] An
object constructed by the RMGC does not have properties
that are not declared in the type.

If this assumption is disabled, for client-constructed objects, all
properties that are not explicitly declared may have arbitrary
values of arbitrary types.

In the following sections, we demonstrate that these five
assumptions are sufficient to enable useful static analysis results
for JavaScript libraries.

IV. ABSTRACT DOMAINS IN STATIC TYPE ANALYSIS

To be able to explain how to incorporate RMGCs into the
TAIJS static analyzer, we briefly describe the structure of the
abstract domains used by TAJS [4], [13] (and related tools
like SAFE [22], and JSAI [14]).

https://github.com/kelektiv/node-uuid

Algorithm 1: The iterative algorithm performed by the
abstract RMGC.
Input: library source code and TypeScript declaration
1 invoke TAJS to analyze the library initialization code
2 allState < abstract state after library initialization
3 vmap < [library type —> library abstract value]
4 do
5 for all functions f in vmap do

6 args <— use OBTAINVALUE to get arguments for f
7 propagate allState and args to function entry of f
8 invoke TAJS to analyze new dataflow
9 for all functions f in vmap do
10 propagate state at function exit of f to allState
11 ADDLIBVAL(abstract return value of f,

declared return type of f)
12 for all properties p in all objects o in vmap do
13 ADDLIB VAL(abstract value of p in allState,

declared type of p)
14 while allState or vmap changed

TAJS is a whole-program abstract interpreter that over-
approximates the flow of primitive values, objects, and func-
tions in JavaScript programs. (We here ignore many details of
the abstract domains, including the use of context-sensitivity,
that are not relevant for the topic of RMGCs.) Abstract objects
are partitioned by the source locations, called allocation-sites,
where the objects are created [8]. Basically, at each program
point, TAJS maintains an abstract state, which is a map
from allocation-sites to abstract objects, and an abstract object
is a map from abstract property names to abstract values.
Abstract values are described by a product lattice of sub-
lattices for primitive values of the different types (strings,
numbers, booleans, etc., as in traditional constant propagation
analysis [7]) and a sub-lattice for object values (modeled
by allocation-sites, like in traditional points-to analysis [8])
and abstract function values (like in traditional control-flow
analysis [26]). As in other dataflow analyses, TAJS uses a
worklist algorithm to propagate abstract states through the
program until a fixed-point is reached. We refer to the literature
on TAJS for more details.

V. USING RMGCSs IN STATIC TYPE ANALYSIS

Our static analysis is made of two components: the TAJS ab-
stract interpreter and an abstract RMGC. The abstract RMGC
interacts with the library by using the abstract interpreter to
model the actions described in Section III. It maintains an
abstract state, allState, that models all program states that
are possible with the actions analyzed so far.

The basic steps of the abstract RMGC are shown in
Algorithm 1. The abstract RMGC cannot immediately invoke
all functions in the library, because the connection between
the implementation of a function and the declared type of the
function is only known after a reference to the function has been
returned by the library. In the motivating example (Section II), if
the compare method had been defined in the SemVer constructor



Algorithm 2: Handling library-constructed abstract values.

Input: an abstract value and a TypeScript type
ADDLIBVAL(val, type)

15 if not TYPECHECK(val, type) then

16 report type violation

17 fval < FILTER(val, type)

18 vmap <— vmap + [type — fval]

instead of being present on the SemVer.prototype object,
a client would only be able to invoke the method after
having constructed an instance of SemVer. Therefore, a crucial
component of the abstract RMGC is a map, called vmap, from
types in the declaration file to abstract values as used by
TAJS (see Section IV). A type is modeled as an access
path in the declaration file; for example, the access path
SemVer.new() .minor is the TypeScript type number in the
semver declaration file. This map allows the abstract RMGC
to keep track of which parts of the library have been explored
so far during the analysis, and for obtaining abstract library-
constructed values for further exploration. Abstract values
in vmap that contain allocation-sites (modeling references to
objects, cf. Section IV) are interpreted relative to allState.

The abstract RMGC first loads the library by abstractly in-
terpreting the library initialization code (line 1 in Algorithm 1),
and then setting allState to be the resulting abstract state
(line 2). The initialization of libraries intended for use in web
browsers consists of dynamically building an object that is
eventually written to a property of the JavaScript global object
(which is treated as a special allocation-site in TAJS). Clients
then use the property of the global object as an entry point
for the library API. Our abstract RMGC uses this property
by inserting it into vmap associated with the declared library
type (line 3). (Initialization of Node.js libraries works slightly
differently and is ignored here to simplify the presentation.) For
the semver example from Section II, vmap then maps the type
SemVer to the abstract value that models the object produced by
the library initialization code. All other entries in vmap initially
map to the bottom abstract value, denoted L.

After the initialization phase, the abstract RMGC works
iteratively (lines 4—14). In each iteration, it abstractly invokes
each library function that exists in vmap. The auxiliary function
OBTAINVALUE provides abstract values for the arguments as
explained in Section V-A. By propagating® allState and the
arguments to the function entry (line 7) and then invoking
TAJS (line 8), the function bodies are analyzed. Next, for each
of the functions, the resulting abstract state at the function exit
is propagated into allState (line 10) and the abstract return
value is collected (line 11). Similarly, for every object whose
type is contained in vmap, all properties declared by the object
type are collected (lines 12—13). (For simplicity we here ignore
properties with getters and setters.)

The auxiliary function ADDLIBVAL (Algorithm 2) first

8 Propagating an abstract state X into Y means setting Y to the least-upper-
bound of X and Y.

Algorithm 3: Algorithm for obtaining an abstract value
for a given type.

Input: a TypeScript type
Result: abstract value modeling the type

OBTAINVALUE(type)
19 if rype is primitive then
20 return create primitive value from type
21 else if type in stdlib then
22 return CREATENATIVE(type)
23 val < vmap(type)
24 obj < new abstract object
25 for all properties p in type do
26 obj[p] < OBTAINVALUE(type[p])
27 return val U obj

type-checks the abstract value according to the declared type
(lines 15-16) using the function TYPECHECK explained in
Section V-B. The abstract value is then passed through a
function, FILTER, that performs type refinement [15] to remove
parts of the abstract value that do not match the type, and the
resulting abstract value is added® to vmap (line 18).

The entire process is repeated until no more dataflow appears
in allState and vmap.'® When the fixed-point is reached,
allState models an over-approximation of all possible states at
the entries and exits of the reachable library functions. Thereby
the state in the beginning of all library functions includes the
side-effects from all other library functions, and the abstract
RMGC therefore models all states that can result from calling
the functions in any possible sequence.

A. Obtaining abstract values for library function arguments

The pseudo-code in Algorithm 3 shows how OBTAINVALUE
provides abstract values for the abstract RMGC, either by
producing new abstract values (to model the client-constructed
values) or using abstract values from vmap (for the library-
constructed values). Line 6 in Algorithm 1 calls OBTAINVALUE
for every available function parameter type.

For primitive types, such as number or string, we let the
abstract RMGC construct the value (line 20). Creating an
abstract value that describes all possible values of a primitive
type is trivial due to the abstract domains already supported by
TAIJS, as discussed in Section IV. If NO-PROTOTYPE-STRINGS
is enabled, abstract string values are created accordingly.

Types declared in a standard library need special treatment.
For example, the type declaration of Function contains no
information that the value is in fact a callable function. The
function CREATENATIVE (line 22) takes care of creating the
right abstract values for such types; we omit the details here.

If the type is neither primitive nor from a standard li-
brary, an abstract value is created that models the relevant

9The ‘+* operator used in Algorithm 2 denotes updating using least-upper-
bound; specifically, line 18 updates the vmap entry for rype to become the
least-upper-bound of the existing abstract value and fval.

10The lattices in TAJS have finite height, which ensures termination.



Algorithm 4: Type-checking abstract values.

Input: an abstract value and a TypeScript type
Result: true if the abstract value matches the type
TYPECHECK (value, type)

28 if frype is primitive then

29 return true if value matches type
30 else if rype in stdlib then

31 return CHECKNATIVE(value, type)
32 else if rype is function then

33 return true if value is a function
34 else if value is not an object then

35 return false

36 else

37 for all properties p in type do

38 if not TYPECHECK (value[p], type[p]) then
39 return false

40 return true

library-constructed and client-constructed objects.'! Library-
constructed objects are taken from vmap (line 23), and client-
constructed objects are made using OBTAINVALUE recursively
by following the structure of the type in the TypeScript
declaration (lines 25-26). (In case of recursive types, the
abstract objects are reused to ensure termination.) When
creating an object from a type, the type is used as an artificial
allocation-site (line 24), which ensures that TAJS correctly
models possible aliasing.'?

The pseudo-code in lines 25-26 shows how abstract client-
constructed objects are obtained when NO-WIDTH-SUBTYPING
is enabled. If that assumption is disabled, the T (“top”) abstract
value is additionally assigned to all undeclared properties of
the new abstract object.

Functions are just objects in JavaScript, and client-
constructed functions are thus obtained in essentially the same
way as ordinary objects. The only difference is that the artificial
allocation-site is marked as being a function (not shown in
the pseudo-code), which informs TAJS that the new object
can be called as a function. When TAIJS finds that the library
invokes such a client-constructed function, each argument is
processed using ADDLIBVAL and a return value is created
using OBTAINVALUE.

If PREFER-LIBRARY-VALUES is enabled then we omit the
client-constructed abstract value obj in line 27 and simply
return val if values of the desired type can be obtained from
the library according to the type declaration file, which can be
implemented with a simple reachability check.

B. Type-checking abstract values

When the abstract RMGC receives a value from the library,
either by invoking a function or by reading a property from
an object, Algorithm 2 uses TYPECHECK to check whether

11 in line 27 denotes the least-upper-bound on abstract values.
12Subtyping is handled soundly by including the allocation-sites of super-
types when creating the new abstract objects.

the value has the right type according to the corresponding
type declaration. This process is straightforward as outlined in
Algorithm 4. Checking primitive types (line 29) is trivial for
the same reason as creating abstract values of primitive types
is trivial (see Section V-A), and types declared in a standard
library need special treatment (line 31) for the same reason as
creating them requires special treatment.

If an abstract value is checked against a function type, we
only need to check whether the value is a function (line 33);
the parameter types and the return type are not used until the
function has been invoked by Algorithm 1.

Checking object types requires checking that the abstract
value is an object and recursively checking the declared
properties (lines 34-40). Recursive types are handled co-
inductively (ignored in the pseudo-code for simplicity).

C. Coping with analysis precision and scalability issues

Our technique can in principle find all possible type
mismatches that could be encountered by a client satisfying
the RMGC assumptions. This is justified by TAJS being a
“soundy” [19] static analysis, and by our abstract RMGC over-
approximating the actions of an RMGC, meaning that there
may be false positives but we should not expect false negatives.
There are two possible causes of false positives: (1) imprecision
of the underlying static analysis, and (2) the RMGC being
“too general”, lacking reasonable assumptions about how real
clients may behave.

It is well-known that many real-world JavaScript libraries
contain code that is extremely difficult to analyze statically [5],
[21]. Inadequate precision of the static analysis may cause an
avalanche of spurious dataflow, rendering the analysis results
useless. We use some simple heuristics to detect if the analysis
of a library function is encountering a catastrophic loss of
precision or is taking too long.!* In these cases we unsoundly
stop the analysis of that function, but allow the analysis to
proceed with other functions.

We define action coverage as the percentage of actions that
were successfully performed by the abstract RMGC. An action
coverage of 100% means that the abstract RMGC was able
to analyze the entire library exhaustively, without stopping
analysis of any functions. If the action coverage is below
100%, it means that either our analysis fails to analyze one
of the functions, or that an action is unreachable typically
because of a mismatch between the TypeScript declaration file
and the library implementation. In the first case, our abstract
RMGC may miss type violations that could be encountered by
a client that invokes those functions. Yet, the analysis remains
exhaustive for those clients that do not perform any of the
stopped actions. Hence, when the analysis terminates, action
coverage measures the portion of the library API that has been
analyzed exhaustively.

13We declare a function as timed out if TAJS has used more than 200 000
node transfers to analyze it (typically corresponding to a few minutes), and we
characterize a catastrophic loss of precision as a property read on an abstract
value that represents at least two different standard library objects.



VI. EVALUATION

Two of the RMGC assumptions described in Section III
are necessary to obtain any useful analysis results, and the
remaining three assumptions are optional and can be selected
by the analysis user. Imposing too many restrictions on the
model of the clients may prevent detection of errors due to
inadequate coverage, whereas imposing too few may cause false
positives and also significantly degrade analysis performance
because the abstract client becomes “too general”.

To evaluate the usefulness of the concept of an RMGC
and the effects of the optional assumptions, we have im-
plemented the abstract RMGC described in Section V in a
tool, REAGENT (REAsonably-most-GENeral clienT). It uses
the abstract interpreter TAJS unmodified, except for a small
adjustment of its context-sensitivity strategy [11]: to increase
analysis precision, every time the abstract RMGC invokes
TAJS to analyze a function (lines 7-8 in Algorithm 1), the
context is augmented by the access path of the function
(using the same notion of access paths as in Section V). This
adjustment can also easily be made to other JavaScript static
analyzers [14], [22].

In our evaluation we aim to answer the following main
research questions.

RQ1 Does the RMGC enable static type analysis of JavaScript
libraries, using an off-the-shelf, state-of-the-art whole-
program static analyzer?

RQ2 How does each of the optional RMGC assumptions
affect the ability of REAGENT to detect type errors in
JavaScript libraries?

As benchmarks, we have randomly selected 10 JavaScript li-
braries that have TypeScript declarations in the DefinitelyTyped
repository. For the reasons given in Sections I and V-C,
we focus on small libraries only (up to 50 LOC in the
declaration file). The libraries, which are available from the npm
repository,'* and the sizes of their declaration files (measured
with CLOC) are shown in the first columns of Table 1. We use
the latest versions of all the libraries and declaration files.

Our implementation of REAGENT and all experimental data
are available at http://brics.dk/tstools/. The experiments are
performed on computer with 16GB of RAM and an Intel
i7-4712MQ CPU.

A. RQI: Does the RMGC enable static type analysis of
JavaScript libraries?

No existing static analysis is capable of helping programmers
find all type errors in JavaScript libraries that have TypeScript
declarations, even if restricting to small libraries like the
selected benchmarks. To investigate whether our RMGC
enables such analysis, we perform an experiment where we run
REAGENT on the 10 libraries, using the configuration where
all optional assumptions are enabled. For each reported type
violation, we manually classify it as a true positive (usually
an error in the type declaration file) and then fix it, or mark
it as a false positive (either caused by the RMGC being too

https://www.npmjs.com/

Table I: Number of lines in the JavaScript implementation,
along with total lines, changed lines resulting from our
fixes, and lines with false positives after the fixes, for the
corresponding type declaration file.

Impl. Type Declaration File
Library Lines | Total Changed False positives
classnames 37 9 0 0
component-emitter 72 13 3 6
js-cookie 127 23 4 0
loglevel 176 40 7 1
mime 915 9 1 0
pathjs 183 38 5 1
platform 741 22 2 4
pleasejs 630 46 5 2
pluralize 315 13 0 0
uuid 86 23 0 0

general and therefore modeling unrealistic clients, or by the
underlying static analysis being too imprecise). This process
is repeated until REAGENT no longer reports any violations.

The results are summarized in Table I, which shows how
many lines were changed in each declaration file to fix true
positives, and for how many lines in the fixed declaration
file REAGENT falsely reports a violation. Even without expert
knowledge of the libraries, classifying the type violation reports
and fixing the true positives was straightforward based on the
output of REAGENT. For the seven declaration files being
fixed, we created pull requests, which were all accepted by
the maintainers. Table I shows that REAGENT can find actual
errors in many libraries, which is not surprising given that
previous work has shown that many type declaration files are
erroneous [12], [17], [28]. More importantly, Table I shows that
REAGENT does not overwhelm the user with false positives,
as there are only 14 lines containing false positives across five
of the libraries.

Example 4. The get]SON function in the js-cookie library
parses the value of a browser cookie. According to the
declaration file, the function always returns an object:

1 declare function get]SON(key: string) : object;

The implementation (shown below) iterates through all the cook-
ies (lines 5-11) and parses each cookie using the JSON.parse
function. If the key argument is the same as the name of
the cookie then the value of the cookie is returned (line 10).
However, the returned value is the result of the JSON.parse
call, which can be any type, including primitives. The declared
return type object is therefore wrong."

2 function getJSON(key){

3 var result = {};

4 var cookies = document.cookie.split(’; ’);
5 for (var i = 0; i < cookies.length; i++) {
6 var parts = cookies[i].split(’=’);

7 var name = parts[0];

8 var cookie = JSON.parse(parts[1]);

9 if (key === name) {

10 return cookie;

11 13

12 return result;

13 3}

I5This error has since been fixed, see https://github.com/DefinitelyTyped/
Definitely Typed/pull/28529.



Notice how difficult it would be to detect this error using
other techniques: the client must set a cookie whose value
results in a non-object value when passed through JSON.parse,
and then call get]JSON with the name of that cookie.

Example 5. One of the real errors found by REAGENT in the
component-emitter library involves the Emitter function
that is declared as returning an object of type Emitter:

1 declare function Emitter(obj: any) : Emitter;

In the implementation (shown below) if an object is passed
as argument, the call to mixin will copy all the properties
from Emitter.prototype to the object, resulting in the object
satisfying the required type (lines 5-10). However, if, for
example, the argument is the value true, then that value is
returned, and its type is not Emitter but boolean.

2 function Emitter(obj) {

3 if (obj) return mixin(obj);

4 }

5 function mixin(obj) {

6 for (var key in Emitter.prototype) {
7 obj[key] = Emitter.prototypel[key];
8

9 return obj;

10 3}

We fix the error by changing the parameter type any to object,
after which REAGENT no longer reports any error for the
Emitter function.

Repeating the RQ1 experiment using the configuration
where all three optional assumptions are disabled reveals no
additional true positives, which indicates that the configuration
used above is not overly restrictive. However, additional false
positives appear in three of the libraries when all the optional
assumptions are disabled. The impact of the individual optional
assumptions is studied for RQ2 below.

In summary, our answer to RQ1 is affirmative. REAGENT
is able to find real errors, and without an overwhelming
amount of false positives. Unlike all other tools that have been
developed to detect mismatches between JavaScript libraries
and TypeScript declaration files, the use of the RMGC allows
REAGENT to ensure that under the chosen set of assumptions,
no additional type violations exist in these libraries.

B. RQ2: What are the effects of the optional assumptions?

We evaluate REAGENT on the 10 JavaScript libraries using
5 different configurations: one with all optional assumptions
enabled, three with a single assumption disabled, and one with
all the assumptions disabled. (Each optional assumption could
in principle be enabled or disabled for individual functions,
however, for simplicity we either enable or disable each
assumption for all the library functions together.) For each
library and analysis configuration, we measure the action
coverage (Section V-C) and the number of type violations
reported. The results are shown in Table II. We write timeout if
the analysis has not terminated within one hour. Type violation
reports may have the same root cause; the numbers shown here
are without any attempt at deduplication.

When all assumptions are enabled we get 100% action
coverage on all but two libraries. For component-emitter the
lacking action coverage is caused by an error in the declaration
file (demonstrated in Example 5). This error causes TAJS
to have a catastrophic loss of precision, however, once the
error is fixed TAJS runs successfully and REAGENT reaches
100% action coverage. The lacking action coverage in mime is
caused by a type violation that causes most of the library to
be unreachable for the abstract RMGC. After fixing the error,
we obtain 100% action coverage also for this library.

Disabling assumptions causes REAGENT to report more
violations for some libraries, however, manually inspecting the
reports shows that they are all false positives. Note that dis-
abling assumptions makes the RMGC become “more general”,
which may increase the ability to detect type violations, but
it also increases the risk of timeouts and suboptimal action
coverage and thereby fewer violations being reported.

Disabling WIDTH-SUBTYPING causes massive losses of
precision in six of the libraries, resulting in either a timeout or a
loss of action coverage. The precision loss typically comes from
TAIJS reading an undeclared property on a client-constructed
value, causing an avalanche of spurious dataflow.

Disabling NO-PROTOTYPE-STRINGS only changes the results
for two libraries. We see extra false positives for loglevel
and pathjs.

Disabling PREFER-LIB-VALUES makes no significant differ-
ence for the 10 benchmarks, however, we know that disabling
this assumption can cause false positives in other libraries as
shown in Example 1.

Disabling all three assumptions causes a catastrophic loss
of precision for most libraries, and REAGENT only terminates
successfully on three of the libraries.

We can from these results conclude that the WIDTH-
SUBTYPING assumption is critical for precision for most
libraries, NO-PROTOTYPE-STRINGS improves precision in some
cases, PREFER-LIB-VALUES makes no difference for these
benchmarks, and no additional true positives are found when
disabling the assumptions. This suggests that enabling all the
assumptions seems to be a reasonable default configuration.

Threats to validity The following circumstances may affect
our conclusions. Although we have selected the 10 libraries
randomly, they may not be representative. TAJS is not fully
sound, which may cause REAGENT to miss errors (see
Section VII). We have not conducted a user study to evaluate
whether the error reports generated by REAGENT are also
actionable to others, and our fixes to the erroneous declaration
files have not (yet) been confirmed by the library developers.

VII. RELATED WORK

Open-world analysis Many static analyses require whole
programs to work, and developing useful modular analysis
techniques has been a challenge for decades [10]. The idea
of using most-general clients (also called most-general appli-
cations) when statically analyzing the possible behaviors of
libraries appears often in the static analysis literature. One



Table II: Comparison of RMGC variants. Each column contains action coverage / violations.

Library all assumptions NO-WIDTH- NO-PROTOTYPE- PREFER-LIB- all three
enabled SUBTYPING disabled STRINGS disabled  VALUES disabled disabled
classnames 100.0% / 0 timeout | 0 100.0% / 0 100.0% / 0 timeout | 0
component-emitter 96.0% / 72 52.0% / 21 96.0% / 72 96.0% / 72 timeout | 73
js-cookie 100.0% / 4 timeout / 0 100.0% / 4 100.0% / 4 timeout / 0
loglevel 100.0% / 3 100.0% / 3 100.0% / 15 100.0% / 3 100.0% / 15
mime 83% /1 83% /1 83% /1 83% /1 83% /1
pathjs 100.0% / 7 timeout / 30 100.0% / 12 100.0% / 7 timeout / 36
platform 100.0% / 10 100.0% / 10 100.0% / 10 100.0% / 10 100.0% / 10
pleasejs 100.0% / 16 timeout | 0 100.0% / 16 100.0% / 16 timeout | 0
pluralize 100.0% / 0 100.0% / 0 100.0% / 0 100.0% / 0 100.0% / 0
uuid 100.0% / 0 61.9% /0 100.0% / 0 100.0% / 0 61.9% /0
Average 90.4% / 11.3 -/65 90.4% / 13.0 90.4% / 11.3 -/ 13.5

example is the modular static analysis by Rinetzky et al. [25]
for reasoning about heap structures; another is the points-to
analysis for Java libraries by Allen et al. [3]. To the best of our
knowledge, none of the existing techniques work for dynamic
languages like JavaScript.

The tool Averroes [2] is able to analyze an application
without using the implementation of the library. This is done
by creating a placeholder library that is similar to a most-
general client but with the roles swapped.

FLow [9] is similarly to TypeScript a typed extension of
JavaScript. FLOW is based on static analysis, like REAGENT,
but obtains modularity by relying on type annotations, not only
at the library interface but also inside the library code. The
static analysis in FLOW has been developed as a compromise
between soundness and completeness. As an example, FLOW
does not detect any type error in the following simple program,
where the foo function possibly returns a string at run-time
instead of a number as expected from the type declaration.

1 var obj = { f: "this is a string, not a number" }

2 function foo(obj: typeof obj, s: string) : number {
3 return obj[s];

4 1

FLOW programs can use JavaScript libraries via type declara-
tion files, much like in TypeScript.

Sound whole-program analysis for JavaScript A lot of
research has been done on how to perform sound static analysis
for JavaScript, and significant progress has been made in recent
years on making such analysis scale to real-world JavaScript
programs. Among the recent work are TAJS [4], WALA [18],
SAFE [22], and JSAI [14]. All these analyzers share that
they are “soundy” [19], meaning that they are sound in most
realistic cases but rely on assumptions in specific corner cases
that cause the analysis to be unsound in general. For example,
the TAJS tool we use for REAGENT does not fully model all
standard library functions,'® but we believe those limitations
are insignificant for the experimental evaluation of REAGENT.

Detecting errors in TypeScript declaration files Multiple
approaches have been developed for detecting errors in Type-
Script declaration files. TPD [28] finds errors by adding type
contracts to existing library unit tests. These type contracts
then check that the values observed during execution match
the declared types. The approach in TPD is thus a variant of

16See https://github.com/cs-au-dk/TAJS/issues/8.

gradual typing [27], which has also been applied to general
TypeScript code [23].

Like TPD, TSTEST [17] uses concrete executions with run-
time type checks to detect errors in TypeScript declaration files.
However, TSTEST explores the library using automated testing
instead of relying on existing unit tests. TSTEST is similar
to REAGENT in that it attempts to find type violations in a
TypeScript declaration file by simulating a client, but it lacks
the exhaustiveness that characterizes REAGENT.!”

TSCHECK [12] is the only previous work that uses static
analysis to find errors in type declaration files. Being based
on a fast unsound static analysis and only detecting errors
that manifest as likely mismatches at function return types,
it provides no guarantees that all errors are found, unlike
REAGENT.

VIII. CONCLUSION

We have shown how the concept of a reasonably-most-
general client (RMGC) enables static analysis of JavaScript
libraries to detect mismatches between the library code and
the TypeScript declaration files. An RMGC works under a set
of assumptions that reflect how realistic clients may behave.
Imposing too few or too many assumptions can result in false
positives or false negatives, respectively. We have proposed five
specific assumptions, some of which are necessary to obtain
any meaningful results, and others can be configured by the
analysis user.

Experiments with our proof-of-concept implementation
REAGENT that builds on the existing static analyzer TAJS
demonstrates that the approach works, at least for small libraries
that are within reach of TAJS. REAGENT finds real type
mismatches without an overwhelming amount of false positives.
By design, it explores the library code exhaustively, relative to
the RMGC assumptions, unlike all existing alternatives.

In addition to improving the quality of TypeScript declaration
files, we believe this work may also guide further development
of TAJS and related JavaScript static analyzers.
Acknowledgments We are grateful to Gianluca Mezzetti for his
contributions to the early phases of this research. This work was
supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program
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7Running TSTEST on the same benchmarks confirms that it finds a strict
subset of the errors detected by REAGENT.
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