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SUMMARY

A static analysis can check programs for potential errors. A natural question that arises is therefore: who
checks the checker? Researchers have given this question varying attention, ranging from basic testing
techniques, informal monotonicity arguments, thorough pen-and-paper soundness proofs, to verified fixed
point checking. In this paper we demonstrate how quickchecking can be useful to test a range of static
analysis properties with limited effort. We show how to check a range of algebraic lattice properties, to help
ensure that an implementation follows the formal specification of a lattice. Moreover, we offer a number of
generic, type-safe combinators to check transfer functions and operators on lattices, to help ensure that these
are, e.g., monotone, strict, or invariant. We substantiate our claims by quickchecking a type analysis for the
Lua programming language. Copyright c© 0000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Fundamentally, most static analyses boil down to monotone functions operating over lattices [1]. To
gain confidence in a static analysis implementation, one would thus hope that the code implements,
at least, (1) the formal specification of being a lattice, and (2) functions that are in fact monotone.
For example, consider a simple two-element lattice expressed as an OCaml module:

module L = struct

let name = "example lattice"

type elem = Top | Bot

let leq a b = match a,b with

| Bot, _ -> true

| _, Top -> true

| Top, Bot -> false

let join e e’ = if e = Bot then e’ else Top

let meet e e’ = if e = Bot then Bot else e’

(* ... *)

let to_string e = if e = Bot then "Bot" else "Top"

end
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2 J. MIDTGAARD AND A. MØLLER

Here, the module L defines a lattice with an algebraic data type elem for describing the two kinds of
elements: Top and Bot. In addition, L defines a number of operations including leq (element ordering),
join (least upper bound), and meet (greatest lower bound). In particular, leq utilizes pattern matching
(dispatch over algebraic data types, with underscore _ as catch-all) over pairs to cover all cases.
How can we be sure that this module correctly implements a lattice? This requires the operations to
satisfy various algebraic properties, for example, that leq is reflexive, transitive, and anti-symmetric.

We present a framework to effectively test implementations of lattices and their operations, which
are an essential part of static analysis tools. Provided we extend the lattice module with a generator
of arbitrary elements, e.g., by choosing arbitrarily among the list of values [Bot; Top]:

let arb_elem = Arbitrary.among [Bot; Top]

our framework provides a range of property tests to boost confidence in the implementation. For one
we can pass the module L to the generic functor GenericTests to get back a new module, containing
a runnable test suite (here shown with the user’s input in bold font):

# let module LTests = GenericTests(L) in

run_tests LTests.suite;;

check 19 properties...

testing property leq reflexive in example lattice...

[✓] passed 1000 tests (0 preconditions failed)

testing property leq transitive in example lattice...

[✓] passed 1000 tests (0 preconditions failed)

testing property leq anti symmetric in example lattice...

[✓] passed 1000 tests (0 preconditions failed)

... (32 additional lines cut)...

tests run in 0.02s

[✓] Success! (passed 19 tests)

Furthermore, to ensure that a static analysis implementation is guaranteed to reach a fixed point
when analyzing a given program, the involved lattice operations should be monotone. For example,
consider the following non-monotone operation flip, which maps bottom to top and top to bottom:

let flip e = if e = L.Bot then L.Top else L.Bot

In this paper we provide a type-safe, embedded domain-specific language (EDSL) to check and
catch such operator errors, by expressing property signatures in a syntax that resembles the standard
mathematical syntax, flip : L

⊑
−→ L . We get runnable tests of such generic operator properties by

providing only a signature and a description pair (consisting of a string and the function value of the
operator):

# let flip_desc = ("flip",flip) in

run (testsig (module L) -<-> (module L) =: flip_desc);;

testing property ’flip monotone in argument 1’...

[✗] 270 failures over 1000 (print at most 1):

(Bot, Top)

(The operators -<-> that expresses monotonicity and =: that builds the test are explained in detail
in Section 4.) We only need two inputs (top and bottom) to achieve full coverage of flip’s
implementation. However, testing each individual call to flip in isolation is not enough to uncover
such an error and falsify monotonicity. Instead a test would need to make two calls on related
inputs and compare their results. Undoubtedly, this is a simplistic example, but the need to test
implementations still stands. Today’s static analyses can establish interesting properties about
programs in higher-order, dynamically typed languages, for example JavaScript. The intricate
semantics of such languages induces complexity in the underlying lattices and in the operations over
these. In this paper we demonstrate how quickchecking [2] can be used as an effective lightweight
methodology to test a range of algebraic properties in static analyses. In situations where lattices
and transfer functions are subject to change, for example, in the design phase or in the revision of
an analysis, the approach can become a valuable tool. Our approach can also act as a supplement
to pen-and-paper proofs or mechanized reasoning within a proof assistant. Towards this goal, this
paper makes the following contributions:
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• We explore how the ideas in quickchecking (briefly summarized in Section 2) can be applied
to static analysis.

• We demonstrate how to lift generators of simple lattices to generators of composite lattices
and how to use the generators to check a number of fundamental lattice properties expressed
as a reusable lattice test suite (Section 3).

• We formulate a type-safe EDSL of property signatures for testing operations over lattices for
a number of desirable properties (Section 4).

• We present a case study of quickchecking a nontrivial static type analysis for Lua, where the
tests supplement a basic test suite of hand-written programs to collectively achieve nearly full
coverage (Section 5).

Compared to the conference version [3], this paper

• describes the Lua type analysis in more detail,
• discusses a revision of the analysis implementation following a generator revision,
• illustrates how the approach also works for a range of numeric abstract domains,
• elaborates on the implementation and the signatures of the type-safe EDSL (including an

extension for testing distributivity of operations),
• revises the experiment, which overall results in even better coverage, and
• contains an extended discussion of related work.

2. BACKGROUND

This section provides relevant background information on QuickCheck, Lua, and static type
analysis.

2.1. A QuickCheck summary

Quickchecking [2] is a popular methodology within the functional programming community for
performing property-based testing. The approach is based on the fundamental idea of generating

tests rather than hand-writing them. The generated tests all share a common format described by
a mathematical property. The property acts as a specification and is supposed to hold regardless of
the input. For example, in the case of the flip operation, the property ∀a,b. a⊑ b ⇒ flip a⊑ flip b

captures monotonicity: for all pairs of ordered inputs, flip should preserve this ordering among its
outputs. As such, a quickcheck test involves two components: (1) a generator for producing arbitrary
input, and (2) properties that should be tested on the arbitrary input. Two domain-specific languages
(DSLs) are used for this purpose, one for each component. The original QuickCheck technique
was based on DSLs embedded into Haskell using a Haskell library [2]. Since then, the approach
has been ported to numerous other programming languages, both statically and dynamically typed.
The approach has also been extended beyond functional programming to test imperative (stateful)
code [4], and has had a number of successes, e.g., using the commercial Erlang QuickCheck port
to test and find numerous issues in automotive software [5]. For the remainder of this paper, we use
the qcheck implementation of QuickCheck in OCaml. However, we stress that the approach is not
specific to OCaml.

Suppose we wish to test the (incorrect) property from the introduction, that flip is a monotone
function, hence satisfying the property ∀a,b. a⊑ b⇒ flip a⊑ flip b. By translating the universally
quantified variables a and b into function parameters, this property can be expressed as an
anonymous OCaml function with Boolean result type:

fun (a,b) -> Prop.assume (L.leq a b); L.leq (flip a) (flip b)

The implication of our specification is modeled using the operator Prop.assume from qcheck’s
property DSL, which will test its precondition and (i) continue if it is true, or (ii) accept the test and
bail early if it is false (while keeping track of the number of failed preconditions). This faithfully
models logic implication: false implies anything. In general, properties concerning a value of type
’a become predicates of type ’a -> bool.
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4 J. MIDTGAARD AND A. MØLLER

To test the above property on arbitrary pairs, we need to generate some input. Recall
Arbitrary.among : ’a list -> ’a Arbitrary.t from the introduction: it is an example of a combinator
from qcheck’s generator DSL that will supply arbitrary elements selected from its argument list.
We can lift this generator to a generator of pairs, using another built-in combinator, Arbitrary.pair
(from here on we will abbreviate qcheck’s Arbitrary module to Arb):

let arb_pair = Arb.pair L.arb_elem L.arb_elem

We are now in position to write a test with mk_test and subsequently run it, which exposes the
error:

# let mon_test =

mk_test arb_pair (fun (a,b) -> Prop.assume (L.leq a b); L.leq (flip a) (flip b));;

val mon_test : QCheck.test = <abstr>

# run mon_test;;

testing property <anon prop >...

[✗] 27 failures over 100

The error message neither names the failed property nor provides a counterexample. To do so,
mk_test accepts a range of optional, named arguments (these are prefixed with tilde in OCaml).
An example:

mk_test ~n:1000 ~pp:pp_pair ~name:"flip monotone"

arb_pair (fun (a,b) -> Prop.assume (L.leq a b); L.leq (flip a) (flip b))

This will instead run the test on 1000 arbitrary pairs, it will identify the particular failed property
by the supplied string "flip monotone", and it will pretty-print up to ten counterexamples, using
a supplied pretty-printer pp_pair (defined as a combination of its component’s pretty-printers,
let pp_pair = PP.pair L.to_string L.to_string).

2.2. The Lua programming language

Lua is a dynamically typed programming language in the ALGOL family of lexically scoped
languages. In addition to the usual built-in data types, such as numbers and strings, it features
both first-class hash tables and first-class functions. Although one can also program stand-alone
applications in Lua, the language is mostly known for its ease of embedding. For example, Lua is
widely adopted within the computer game industry [6] where it is a popular choice for scripting.
Appendix A.1 provides a simplified BNF of Lua 5.1, leaving out a number of details that are
inessential for this presentation. As an example, consider the following, higher-order Lua program:

1 function mktable(f)

2 return { x = f("x"), y = f("y") }

3 end

4

5 mktable(function (z) return z.." component" end)

The program calls a function mktable, passing a function as parameter. The function mktable will
then allocate a table with two entries, x and y, initialize the entries with the result of invoking the
function parameter, and return the resulting table.

2.3. A static analysis for Lua

To statically predict dynamic type properties of Lua programs, we build a forward, interprocedural
static analysis along the lines of the TAJS type analysis for JavaScript by Jensen et al. [7]. The
implementation consists of a front-end that parses a Lua program and builds a corresponding
abstract syntax tree (AST). The analysis back-end consists of a composite lattice to model the state
of Lua programs, as well as operations (e.g., transfer functions) over the involved lattices, and a
tree-walker over the AST to model program execution.

The analysis is centered around an allocation site abstraction [8, 9] in which tables and function
values are identified by unique labels denoting their origin. Hence, we assume that table literals and
functions are uniquely labeled. Operationally, the analysis front-end takes care of such labeling.
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analysislattice

statelattice

storelattice

proplattice

absencelattice valuelattice

stringlattice numberlattice

envlattice

Figure 1. Diagrammatic structure of type analysis lattice.

module type LATTICE_TOPLESS =

sig

type elem

val leq : elem -> elem -> bool

val bot : elem

(* val top : elem *)

val join : elem -> elem -> elem

val meet : elem -> elem -> elem

val to_string : elem -> string

end

Figure 2. Lattice signature without explicit top element.

We illustrate the composite lattice structure of the type analysis in Fig. 1. Starting from the bottom,
the analysis computes invariants over analysislattice, which holds an abstract state (statelattice)
for each program point (before and after each statement) of an input program. An abstract state
consists of an abstract store (storelattice) and an abstract environment (envlattice) that represents
scope chains. An abstract store associates to each label ℓ an element from proplattice, representing
the properties (keys and values) of tables originating from label ℓ. Unlike JavaScript, keys in Lua
tables can be any value (even tables), except the special nil value. The lattice proplattice therefore
uses an additional lattice valuelattice to over-approximate these. The latter is a Cartesian product of
stringlattice, numberlattice and a few set-based lattices to keep track of allocation sites (of tables
and functions) and other value tags (e.g., Booleans and nil).

We express each of the above lattices as OCaml modules with a signature satisfying Fig. 2. Each
of the components corresponds to an entry in the formal definition of a lattice: 〈L;⊑,⊥,⊤,⊔,⊓〉.
We leave an explicit top element optional, as it is not needed in practice for all lattices, for example,
valuelattice. For lattices with an explicit top element we provide an extended lattice signature. We
also include a to_string coercion operation in the signature for pretty printing.

As an example consider the element type of proplattice (abbreviated PL):

type elem =

| Bot

| Table of table

and table = { table : (VL.elem * Abs.elem) TableMap.t;

default_str : VL.elem; (* fallback value for string keys *)

default_key : VL.elem; (* collective key approx. of non-string keys *)

default : VL.elem; (* collective value approx. of non-string keys *)

... }

Such an element represents the first-class hash tables of Lua. In this representation Bot represents
the empty set of hash table values and it is bound to the identifier bot in the LATTICE_TOPLESS interface
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6 J. MIDTGAARD AND A. MØLLER

whereas the table type represents a set of possible hash table values. The latter internally uses an
OCaml table to characterize entries with a known string key: table is a map from strings to pairs of
valuelattice elements and absencelattice elements. We here rely on the valuelattice (abbreviated
VL) to record (an approximation of) the value of each entry and we rely on the absencelattice

(abbreviated Abs) to record (an approximation of) whether the entry exists (Abs is a two-point lattice
with ‘is present’ and ‘maybe absent’ elements). Three further fields, default_str, default_key, and
default, record (a collective approximation of) the keys and values not mentioned by the table.
Entries for unknown string keys are accounted for by default_str. For example, for an assignment
p[s] = v to an empty table p where the analysis tells us that s may evaluate to an unknown string (⊤)
in stringlattice, the analysis records the approximate value of v in default_str. Key-value entries
with non-string keys are accounted for by default_key and default, respectively. Continuing our
example, if instead the analysis tells us that s may evaluate to a number using numberlattice, the
analysis records this approximate key in default_key and the approximate value of v in default.

The following operation, find, defined in the proplattice module expects a string and a table (an
element of the above element type) and models a sound over-approximation of looking up the string
in the table:

let find str map = match map with

| Bot -> VL.bot

| Table map ->

try

let (vlat,abs) = TableMap.find (TableKey.String str) map.table in

if abs = Abs.is_present

then vlat

else VL.join vlat VL.nil (* not definite read --> include nil *)

with Not_found ->

VL.join map.default_str VL.nil (* maybe not covered by default *)

Looking up a value in something that cannot be a table (Bot in proplattive) fails at runtime and hence
cannot return a value (Bot in valuelattice). To look up an entry we attempt to look up the string entry
in the internal OCaml table. If the absencelattice tells us that we can be certain that the entry exists,
we simply answer with the recorded value. If we are uncertain whether the entry exists, we include
in the answer the nil value, which models Lua’s semantics of a failed table lookup. Finally, if the
entry is not present in the table we fall back on the collective approximation (default_str) and again
include nil to model lookup failure. Since PL.find is only concerned with looking up string entries
it neither involves default_key nor default. Generally, PL.find is used to analyze table lookups, such
as lvalues of the form exp[exp] (when the analysis can determine that the latter exp evaluates to a
constant string), and method lookups in calls of the form exp.id(exp∗) at both the expression level
and at the statement level (see Appendix A.1).

When applied to the example program of Section 2.2, our analysis will infer that the resulting
store after line 5 contains a table originating (from the labeled allocation-site) in line 2. With the
help of absencelattice, the lattice proplattice reveals that the allocated table definitely contains x

and y entries, and valuelattice reveals that both entries can be any string. Because the analysis
is monomorphic [1], passing two different string arguments to f forces the result to top in
stringlattice.

A static analysis such as the above is typically tested on a range of hand-written programs, to
ensure that the analysis soundly accounts for the corner cases of the language. This is also the
situation for the present analysis. However, a number of underlying properties are seldom given
similar attention. In the following sections we will develop the infrastructure for quickchecking
such properties.

3. TESTING LATTICES

Formally, a lattice 〈L;⊑,⊥,⊤,⊔,⊓〉 satisfies a number of properties, which should be reflected in
an implementation. First, 〈L;⊑〉 is a partial order, meaning the ordering is reflexive (∀a ∈ L. a ⊑ a),
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QUICKCHECKING STATIC ANALYSIS PROPERTIES 7

transitive (∀a,b,c ∈ L. a ⊑ b ∧ b ⊑ c ⇒ a ⊑ c), and anti-symmetric (∀a,b ∈ L. a ⊑ b ∧ b ⊑ a ⇒
a = b). Second, a lattice has a range of algebraic properties:

∀a ∈ L. ⊥⊑ a ∧ a ⊑⊤ (⊥/⊤ is lower/upper bound)

∀a,b ∈ L. a⊔b = b⊔a ∧ a⊓b = b⊓a (⊔,⊓ commutative)

∀a,b,c ∈ L. (a⊔b)⊔ c = a⊔ (b⊔ c) ∧ (a⊓b)⊓ c = a⊓ (b⊓ c) (⊔,⊓ associative)

∀a ∈ L. a⊔a = a ∧ a⊓a = a (⊔,⊓ idempotent)

∀a,b ∈ L. a⊔ (a⊓b) = a ∧ a⊓ (a⊔b) = a (⊔-⊓,⊓-⊔ absorption)

∀a,b ∈ L. a ⊑ b ⇔ a⊔b = b ⇔ a⊓b = a (⊑-⊔-⊓ compatible)

In order to test such properties, we need (1) a way to compare elements for equality (e.g., to test
commutativity), and (2) a scheme for generating arbitrary lattice elements. To this end, we extend
the lattice signature of Fig. 2 with two additional operations for testing equality and for generating
arbitrary elements:

val eq : elem -> elem -> bool

val arb_elem : elem Arb.t

To avoid clutter and to separate our partial analysis specification from the implementation, we
keep the quickchecking source code (including generators such as the above) in separate modules,
on which the analysis proper does not depend. We can then achieve an “object-oriented sub-classing
effect” by means of OCaml’s module system: quickchecking code defines extended lattice modules
that include the original lattice modules and extend their signature with additional operations, such
as, arb_elem. In the following sections, we investigate how to formulate this operation.

3.1. Basic generators

We first consider the simple two-element lattice absencelattice that is used to signal whether a table
entry is definitely present, in which case a table lookup is bound to succeed. Since there are only two
choices of elements, an arbitrary element will necessarily be one of the two. Hence absencelattice’s
definition of arb_elem coincides with that of L from the introduction.

For very wide lattices, such as, the flat constant propagation of strings (up to some maximum
string length), the situation is more interesting. What do we mean by an arbitrary element?
Potentially this could mean several things, for example: (1) a “uniform choice” where each element
is equally likely to be chosen, (2) an “algebraic choice” where each datatype constructor (e.g.,
Bot | Const of string | Top in the string lattice) represents a choice reflected in the code and hence
should give rise to equally likely choices, or (3) a “concretization choice” where each element is
chosen based on weights reflecting how many concrete elements it represents.

For the flat constant propagation lattice, a uniform choice would mean that top and bottom are
unlikely to be drawn, e.g., if we restrict the constants to, e.g., all 32-bit integers. Similarly, based on
a concretization choice, top is most likely to be chosen as all concrete sets of size 2 or more abstract
to it, whereas bottom is unlikely to be chosen. Hence, from a testing point of view, a distribution
based on algebraic choice is preferable to uniformly cover all cases in lattice-relevant dispatches.
Furthermore, this choice echoes our decision from the simpler two-element lattice.

We express the resulting generator as a choice between three simpler generators: a constant
bottom generator built with Arb.return, the built-in string generator lifted into the elem type, and
a constant top generator.

let arb_elem = Arb.(choose [return bot;

lift const string;

return top])

For set-based lattices, e.g., sets of allocation site labels, we need to build up a set of arbitrarily
chosen elements. For this purpose, we use a fixed point combinator for generating recursive
values: fix : (base:’a Arb.t) -> (’a Arb.t -> ’a Arb.t) -> ’a Arb.t. As a base case, we provide
LabelSet.empty, the constructor of an empty set, suitably cast as a constant generator. As the

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



8 J. MIDTGAARD AND A. MØLLER

inductive case, we provide an arbitrary-set transformer, by lifting LabelSet.add (OCaml’s built-in set
addition operation) into the generators, using arb_label (a generator of arbitrary labels, represented
as integers) and lift2 : (’a -> ’b -> ’c) -> ’a Arb.t -> ’b Arb.t -> ’c Arb.t:

Arb.(fix ~base:(return LabelSet.empty) (lift2 LabelSet.add arb_label ))

Effectively, this generator will generate an empty LabelSet, then iterate an arbitrary number of times
(the default maximum is 15), using LabelSet.add to add an arbitrary label from arb_label in each
iteration.

Whereas these basic lattice generators are sufficient for our purposes, the approach is not limited
to these lattices alone. Before we lift them to generators for composite lattices, we take a small
detour to illustrate how one can also write generators for a variety of numeric abstract domains.

3.2. Numeric lattice generators

Using the same approach as in the constant propagation lattice of strings one can write a generator
for a numeric constant propagation lattice [10]:

let arb_int = int_range ~start:min_int ~stop:max_int

let arb_elem = Arb.(choose [return Bot;

lift (fun i -> Const i) arb_int;

return Top])

Here we first formulate a generator of integers arb_int which may generate all constants between
OCaml’s least representable number and the greatest representable number (the bitwidth depends on
the underlying machine’s architecture) and subsequently lift it to help generate constants. Another
option would be to use the built-in int combinator that generates numbers between 0 and its supplied
argument.

As another example of a simple numeric domain we consider the parity lattice. We can represent
the elements of the parity domain as an algebraic data type: type elem = Bot | Even | Odd | Top.
Based on this representation we can then write a corresponding generator that selects uniformly
between its four elements:

let arb_elem = Arb.among [Bot; Even; Odd; Top]

Similarly we can represent a simple sign domain as an algebraic data type with five
constructors: type elem = Bot | Neg | Zero | Pos | Top and write a corresponding generator that
chooses uniformly between them:

let arb_elem = Arb.among [Bot; Neg; Zero; Pos; Top]

Intervals [11] is a classical example of a numeric abstract domain. One can represent intervals
in multiple ways. One representation that directly matches the formalization (from Cousot and
Cousot [12])

I = {[l;u] | l ∈ Z∪{−∞} ∧ u ∈ Z∪{+∞} ∧ l ≤ u} ∪ {⊥}

is as three algebraic data types—one for lower bounds, one for upper bounds, and one for intervals:

type lowerbound = MInf | LBound of int

type upperbound = PInf | UBound of int

type elem = Bot | Interval of lowerbound * upperbound (* [l;u] where l <= u *)

Furthermore we can maintain the invariant l ≤ u by writing a smart constructor [13]: a function
conveniently named interval that takes a pair of lower/upper bounds and maps empty ranges (l > u)
to Bot and non-empty ranges to applications of the Interval constructor. With this representation in
mind we can now write a generator for intervals by combining two simpler generators for lower
bounds and upper bounds:

let arb_lowerbound = Arb.(choose [return MInf;

lift (fun i -> LBound i) arb_int])

let arb_upperbound = Arb.(choose [return PInf;

lift (fun i -> UBound i) arb_int])

let arb_elem = Arb.lift2 (fun l u -> interval (l,u)) arb_lowerbound arb_upperbound
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QUICKCHECKING STATIC ANALYSIS PROPERTIES 9

Note how we have chosen not to generate Bot elements directly. However, our use of the smart
constructor interval ensures that we still generate Bot elements indirectly when the bounds satisfy
l > u. One may choose to adjust the bound generators to generate the extremal values MInf and
PInf less often, e.g., with a 25% chance. To increase the chance of generating non-bottom elements
one could alternatively swap two non-extreme bounds l and u when l > u and fix the chance of
generating a bottom element to, e.g., 10%. We will revisit our interval generation strategies in
Section 3.4.

As a final example of a numeric abstract domain we consider congruences [14]. Elements of
the congruence domain are of the form a+ bZ where both the modulo b and the remainder a are
simultaneously discovered. As usual in modulo arithmetic we expect the invariant 0 ≤ a < b to
hold. Furthermore, congruence elements of the form a+0Z (where b = 0) can express the numeric
constant propagation lattice, thereby giving rise to the data type invariant b = 0 ∨ 0 ≤ a < b. We
can now represent congruences as a two element algebraic data type:

type elem = Bot | Cong of int * int (* (a,b) where b=0 or 0 <= a < b *)

Again we can write a smart constructor cong to help maintain the above data type invariant by letting
cong(a,b) normalize the first argument to a mod b when b 6= 0 and a ≥ b. With these in mind we can
now formulate a generator of arbitrary congruence elements by lifting two integer generators:

let arb_elem = Arb.(choose [return Bot;

lift2 (fun a b -> cong (a,b)) (int 10) (int 10);])

Here we have chosen to generate modulo and remainder between 0 and 10 as an initial stress test
of the logic behind the representation. We do so since the chance of hitting (and uncovering errors
in) the branches concerning b = 0 get smaller as the range of a and b increases. Alternatively one
could choose to write a custom integer generator covering a larger range, yet with a reasonable
chance (e.g., 5 or 10%) of generating extremal values such as 0. Since cong’s normalization of the
first argument skews the test distribution towards situations where a internally is in the lower half
of the range [0;b−1], one may choose to supplement the above with a generator that first generates
b and then subsequently generates a in the above interval when b 6= 0.

With generators in place for a range of basic and numeric lattices, we now turn to lifting them to
generators for composite lattices.

3.3. Composite generators

We can easily form generators for product lattices by composing the generators of the sub-lattices.
For example, if A and B are lattice modules extended with generators, we can form a generator for
the pair lattice of elements A.elem * B.elem:

let arb_elem = Arb.pair A.arb_elem B.arb_elem

Concretely, we use this approach to form a generator for statelattice (represented as two-element
records) of the generators for storelattice and envlattice.

The approach extends to reduced products as well: We have already seen how to formulate an
interval generator out of two generators for the lower and upper bounds, respectively. Intervals are
in fact a reduced product of a maximum abstraction and a minimum abstraction, in which our smart
constructor takes care of reducing the constructed elements.

To build arbitrary elements of function lattices, such as storelattice and analysislattice, we first
formulate a helper for building maps. The helper takes three arguments: mt for building the empty
map, add for adding arguments, and finally an association list kvs of (key, value) pairs. It can be
implemented as a simple fold over the input list, utilizing mt in the base case and subsequently
adding each (key, value) pair using add:

let build_map mt add ls = List.fold_right (fun (k,v) acctbl -> add k v acctbl) ls mt

Maps are built based on the input list’s element order. If build_map is applied to the same
association list twice, albeit with the elements permuted, the resulting map (and hence OCaml’s
underlying balanced tree) will likely result in a differently structured tree, thereby avoiding the
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10 J. MIDTGAARD AND A. MØLLER

pitfall of skewing the generator into generating only a particular subset of map shapes. Any
such skewing will affect the quality of our randomized testing, and potentially let buggy code
go through unnoticed [15]. We can now generate arbitrary maps. For storelattice, e.g., we
utilize Arb.map : ’a Arb.t -> (’a -> ’b) -> ’b Arb.t to first form a generator of arbitrary (label,
proplattice) association lists and subsequently transform the outcome using build_storemap, which
specializes build_map to build StoreMaps:

let arb_entries = Arb.(list ~len:(int 20) (pair arb_label pl_arb_elem))

let build_storemap = build_map StoreMap.empty StoreMap.add

let arb_elem = Arb.map arb_entries build_storemap

To summarize, we have seen how to build (and combine) generators for a simple two-element
lattice, a constant propagation lattice, a set-based lattice, product lattices, and function lattices.
Collectively, these lattices can be combined to a full-scale static type analysis such as TAJS [7].
In addition we have seen how to write generators for numeric lattices.

3.4. Testing lattice properties

With element generators in place for all lattices, we are now in position to check the lattice properties
we set out to. The lattice property tests are furthermore independent of the particular lattice at hand
as long as the lattice satisfies the LATTICE_TOPLESS signature. As such, we can wrap the tests in a
reusable functor GenericTests.† For example, we can formulate a generic join commutativity test for
any lattice L that satisfies the LATTICE_TOPLESS signature:

let join_comm = (* forall a,b. a \/ b = b \/ a *)

mk_test ~n:1000 ~pp:pp_pair ~name:("join commutative in " ^ L.name)

arb_pair (fun (a,b) -> L.(eq (join a b) (join b a)))

where arb_pair and pp_pair are defined as in Section 2.1. We can subsequently test our example
lattices for commutativity of their join operations.

Consider now a conditional property, such as transitivity of the lattice ordering. Again this
translates directly to a test:

(* forall a,b,c. a <= b /\ b <= c => a <= c *)

let leq_trans =

mk_test ~n:1000 ~pp:pp_triple ~name:("leq transitive in " ^ L.name)

arb_triple (fun (a,b,c) -> Prop.assume (L.leq a b);

Prop.assume (L.leq b c);

L.leq a c)

Here, arb_triple and pp_triple are generic helper functions for generating and pretty-printing
arbitrary triples, analogous to arb_pair and pp_pair. This approach is insufficient for more complex
lattices, however, as the probability of generating arbitrary triples that are ordered (and thus
satisfying the precondition) decreases with the number of lattice elements. For example, if we run
the above test on 1000 arbitrary generated input triples of valuelattice elements we see a problem:

testing property leq transitive in value lattice...

[✓] passed 1000 tests (1000 preconditions failed)

Not a single generated triple satisfies the precondition.
Rather than cranking up the number of generated triples to increase the chance of generating a few

ordered ones we instead equip lattices with a generator to help generate ordered tuples. To this end,
we further extend the lattice signature of Fig. 2 with an operation for generating arbitrary elements
less or equal to a given argument:

val arb_elem_le : elem -> elem Arb.t

The two-element absencelattice is straightforward to extend:

let arb_elem_le e = if e = Top then arb_elem else Arb.return Bot

†The functor’s signature is available in Appendix A.2 and further discussed in Section 5.
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The extension to the flat stringlattice is not considerably more complex:

let arb_elem_le e = match e with

| Bot -> Arb.return Bot

| Const s -> Arb.among [Bot; Const s]

| Top -> arb_elem

To build an arbitrary subset of a given set, which we need for generating ordered tuples involving
set-based lattices, we first formulate a helper function build_set akin to build_map:

let rec build_set mt sglton union ls = match ls with

| [] -> Arb.return mt

| [l] -> Arb.return (sglton l)

| _ -> Arb.(int (1 + List.length ls) >>= fun i ->

let ls,rs = split i ls in

lift2 union (build_set mt sglton union ls)

(build_set mt sglton union rs))

Similarly to build_map, build_set is parameterized with a builder for the empty set, a builder for
singletons, a set union operation, and a list of elements. For input lists of length two or more,
build_set will split the input list at some arbitrary point, recurse on both halves, and union their
results, again to avoid the pitfall of generating skewed data structures. Note how this case utilizes
(>>=) : ’a Arb.t -> (’a -> ’b Arb.t) -> ’b, the monadic bind of generators, to temporarily name
the chosen index for splitting.

Next, we formulate a helper function le_gen to aid with subset selection. The function is
parameterized with a list and a builder. It will first permute its input list, split the resulting list
in two sublists, and finally pass one of these to the builder:

let le_gen es build =

let es_gen = permute es in

Arb.(es_gen >>= fun es ->

int (1 + List.length es) >>= fun i ->

let smaller_es ,_ = split i es in

build smaller_es)

Within valuelattice we use this approach repeatedly to generate subsets of its set-based lattices.
One of valuelattice’s set-based lattices records a set of runtime tags that a value can have,
represented as a TagSet, which is a built-in set-type specialized to contain only tag elements. For
example, given an argument e from valuelattice, we serialize its tags into a list using TagSet.elements,
and pass the result to le_gen for subset selection and subsequent building of a set structure:

let build_tagset = build_set TagSet.empty TagSet.singleton TagSet.union

let le_tag_gen = le_gen (TagSet.elements e.tags) build_tagset

Assuming the outputs of permute and Arb.int are arbitrary, this approach provides equal chance of
each set size. Alternatively, one could consider an approach with equal chance of each subset, by
flipping a coin to decide whether each element is included in the resulting subset.

Regarding the numeric domains, we can reuse the approach from the flat stringlattice to write
arb_elem_le for a numeric constant propagation lattice. Writing arb_elem_le for the parity and sign
lattices is not much harder. For example, a version for the parity lattice is the following:

let arb_elem_le e = match e with

| Bot -> Arb.return Bot

| Even -> Arb.among [Bot; Even]

| Odd -> Arb.among [Bot; Odd]

| Top -> arb_elem

To define arb_elem_le for the interval lattice we continue the type-directed approach and formulate
generators of bound elements for both lower bounds and upper bounds.‡ With these in hand we can
now formulate arb_elem_le as a straightforward combination:

‡Technically, int_range generates integers less than the given stop parameter in arb_int, which prevents (u+1) in
arb_upperbound_le from overflowing.
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12 J. MIDTGAARD AND A. MØLLER

let arb_lowerbound_ge l = match l with

| MInf -> arb_lowerbound

| LBound l -> Arb.(lift (fun l’ -> LBound l’) (int_range ~start:l ~stop:max_int))

let arb_upperbound_le ub = match u with

| PInf -> arb_upperbound

| UBound u -> Arb.(lift (fun u’ -> UBound u’) (int_range ~start:min_int ~stop:(u+1)))

let arb_elem_le e = match e with

| Bot -> Arb.return Bot

| Interval (l,u) -> Arb.lift2 (fun l’ u’ -> interval (l’,u’))

(arb_lowerbound_ge l) (arb_upperbound_le u)

Once again our use of the smart constructor interval may reduce the generated element to Bot.
This approach has only a small chance of generating an interval equal to the given argument, which
happens when both arb_lowerbound_ge and arb_upperbound_le generate equal arguments. Such a corner
case could in principle be a source of errors. As an alternative one could therefore let the last branch
choose between three generators: one that may increase the lower bound, one that may decrease the
upper bound, and one that may change both (as above).

Finally, we can formulate arb_elem_le also for the congruence domain:

let arb_elem_le e = match e with

| Bot -> Arb.return Bot

| Cong (0,1) -> arb_elem

| Cong (a,b) ->

Arb.(choose [return Bot;

lift (fun x -> cong (a+b*x,0)) (int 10);

lift2 (fun x b’ -> cong (a+b*x,lcm b b’)) (int 10) (int 10)])

In the second case, the element 0+ 1Z in the numeric congruence domain represents Z itself—the
top of the lattice: any element is therefore less or equal to it. As to the last case, it is a choice between
three generators:

(a) a constant generator of Bot which is less or equal to any element,
(b) a generator of elements of the form r + 0Z representing constants (e.g., given a parameter

3+7Z representing {3,10,17,24,31,38, . . .} this choice will pick an arbitrary integer, e.g., 4,
and generate (3+7∗4)+0Z= 31+0Z which represents {31} and is strictly less than 3+7Z
in the lattice order), and

(c) a generator of a larger modulo with a compatible remainder (e.g., given a parameter 3+ 7Z
we pick two arbitrary numbers, e.g., 2 and 5, we compute a new modulo as the least common

multiple of 7 and 5: lcm 7 5 = 35, and we compute a new remainder: 3+7∗2 = 17, thereby
giving rise to 17+35Z, which represents {17,52, . . .}, again strictly less than 3+7Z).

As to the composite lattices, formulating arb_elem_le for product lattices is a straightforward
lifting that generates and combines less-or-equal elements for each sub-lattice. Such a formulation
also suffers from our interval generator’s drawback: it has only a small chance of generating a pair
equal to its argument. One may therefore wish to choose between three generators as suggested for
the intervals. For function lattices under pointwise ordering, we first serialize its bindings into an
association list. We then reuse the le_gen function from above to choose a subset of bindings. This
has the effect of choosing fairly between each subset size of bindings. (Alternatively we could have
used a coin toss per binding, similar to above.) We then iterate over the resulting association list
using le_entries below, which invokes its argument arb_elem_le on each entry in order to obtain a
result that may be pointwise less than its argument. Finally we transform the resulting association
list with build_map.

let le_entries arb_elem_le kvs =

let rec build es = match es with

| [] -> Arb.return []

| (k,v)::es -> Arb.(build es >>= fun es’ ->

arb_elem_le v >>= fun v’ ->

return ((k,v’)::es’)) in

build kvs
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With arb_elem_le in hand, we can now generate arbitrary ordered pairs and triples for any lattice L

to test, e.g., transitivity. For example, we can define ord_pair as follows:

let ord_pair = Arb.(L.arb_elem >>= fun e -> pair (L.arb_elem_le e) (return e))

Alternatively, one could have chosen to extend lattice signatures with an arb_elem_ge operation for
generating lattice elements greater than or equal to a given element. Generating ordered pairs with
such an approach would skew generation towards larger second components, whereas the current
approach based on arb_elem_le skews the generation towards smaller first components. Ideally, one
should therefore expand lattice signatures with both operations and let ord_pair flip a coin to decide
between the two approaches. As this would require writing more generator code we have not pursued
this option further.

As a consistency check, we include in our generic test suite a quickcheck test that generates
ordered pairs (a,b) and tests that they are in fact ordered according to the leq ordering:

let check_ordering =

mk_test ~n:1000 ~pp:pp_pair ~name:("ordered pairs consistent in " ^ L.name) ...

ord_pair (fun (a,b) -> L.leq a b)

For every lattice module L that satisfies the LATTICE_TOPLESS signature, we test that ⊥ is a lower
bound:

let bot_is_lowerbound = (* forall a. bot <= a *)

mk_test ~n:1000 ~pp:L.to_string ~name:("bot is lower bound in " ^ L.name) ...

L.arb_elem (fun a -> L.(leq bot a))

Similarly for lattice modules with an explicit top element, we test whether all elements are less than
or equal to it. Another property one may consider is that in every lattice, ⊥ should be the greatest

lower bound of all the elements in L (⊥ = ⊓ L) and ⊤ should similarly be the least upper bound in
lattices with an explicit ⊤ element (⊤ = ⊔ L). However, in general it is not tractable to generate a
list of all lattice elements, e.g., for the interval lattice over 32-bit numbers, to test these properties
and we therefore make no attempt to do so.

4. TESTING LATTICE OPERATIONS

We now turn to operations on lattices, such as PL.find. Monotonicity, x ⊑ x′ =⇒ f (x) ⊑ f (x′), of
functions operating over lattices is central to static analyses due to Tarski’s fixed point theorem.
This property furthermore lends itself to quickchecking: generate two arbitrary, ordered elements,
apply the operator f to both, and test the resulting values for ordering. Alternatively we could
have expressed monotonicity as f (x)⊔ f (x′) ⊑ f (x⊔ x′) or even f (x⊓ x′) ⊑ f (x)⊓ f (x′) as both
of these are equivalent to the above definition, mathematically speaking. Each of these would lend
themselves to a different testing strategy, that involves generating two arbitrary elements, applying
the operator f three times, computing two joins (or meets), and performing a final ordering test.
Depending on the quality of our generators, each of these approaches could potentially exercise
other paths in a static analysis and thereby discover other errors.

What other properties are desirable of an analysis operator? Strictness, f (⊥) =⊥, is an obvious
candidate. Depending on the lattices, this can mean “no output values produced when given no input
values” or “output state is unreachable if input state is unreachable”. Since we are only interested in
sound analyses, operator strictness is not a formal requirement: returning any over-approximation
of ⊥ is safe, yet an analysis should be as precise as possible. As such, testing a given analysis
implementation for strictness can help detect opportunities for precision improvements.

As a third operator property, we include invariance (also known as congruence), ∀x,x′. x = x′ ⇒
f (x) = f (x′): operators should yield equal results when applied to equal arguments. Mathematically
speaking, this should be obvious, yet it is less so in an implementation, where, e.g., identical
strings may be located at different places in memory, or, e.g., a set data structure containing
the same elements may be differently shaped depending on the insertion order. In day-to-day
programming, this manifests itself as errors associated to confusing reference (pointer) equality
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(* forall s. bot = s ^ bot *)

let concat_strict_snd =

mk_test ~n:1000 ~pp:Str.to_string

~name:("concat strict in argument 2")

Str.arb_elem (fun s -> Str.(eq bot (concat s bot)))

(* forall s,s’,s’’. s’ <= s’’ => (s ^ s’) <= (s ^ s’’) *)

let concat_monotone_snd =

mk_test ~n:1000 ~pp:(PP.pair Str.to_string pp_pair)

~name:("concat monotone in argument 2")

(Arb.pair Str.arb_elem ord_pair)

(fun (s,(s’,s’’)) -> Prop.assume (Str.leq s’ s’’);

Str.(leq (concat s s’) (concat s s’’)))

(* forall s,s’,s’’. s’ ~ s’’ => (s ^ s’) ~ (s ^ s’’) *)

let concat_invariant_snd =

mk_test ~n:1000 ~pp:(PP.pair Str.to_string pp_pair)

~name:("concat invariant in argument 2")

(Arb.pair Str.arb_elem Str.equiv_pair)

(fun (s,(s’,s’’)) -> Prop.assume (Str.eq s’ s’’);

Str.(eq (concat s s’) (concat s s’’)))

Figure 3. Examples of specific stringlattice operation tests.

with structural equality or hand-written equality predicates. In the broader context of quickchecking,
Holdermans [15] has further argued for supplementing “axiom driven tests” with invariance tests to
help catch an otherwise undiscovered class of errors (this issue is discussed more in Section 6). In
order to test for invariance, we extend the lattice signature with a generator of equivalent element
pairs:

val equiv_pair : (elem * elem) Arb.t

One must then again go through the lattices to extend them with such a generator. For example,
for stringlattice, our generator uses OCaml’s built-in String.copy to create pairs of equivalent, yet
differently located strings. For set lattices, build_set is already geared to create potentially differently
shaped trees for each invocation. For function lattices, extra care must be taken to avoid that
duplicate key entries in the initial association list will result in a different function lattice element
under a different addition order. We do so by first building one map, then serialize its bindings into
an association list, which we can subsequently permute and use to build a second, equivalent map.

As a fourth operator property we include distributivity, ∀x,x′. f (x ⊔ x′) = f (x) ⊔ f (x′). The
primary motivation for considering this property is analysis speed: a static analysis where the
transfer functions are distributive can sometimes be implemented with faster analysis algorithms [1].
The ability to test for distributivity should therefore be welcome to static analysis developers.

Returning to the topic of lattice operations, consider the tests in Fig. 3 related to strictness,
monotonicity, and invariance of the stringlattice (Str) operation concat that conservatively models
concatenation of strings. By studying Fig. 3, one can observe a pattern in the code for the three tests,
to the point that it is needlessly repetitive. To avoid writing such repetitive lines, we seek to distill a
basis of primitives (an EDSL) from which all such tests can be expressed concisely.

The EDSL consists of primitives for expressing properties of unary operations: op_strict,
op_monotone, op_invariant, and op_distributive. In addition, we add generic operations, pw_left and
pw_right for adding arguments to the left, resp. right, of the parameter in question. Finally, we add
a generic operator named finalize for building a test out of the pieces, effectively sealing off the
signature (we omit a few optional parameters to mk_test):

let finalize opsig (opname,op) =

opsig

(fun (pp,gen,prop,pname,leftargs) ->

mk_test ~n:1000 ~pp:pp (* ... *)

~name:(Printf.sprintf "’%s %s in argument %i’" opname pname leftargs)

gen (prop op))
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mname ::= (module NAME)

baseprop ::= op_monotone

| op_strict

| op_invariant

| op_distributive

rightprop ::= baseprop

| pw_right mname (rightprop)

leftprop ::= right prop

| pw_left mname (leftprop)

opsig ::= (leftprop mname mname)

prop ::= finalize opsig

(a) Combinator-based notation.

mname ::= (module NAME)

baseprop ::= mname -<-> mname

| mname -$-> mname

| mname -~-> mname

| mname -%-> mname

opsig ::= [mname ---> ]∗ baseprop [---> mname]∗

prop ::= (testsig opsig) for_op

(b) Infix notation.

Figure 4. EBNF grammar of our EDSL.

This definition hints to the implementation of our framework: the combinators traverse the signature
description in continuation-passing style (CPS). In doing so, they will structurally build up a pretty-
printer pp, a generator gen, the property prop, the property name pname, and a left argument counter
leftargs. When the traversal is complete, all the elements are in place for finalize to supply an
initial continuation, representing the last thing to be done: We create a test with mk_test and pass it
the created pretty printer, generator and (parameterized) property. By further passing the operator
name opname as a string and the number of left arguments, we can thus obtain nice error messages
(as illustrated in Section 1). For example, we can express the monotonicity test corresponding to
concat_monotone_snd in Fig. 3, based solely on a description of the signature:

# let str_concat = ("Str.concat",Str.concat) in

finalize (pw_left (module Str) op_monotone (module Str) (module Str)) str_concat;;

- : QCheck.test = <abstr>

where in (module Str) we utilize OCaml’s support for first-class modules to express each lattice
module of the signature. By further utilizing OCaml’s infix syntax to define =:: as a shorthand for
finalize we can express the same test as a one-liner:

pw_left (module Str) op_monotone (module Str) (module Str) =:: ("Str.concat",Str.concat)

Because of the embedding into OCaml, the EDSL will furthermore statically ensure that each
module satisfies the lattice signature and that the described signature and the operator’s signature
agree. In Fig. 4(a) we summarize the syntax of the combinator-based EDSL and in Appendix A.2
we summarize its signatures.

The above description may still not be quite satisfactory, as the connection to the corresponding
mathematical notation Str −→ Str

⊑
−→ Str is unclear. To remedy this mismatch we provide convenient

infix syntax in the form of arrows with and without annotation: -$-> for strictness, -<-> for
monotonicity, -~-> for invariance, -%-> for distributivity, and ---> for a plain function arrow. With the
infix arrow syntax, we can now express a monotonicity test corresponding to concat_monotone_snd in
Fig. 3 based almost exclusively on Str.concat’s signature:

# (testsig (module Str) ---> (module Str) -<-> (module Str)) for_op;;

- : string * (Str.elem -> Str.elem -> Str.elem) -> QCheck.test

= <fun>

where -<-> marks that we wish to test the second parameter of the signature for monotonicity
and testsig and for_op act as delimiters of the signature. Note how OCaml’s type checker infers
that the EDSL expression further expects a string (describing the operator, e.g., by name) and a
Str.elem -> Str.elem -> Str.elem operator to yield a quickcheck test. We thereby statically prevent
type errors in our tests, e.g., an attempt to quickcheck a lattice operator over an incorrect signature.
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-<->

--->

testsig

module Str

module Str

module Str

Figure 5. OCaml’s underlying AST.

Similarly, we can concisely test for distributivity. For example, it is well known that the squaring
operator ( f (x) = x ∗ x) over the numeric sign domain is not distributive [1]. A counterexample is
immediately found:

# let square_distributive =

(testsig (module Sign) -%-> (module Sign)) for_op ("square", fun s -> Sign.mult s s) in

run square_distributive;;

testing property ’square distributive in argument 1’...

[✗] 77 failures over 1000 (print at most 1):

(Neg, Pos)

Indeed, squaring both a negative and a positive number results in a positive number, while the lattice
join of the two yields ⊤ (any number) and squaring any number can yield any number.

Technically, the type-safe embedding is achieved by left-associativity of function application and
of all infix operators in OCaml beginning with the minus ‘-’ character. As a result, OCaml itself
will create an underlying AST in the form of Fig. 5. By suitable function definitions for the testsig,
for_op, and the infix arrow operators, one can obtain a depth-first traversal compatible with an AST
such as the one in Fig. 5. The challenge is to combine the combinators in such a traversal: we
do not know the arguments to, e.g., op_monotone until we meet the -<-> node (the rightmost Str

in its left subtree and the right child of the root). Furthermore, the role of additional arguments
changes above and below such a baseprop node: below they should be added as left arguments with
the combinator pw_left, and above they should be added as right arguments with the combinator
pw_right. We solve these issues by implementing the traversal as a state machine. One register of
the state machine keeps track of the latest encountered module argument (initialized with testsig’s
argument). Two other state machine registers accumulate both a left- and a right argument-adding
transformer simultaneously. Upon meeting an ---> arrow, we register the latest module argument and
add the previous to both argument-adding transformers. Upon meeting a ‘baseprop arrow’, such as
the -<-> node, all previously visited arguments were to the left, so we move the left transformer
to the right transformer for any remaining right arguments to be added. Upon completion, a full
argument-adding transformer is therefore available to for_op. We refer the interested reader to the
source code of our library for more details on the type-safe embedding.

Statically typing something of this form may seem hard, as the type of a signature varies with
its shape. The situation is similar to the static typing of C’s printf, which will vary with its format
string. Inspired by Danvy’s solution to the printf problem [16], we utilize the polymorphism of
result types in continuation-passing style. In this context, for_op represents the initial continuation
and takes care of instantiating the polymorphic result type. It is implemented as a call to finalize.
The EDSL’s infix syntax is summarized in Fig. 4(b). With =: as an additional infix synonym for
for_op, we can thus write the equivalent tests of Fig. 3 as compactly as follows:

let concat_tests =

let str_concat = ("Str.concat",Str.concat) in [

testsig (module Str) ---> (module Str) -$-> (module Str) =: str_concat;

testsig (module Str) ---> (module Str) -<-> (module Str) =: str_concat;

testsig (module Str) ---> (module Str) -~-> (module Str) =: str_concat;

(* ... and similar for the first argument ... *) ]
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module type ARB_ARG =

sig

type elem

val arb_elem : elem Arb.t

val to_string : elem -> string

end

Figure 6. Relaxed argument signature.

4.1. Checking predicates

A number of lattice operations naturally involve only lattice arguments. However, many operations
have a different signature. One such class is predicate functions with a Boolean result type. For
example, VL.may_be_proc : VL.elem -> bool takes a valuelattice (VL) element and checks if the set-
lattice that over-approximates (allocation sites of) procedure values is nonempty. In fact, this is still
an operator on lattices, as the Booleans form a lattice, whose elements are ordered by implication,
and VL.may_be_proc is monotone over this lattice. For this purpose, we have implemented a short
Boolean lattice module, tested the lattice implementation (using quickchecking, of course), and
finally quickchecked VL.may_be_proc and a number of similar queries using the Boolean lattice. For
other queries, e.g., VL.is_bot, which checks whether a given valuelattice element is bottom, we use
the dual Boolean lattice that is ordered by reverse implication.

We cannot expect the arguments of all operations to have been designed as lattices. Some
arguments and results nevertheless turn out to be so in retrospect. Rather than forcing developers to
revise their analysis implementations, we also provide OCaml functors to easily build, e.g., list and
pair lattices for such quickchecking. For example, the function find_exn in proplattice returns a pair
consisting of a valuelattice element and an absencelattice element. To test it using our approach, it
is therefore convenient to instantiate a “value and absence pair” lattice VLAbsPair purely for testing
purposes and use VLAbsPair in the signature-based tests of find_exn.

4.2. Beyond pure lattice operations

Our EDSL of infix signature syntax between modules satisfying LATTICE_TOPLESS can handle a
majority of the operations in our Lua analysis implementation. However, the requirement that
arguments must satisfy the LATTICE_TOPLESS signature is sometimes too restrictive: some operations
simply accept an allocation site label or a string (representing a variable name or a property), yet
can still be strict, monotone, and/or invariant in the other arguments.

To handle such cases, we relax the parameter requirements to the pw_left and pw_right

combinators, to match the simpler ARB_ARG signature in Fig. 6. Based on this relaxation we can
then write the last tests in the (still type-safe, but less readable) combinator syntax. We have
not found a type-safe approach to allow these in the infix syntax at this point. Doing so would
require a context-sensitive typing of the state-machine implementation: the register containing the
latest encountered module argument should then either hold a module satisfying the ARB_ARG or
LATTICE_TOPLESS signatures, depending on the context.

An avenue for a different, non-signature based class of tests is that of soundness. To a limited
degree this is feasible. For example, we include the following string concatenation test over the
stringlattice in our test suite.

(* forall s,s’. abs(s ^ s’) = abs(s) ^ abs(s’) *)

let concat_sound =

mk_test ~n:1000 ~pp:pp_pair ~name:("Str.concat sound")

Arb.(pair string string)

(fun (s,s’) -> Str.(eq (const (s ^ s’)) (concat (const s) (const s’))))

This, however, will quickly require a reference interpreter in some form as well as the ability to
generate arbitrary syntax trees. We leave such an exploration for future work.
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5. EXPERIMENTS AND DISCUSSION

To test our hypothesis that quickchecking a static analysis increases confidence in its
implementation, we consider the following two research questions: Can quickchecking expose
basic properties and detect errors in static analysis implementations? How does code coverage of
quickchecking compare with a traditional test suite? We focus on universal properties that relate
to lattices in general, not to the specific analysis. We address these questions by reporting on the
lessons learned from our Lua analysis case study.

Errors found by quickchecking Indeed, we have found errors in our initial Lua analysis
implementation using the lattice property tests and using the lattice operation tests. For later
extensions of the analysis, quickchecking became a natural part of the development cycle. As
an example, we found an early copy-paste error in the implementation of meet of absencelattice.
This error was caught early because meet failed the algebraic tests. We have found several lattice
operations that were not strict but could be improved to be so. For example, the function unop in
valuelattice accepting a unary operation and an element of valuelattice and again producing a
valuelattice was initially implemented as follows:

let unop op lat = match op with

| Ast.Uminus ->

let lat’ = coerce_tonum lat in

if may_be_number lat’ (* unary minus of number (or better) is number *)

then number

else bot

| Ast.Length ->

if may_be_strings lat || may_be_table lat

then number

else bot (* length of everything but strings and tables is number *)

| Ast.Not ->

bool (* negation of anything is bool *)

This implementation is not strict in the second parameter as it returns a non-bottom result when
applied to, e.g., arguments Ast.Not and bot from valuelattice. The function was easily made strict by
initially testing lat for bot and returning bot early and only proceeding with the above dispatch when
the test fails. As such, quickchecking helped make our analysis more precise. More importantly, we
found two (unrelated) operations that were not monotone even though they were supposed to be.
At closer inspection, the issue turned out to be a lack of relational coordination across lattices:
operations would iterate over labels found in the valuelattice, yet some labels would not exist
as entries in the storelattice and hence looking them up would fail, ultimately leading to non-
monotonicity. Even though such issues represent corner cases and perhaps never occur in a proper
analysis execution, having the code act meaningfully is preferable.

An in-depth story of quickchecking proplattice Initially, our design of proplattice had an internal
OCaml table to keep track of all statically known entries, and a default entry to over-approximate
both all unknown entries with string keys (as in TAJS [7]) as well as entries with non-string keys:

type elem = { table : (VL.elem * Abs.elem) TableMap.t;

default : VL.elem;

... }

This design leads to a crude over-approximation for non-string lookups: conservatively, we would
have to return the value of default, e.g., when looking up a Boolean even though perhaps only
number keys had been written to a table. As a consequence, we refined the design to include a
collective over-approximation of all unknown keys:

default_key : VL.elem;

With this refined design, we could compare the key of a potentially absent non-string entry, and
precisely model lookup failure if the key was not less than or equal to default_key under the
valuelattice ordering. Continuing our example from above, since a valuelattice value containing
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only a singleton TagSet with Bool would not be less than or equal to the valuelattice value with top
in numberlattice, we would know the lookup would fail.

To decide (partial) ordering between two proplattice values p and p’, the operation leq would
check the ordering of both pairs of defaults: p.default_key against p’.default_key and p.default

against p’.default, as well as check that each statically known entry of p.table would be accounted
for in p’ by a similar entry in p’.table or by the default entries. To compute the join (the least upper
bound) of two proplattice values p and p’, we would combine the joins of their default entries with
an iteration over their statically known table entries. For example, a statically known entry "a" from
p.table would be included in the resulting table with either the same entry or with a entry that joins
the original with p’.default if "a" was accounted for by p’.default_key (and vice versa).

In order to quickcheck the proplattice lattice, our arb_elem function would generate and compose
arbitrary elements for each of these subparts, using VL.arb_elem for the default entries and the
recipe for function lattices for the internal table. Similarly, arb_elem_le would generate and compose
arbitrary elements less than a given proplattice value for each of these subparts. This design formed
the basis of the type analysis described in the conference version of this paper [3].

As part of a recent revision we refined our quickcheck generators, as suggested by a reviewer.
Since analysis code will sometimes look up in a storelattice the allocation-site labels (of functional
values and records) occurring in valuelattice values, we refined the generator to either (a) generate
a label among a small fixed set of labels (integers 0, ...,7) or (b) to fall back on one of qcheck’s built-
in integer generators. Similarly, since analysis code will sometimes use the approximate strings of
a stringlattice to index a proplattice value, we refined the generator of arbitrary strings (used by
both lattices) to either generate a string among a small fixed set of strings (["a";"b";...]) or fall
back on qcheck’s built-in string generator. This approach can obviously be refined even further, e.g.,
by initially generating a small random set of strings and subsequently arbitrarily choosing strings
from within this first set. Another approach would be to memorize the generated strings underway,
and then in later calls flip a coin to decide between generating a new one or returning one of the
memorized ones. Ideally, qcheck’s built-in string generator should use such a strategy to increase the
chance of testing code depending on identical strings without limiting itself to a fixed set. In the
absence of such a built-in generator we settled for the above approach, which turned out to be good
enough for exposing a new class of errors in our analysis.

First, lookup_prop in storelattice now failed monotonicity with the new generators. On closer
inspection, the issue turned out to be a problem of proplattice: for the generated counterexample,
a key "b" would be absent from a smaller table p.table (leading to lookup returning the default),
whereas the key would be present in the bigger table p’.table (leading to returning the corresponding
table entry). As a result, the two results were incomparable. This led us to revise our arb_elem_le

generator, such that any removed entries in the smaller table would be accounted for by the generated
default entries. This way, the generated pair would actually be ordered by our intended proplattice

ordering. Fixing this was not enough to satisfy our quickcheck approach, though. Since join-meet
absorption was failing, we first revised the meet operation to only include statically known entries
in the result with the absencelattice lattice bit being set to present, when such entries were definitely
present in either (a) both arguments or (b) in one argument and accounted for by the other’s defaults.
There were still generated tests failing join-meet absorption, however. This happened when a certain
entry from one proplattice value was definitely not in the other default’s over-approximation. In this
situation, we fixed the overall result to be bottom, as no concrete tables exist in the intersection: no
concrete table exists that both definitely has an entry and definitely does not have the entry. This
improved understanding of the desired lattice order again led us to revise two aspects of our tests:

• the ordering algorithm behind proplattice’s leq operation (described above) such that definite,
statically known entries of the intended bigger table were also checked to be present in the
indended smaller table (otherwise they would not be properly ordered), and

• arb_elem_le such that it would not return an intended smaller proplattice value with definitely
present keys removed from its argument table (again, as otherwise the generated proplattice

value would not be smaller).
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Alas, with these fixes in place, the join of proplattice was now failing to be associative.
Quickchecking produced a counterexample of three proplattice values, where joining them in either
way would give the same default entries, but not the same statically known table entries. This was
because a join in one order pushed a collective default_key above a certain entry, so that the default
would be included for that particular entry, whereas it would not when the proplattice values were
joined in the opposite order. Ultimately, we fixed the issue by revising the design of proplattice to
include an additional default_str entry, as explained in Section 2.3:

default_str : VL.elem;

This new field works as a fall-back for string entries only and supplements the above default_key

and default fields for over-approximating the keys and values of non-string entries. This revision
furthermore had the advantage of completely decoupling the handling of string and non-string keys.
With this revised design we were in business to eliminate the remaining errors.

Under the revised design, join-meet absorption was failing again and quickcheck provided a
counterexample of two proplattice values p and p’ failing p⊔ (p⊓ p’) = p. Now the problem was
with statically known entries from p.table with uncertain presence. If such an entry had an empty
(bottom) meet with p’.default_str, we would get in trouble by omitting the entry entirely from
the resulting table: since the later join of the join-meet absorption property would then include
default_str in the entry’s result, it would ultimately be different from p.table’s original entry. The
fix here was illuminating: we would instead emit an uncertain (‘maybe absent’), bottom entry for
such entries, thus preventing a fall back to default_str and thereby expressing certain absence of
the entry in an otherwise over-approximating domain!

At this point all lattice modules passed the generic test suite. Two statelattice operation tests
failed monotonicity in their statelattice argument: read_name and write_name but only in 1–2 out
of 1000 generated cases and with very long counterexamples generated. We therefore increased the
number of generated tests to increase the chance of generating a small counterexample. The smallest
one we found had 174 lines! In the end, these two errors were easy to localize and fix, given our new
gained understanding of the lattice ordering. Since proplattice values double as environments, their
order should be compatible with operations for program variables such as read_name and write_name.
We therefore adjusted the operations to continue lookup for variable entries not available with
certainty (an artifact of the chosen double representation).

The nature of errors found This case study answers our first research question in the affirmative.
As the above examples also illustrate there is a large span in the nature of the errors we have found
using the approach, ranging from simple input-output requirements (like unop which could easily
be patched to return bot when applied to a bot argument) to complex ones that required rethinking
a domain’s entire design (as in our proplattice story). The error in the former example could in
principle have been caught using a traditional test suite of hand-written unit tests for all operations.
That would be repetitive but straightforward. The error in the latter example would be harder to
catch with a traditional unit test approach for several reasons: (1) these test and catch relational

errors that express how the inputs and outputs of multiple calls have to be related to each other
(like our initial flip example), (2) they corner the bugs by utilizing a combination of properties
(monotonicity, join-meet absorption, associativity of join), all of which would need to be hand-
written, and (3) they require that the tester comes up with a number of tricky test inputs for each of
the above. In principle one can always hand write the same tests that a machine can generate, but we
believe that doing so by hand to reach the same level of confidence is unrealistic. For the purposes
of testing static analysis implementations we find the combination of the algebraic specification of
properties and quickcheck’s random generation of input to be a particularly good fit.

The importance of generators and revisiting program specifications Overall, we found that when
using quickchecking, the programmer’s increase in confidence in the tested code should be
proportional to the quality of the involved generators. As an extreme example, for a static analysis
one can satisfy the requirements of our approach by letting arb_elem constantly return bot, by letting
arb_elem_le constantly return bot for any argument, and by letting equiv_pair constantly return a
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Lattice module
Test suite

coverage (in %)
QuickCheck

coverage (in %)
Combined

coverage (in %)

absencelattice 81 100 100
numberlattice 100 100 100
stringlattice 69 97 100
valuelattice 95 98 100
envlattice 90 100 100
proplattice 56 97 97
storelattice 89 94 98
statelattice 71 99 99
analysislattice 81 95 100

Table I. Coverage of analysis code (excluding tool front-end). The second column lists coverage of our
original test suite. The third column lists coverage of the QuickCheck-based tests.

pair of bot values. Such generators will obviously not give rise to tests that exercise all plausible
execution paths through a static analysis and passing them should not get our hopes up. In our
case, we had non-trivial generators in place which had already helped find errors. Improving the
generators further helped find and fix even more errors. As illustrated by the above revision, we
have generally found that quickchecking is a good reason to (re)consider what properties a lattice
operation should have. For another example, following TAJS [7], initially the element type of
proplattice as described in Section 2.3 did not have an explicit Bot element. Instead the bottom
element representing an empty Lua table would be implemented as an empty internal OCaml
table and bottom defaults. As a consequence, the initial implementation of PL.find (identical to
version described in Section 2.3 but without the initial dispatch on Bot) was not strict for a good
reason: looking up an entry in the empty table should return (a sound overapproximation of) nil,
which is clearly not bottom. By adding an explicit Bot element and a dispatch in PL.find as part of
our revision we thereby removed an exception to our specification. In general, the observation of
using quickchecking to revisit program specifications agrees with that of the original QuickCheck
authors [2].

Coverage To answer our second research question we devised an experiment to measure coverage
of the quickchecked analysis code. To measure coverage we instrumented the source code using the
‘Bisect’ tool.§ It works as a preprocessor to OCaml code, by statically annotating program points
with labels and dynamically tracking the visited program points. Table I reports the percentages of
visited program points. We omit coverage of lattice pretty-printing routines as these are irrelevant
to the properties being tested. Column 3 shows that quickchecking achieves reasonable coverage
(94–100%). storelattice has the lowest percentage, mainly because of the intricate semantics of
Lua’s ‘metatables’: these require other tables (and functions) to be installed at special string entries
of a table, and the corresponding code is thus not as easily exercised by a generator. The alert reader
may wonder how the randomization aspect of quickchecking influences these numbers. By default,
qcheck seeds the pseudo random number generator identically on each run. We therefore conducted
the experiment of seeding it differently (using OCaml’s Random.State.make_self_init()) on
four additional runs, running the quickcheck test suite again, and measuring coverage. Across all five
runs, 7 out of 9 lattice modules obtained the exact same coverage as reported in column 3. Only the
coverage of valuelattice, and storelattice differed. Of these two modules valuelattice
had 98–99% coverage, and storelattice had 94–95% coverage. As such, a different (pseudo)
randomization does not affect the outcome significantly.

By itself, our test suite consisting of 172 hand-written programs obtains slightly worse coverage
(56–100%), as shown in column 2. However, if we combine the two approaches, we achieve full
coverage in 6 out of 9 lattices and close to full coverage in general (97–100%). Our interpretation
of these numbers is that quickchecking is useful to exercise the esoteric paths in lattice code. The

§http://bisect.x9c.fr/
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black-box nature of the approach for testing these paths is obviously no silver bullet. Yet, when
combined with a standard test suite of programs, the two complement each other well.

The implementation Our implementation of the testing framework consists of a compact 391 line
OCaml module, LCheck. This module contains a functor with 19 reusable lattice property tests as
well as the EDSL code and a number of lattices (the Boolean lattice and its dual, a pair lattice, and
a list lattice). Since this module can be reused across many static analyses it is separately available
for download.¶ Applying the EDSL to the Lua type analysis takes an additional 1213 lines of code.
Of those lines, the challenging part is the generator code, spanning 228 lines of code (distributed
between 41 lines for reusable operations, such as build_set, le_gen, and le_entries, and 187 lines for
arb_elem, arb_elem_le, and equiv_pair for each of the 9 lattices modules listed in Table I). With this
code we then check the 9 lattice modules along with the two Boolean lattices and 2 instantiations
of both the generic pair and list lattices. In addition we test a total of 119 lattices operations, such
as PL.find and Str.concat, spread across the 9 above lattice modules by way of our signature-based
EDSLs (utilizing the Bool lattices and the pair and list lattice instantiations in these signatures). In
total these sum up to 871 checked properties, distributed between 290 lattice properties and 581
properties of their associated operations. If we include the reusable EDSL module code, this makes
for approximately two lines per checked property.‖

In comparison, suppose we wish to test the same properties using hand-written unit tests. To test
each of these properties by hand for only one choice of input would thus require 871 hand-written
unit tests. A reasonable assumption is that each of these tests takes 2 lines of code on average. We
would then spend 1742 lines of code on 871 hand-written unit tests, compared to our 1604 lines of
code on 871 000 property-based tests (recall each property is tested on 1000 inputs): three orders
of magnitude as many tests with a comparable amount of code! Naturally it is more challenging to
program, e.g., a generator for proplattice as illustrated by our revision than to write a number of
unit tests, nevertheless this estimate gives a natural explanation as to how we are able to achieve
greater coverage: many more tests are simply being run.

We have not attempted to quickcheck the analysis’s tree-walker over arbitrary syntax trees at
this point. Doing so, would open up for testing for soundness — another central property of static
analyses. Concretely, we receivedtwo bug reports related to soundness of the Lua analysis. One
was related to soundly joining lists of return values (in Lua functions can return a list of results);
another was related to a corner case concerning Lua’s metatables (caused by an ambiguous sentence
in the language specification). Both of these slipped through our hand-written test suite and were
not found by quickchecking the underlying lattices. In order to thoroughly test a static analysis,
we believe that one should both exercise its core components (the underlying lattices) as well as
test it for soundness. As such, developing testing techniques for soundness is both a promising and
important path for future work.

We would like to extend the infix syntax to handle multiple properties in one test signature.
Overall this should lower the lines-of-code/property ratio. Technically, this would require changing
the underlying CPS building into one returning a list answer type. We would also like to handle
more signature properties, e.g., for extensive functions. In addition, one could consider to revise the
current infix syntax using the camlp4 preprocessor, to avoid having to write module repeatedly and
to allow arrow syntax that coincides with OCaml’s built-in type signature syntax. For now, we have
chosen to keep within the bounds of pure OCaml, to limit the number of dependencies.

We stress that although the current development has taken place within OCaml, it could just as
well have been formulated, e.g., with Haskell’s type classes. The type-safe embedding of the EDSL
utilizes the Hindley-Milner based type system of OCaml, thereby statically preventing type errors
in the tests, e.g., after lattice or transfer function revisions. A less type-safe embedding could be
implemented, e.g., in Java. One popular application of quickchecking is to test programs written

¶https://github.com/jmid/lcheck
‖The coverage reports, the source code of the analysis, and the tests are available at https://github.com/jmid/
luata-quickcheck.
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in the dynamically typed programming language Erlang. Indeed, nothing of the present framework
mandates a statically typed programming language: the extension of lattice interfaces and an EDSL
of signatures could just as well be written in JavaScript, Lua, or Scheme.

6. RELATED WORK

Previous work on increasing confidence in static analyses, range from basic testing to rigorous
pen-and-paper proofs such as Astrée’s [17]. Our approach can be beneficial to analyses from both
ends of the spectrum, to help ensure that an implementation captures the intended meaning — be
it in a programmer’s mind or in a rigorous pen-and-paper formalization. The growing interest in
proof assistants, such as, Coq, led Pichardie et al. [18, 19] to formalize abstract interpretation in
constructive logic. Combined with Coq’s ability to extract, e.g., OCaml code from its constructive
proofs, this minimizes the ‘trusted computing base’ to Coq itself. In a recent endeavor, Blazy
et al. [20] investigated the formalization of a value analysis for C integrated into the CompCert
framework. To keep things manageable, this approach relies on a common abstract domain interface
akin to a bare bones version of Fig. 2, and it formalizes (and extracts) a fixed-point verifier in Coq
rather than the fixed-point computing value analysis itself. A rather different approach was taken by
Murawski and Yi [21], by developing a static monotonicity analysis formulated as a type-and-effects
system. Their analysis conservatively accepts (or rejects) λ -definable functions over finite lattices
fed to a static analysis generator. We believe that quickchecking as demonstrated in this paper offers
a lightweight alternative to the above approaches. It is type safe, it is reusable, and it supplements
basic testing well.

The OCaml implementation of the Lua type analysis benefits from lack of side effects, e.g.,
assignments. This makes it easier to check and gain confidence in the individual lattice operations
as their output is determined solely by the input parameters. The static analysis community has
previously benefited from analysis implementations in functional languages: The Astrée static
analyzer [17] is implemented in OCaml, the CIL infrastructure for analysis and transformation
of C program [22] is implemented in OCaml, Frama-C [23], an industrial-strength static analysis
framework for the C programming language, is implemented in OCaml, MathWorks’s (formerly,
PolySpace Technologies) PolySpace verifier [24] is written in Standard ML, Simon’s value analysis
of C [25] is implemented in Haskell, and SLAM (subsequently, Static Driver Verifier) was originally
implemented in OCaml [26]. There are therefore plenty of existing analysis implementations that
might benefit from our methodology. In addition, both Cousot et al. [17] and Jensen et al. [7] report
to have arrived at their lattice and transfer function designs after multiple revisions: a potentially
fruitful scene for our suggested methodology.

In a follow-up paper to the original, Claessen and Hughes [4] develop a QuickCheck framework
for testing monadic code using multiple approaches, including an algebraic specification and
a model-based specification approach. They formulate a little EDSL to express (and generate)
arbitrary context traces of an abstract data type (ADT) under test, which they then use for both
specification approaches. One of their key insights of their algebraic specification approach is to
characterize observational equivalence of such code (“in all contexts, one piece of imperative code is
indistinguishable from another”), in terms of the trace EDSL (for arbitrarily generated context traces,
perform an equality test) which one can easily test for. Their second model-based specification
approach ensures agreement between the result of each ADT operation and the corresponding
operation over a simple model, when run in an arbitrary trace context (again expressed with the
trace EDSL). Their model-based approach has since become so common to test both stateless and
stateful code that the commercial Erlang QuickCheck library supports a state machine framework

for easily expressing an ADT, a model, and the agreement between transitions over both [27]. As
our analysis computes over approximate states, it has an imperative flavor similar to the examples
of Claessen and Hughes [4]. For example, we would like to investigate methods for generating
relational lattice values (e.g., valuelattice elements whose sets of labels all belong to the generated
storelattice value). Furthermore, the tree-walker of the Lua type analysis is written monadically,
and hence should be a likely target for their techniques. Potentially this could utilize some of the
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techniques of Pałka et al. [28] for generating random abstract syntax trees. Rather than taking our
current white-box testing approach, which utilizes full knowledge of the inner workings of each
lattice module, it would also be interesting to investigate a black-box testing approach akin to
Claessen and Hughes’s ADT context traces, by generating a symbolic sequence (or more accurately
a tree, since we include binary operations) of operations (join, meet, etc.) and testing the algebraic
lattice laws for arbitrary lattice values arising from these. This would have the advantage of letting
each module preserve module-local invariants without random generation potentially interfering
with these. On the other hand, each lattice has specific operations (a function lattice has lookup,
an interval lattice has abstract arithmetic, etc.), which would break the uniform design behind the
current approach.

As discussed in Section 5, some errors found in our case study are relational, in the sense that
they involve the relation between the inputs and outputs of multiple calls. Metamorphic testing is a
variant of property-based testing that focuses on such relational properties [29].

Independently from the seminal work by Claessen and Hughes [4] on the model-based
specification approach in the functional programming community, Offutt and Abdurazik [30]
suggested model-based testing to the software engineering community: an approach of letting
test generation be driven by (UML) statecharts. Although the two were thus presented in widely
different clothes—Haskell and UML—at their core the underlying idea was the same. The initial
presentations differed in that Offutt and Abdurazik would let their generator accept coverage
information in a feedback loop, and in that the generated tests would be stored offline, to have
redundant cases removed, and only be run later. Finally Offutt and Abdurazik’s approach is close
to the later state machine framework of the commercial Erlang QuickCheck library [27] in that
state charts are not only used to drive generation: in both cases state transitions are annotated with
predicates that capture the properties to test for. For imperative lattice implementations it could be
relevant to let their generation be driven by such state transition models.

In the context of testing abstract datatypes, Holdermans [15] recalls how naively lifting axioms
from an algebraic specification to quickcheck properties leaves programmers with a false sense
of security: a buggy implementation can still pass a seemingly complete property-based test suite.
In the pitfall he investigates, the randomly generated tests are insufficient to cover all concrete
representations of an abstract data type. As a remedy he extends the test suite with invariance tests.
We have chosen to follow Holdermans’s recommendation in our work.

In the broader programming language community, a number of tools utilize randomized testing.
In the field of compiler testing, we briefly touched upon the work of Pałka et al. [28] used to test
the Glasgow Haskell Compiler’s strictness analyser. Another prominent representative is Csmith by
Yang et al. [31]: a tool that uses randomized differential testing to generate random C programs free
of C’s notorious undefined behavior, yet capable of finding numerous errors in production compilers.
Cuoq et al. [32] utilize Csmith specifically for testing the Frama-C static analysis tool using a range
of approaches: A first approach modifies Frama-C into an interpreter without abstraction that can
be tested against an ordinary C compiler. A second approach emits an inferred analysis invariant as
a C assertion for each program and tests whether the assertion holds when executing the decorated
program. A third approach performs a constant propagation analysis and similarly tests whether the
execution of each program agrees with and without expressions being replaced by constant values
discovered by the analysis. PLT Redex [33] is a general tool for semantics engineering that can
also quickcheck properties on randomly generated input. In contrast to OCaml’s statically typed
programs and properties, PLT Redex’s internal language is dynamically typed. In the presence of
(almost) full coverage, one can argue that static typing plays a less dominant role. Static types,
however, provide pedagogical guidelines for composing composite lattice generators out of simpler
ones. St-Amour and Toronto [34] report on quickchecking the base type environment of Typed
Racket using PLT Redex. Specifically, they check whether the type signature of arithmetic primitives
soundly account for their corresponding runtime behavior when applied to randomly generated
terms. Overall they report that quickchecking supplements manual testing well and requires low
effort, which aligns with our experience.
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Hriţcu et al. [35] quickcheck an information flow architecture in the form of a simple abstract
machine to find counterexamples of non-interference. In doing so, they experiment with (a) different
strategies for generation—from naive generators to more clever ones generating pairs of related
programs (instruction sequences), and (b) different non-interference properties—from full end-to-
end machine execution to single-step machine execution. Our generation of ordered and equivalent
lattice element pairs is reminiscent of Hriţcu et al.’s generators of related programs. Our work
differs in that it concerns testing general static analysis properties, whereas the work by Hriţcu
et al. concerns testing soundness properties of a dynamic analysis.

Numerous techniques have been suggested for automated testing in related settings. For example,
Randoop [36] performs feedback-directed random testing for object-oriented programs, and
Korat [37] generates test inputs based on formal specifications of pre- and post-conditions. Such
techniques can in principle also be applied to test static analyses, however, unlike our approach,
they do not exploit the underlying structured domains and the algebraic properties common in static
analysis.

The analysis implementation grew out of our earlier study of definitional interpreters for the
Lua programming language [38]. The present type analysis provides a sound approximation of the
semantics of those interpreters, albeit it supports a substantially bigger language. The Lua type
analysis is heavily inspired by TAJS [7], a type analysis for JavaScript. In contrast to the present
functional OCaml implementation, TAJS is implemented in Java. Despite extensive testing, the
manually developed test suite for TAJS does not achieve full coverage of, for example, its value
lattice domain, which plays a central role. This is partially due to algorithmic interference: TAJS’s
worklist algorithm decides when states should be joined in the lattice, which makes it hard to craft
an input program that will force the abstract interpreter down a certain lattice code path. Although
unit tests have also been made specifically for that part of the code, not enough resources have been
invested in making them sufficiently comprehensive. However, quickchecking is well suited to test
such paths extensively and with much less effort.

7. CONCLUSION

We have presented a lightweight methodology for quickchecking static analyses to check a range
of properties, and as a result raise confidence in their implementation. We can do so in a non-
intrusive and scalable manner: lattice properties of both basic lattices and complex compositional
lattices share the same property tests and can quickly be checked on thousands of generated inputs.
To quickcheck lattice operations we have developed a type-safe EDSL for expressing common
properties. With our EDSL, much of the infrastructure becomes reusable across analyses, and testing
a lattice operation property involves little more than writing a type signature.

Based on this positive experience, we encourage static analysis developers to quickcheck their
next analysis tool for many of the generic properties that may otherwise be cumbersome to test. Our
OCaml-based EDSL may serve as a useful foundation, or as a source for inspiration if using other
languages.
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A. APPENDIX

A.1. A simplified grammar for Lua

lit ::= nil

| bool

| string

| number

| {exp∗; (id=exp)∗}

| function(id∗) block end

exp ::= lit

| lvalue

| unop exp

| exp binop exp

| exp and exp

| exp or exp

| exp(exp∗)

| exp.id(exp∗)

| (exp)

lvalue ::= id

| exp.id

| exp[exp]

stmt ::= break

| if exp then block else block end

| while exp do block end

| do block end

| lvalue+ = exp+

| local exp+ (= exp+)?

| exp(exp∗)

| exp. id(exp∗)

| return exp∗

block ::= stmt∗

A simplified BNF grammar of Lua. ?, ∗, and + denote optional elements, empty and
nonempty Kleene sequences, respectively.

A.2. EDSL signatures

Below we include selected signatures of the EDSL.

(* The reusable functor of generic lattice tests (top not required) *)

module GenericTests :

functor (L : LATTICE_TOPLESS) ->

sig

val arb_pair : (L.elem * L.elem) QCheck.Arbitrary.t

val arb_triple : (L.elem * L.elem * L.elem) QCheck.Arbitrary.t

val ord_triple : (L.elem * L.elem * L.elem) QCheck.Arbitrary.t

val pp_triple : (L.elem * L.elem * L.elem) QCheck.PP.t

val size : L.elem -> int

val size_pair : L.elem * L.elem -> int

val size_triple : L.elem * L.elem * L.elem -> int

val leq_refl : QCheck.test

val leq_trans : QCheck.test

val leq_antisym : QCheck.test

val bot_is_lowerbound : QCheck.test

val join_comm : QCheck.test

val join_assoc : QCheck.test

val join_idempotent : QCheck.test

val meet_comm : QCheck.test

val meet_assoc : QCheck.test

val meet_idempotent : QCheck.test

val join_meet_absorption : QCheck.test

val meet_join_absorption : QCheck.test

val leq_compat_join : QCheck.test

val join_compat_leq : QCheck.test
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val join_compat_meet : QCheck.test

val meet_compat_join : QCheck.test

val meet_compat_leq : QCheck.test

val leq_compat_meet : QCheck.test

val check_ordering : QCheck.test

val pp_pair : (L.elem * L.elem) QCheck.PP.t

val ord_pair : (L.elem * L.elem) QCheck.Arbitrary.t

val suite : QCheck.test list

end

(* The reusable functor of generic lattice tests (top required) *)

module GenericTopTests :

functor (L : LATTICE) ->

sig

val top_is_upperbound : QCheck.test

val suite : QCheck.test list

end

(* The combinator for expressing a monotonicity test *)
val op_monotone : (module LATTICE_TOPLESS with type elem = ’a) ->

(module LATTICE_TOPLESS with type elem = ’b) ->
((’a * ’a) QCheck.PP.t * (’a * ’a) QCheck.Arbitrary.t *
((’a -> ’b) -> (’a * ’a) QCheck.Prop.t) * string * int -> ’c) -> ’c

(* The combinator for expressing an invariance test *)
val op_invariant : (module LATTICE_TOPLESS with type elem = ’a) ->

(module LATTICE_TOPLESS with type elem = ’b) ->
((’a * ’a) QCheck.PP.t * (’a * ’a) QCheck.Arbitrary.t *
((’a -> ’b) -> (’a * ’a) QCheck.Prop.t) * string * int -> ’c) -> ’c

(* The combinator for expressing a strictness test *)
val op_strict : (module LATTICE_TOPLESS with type elem = ’a) ->

(module LATTICE_TOPLESS with type elem = ’b) ->
(’a QCheck.PP.t * ’a QCheck.Arbitrary.t *
((’a -> ’b) -> ’a QCheck.Prop.t) * string * int -> ’c) -> ’c

(* The combinator for expressing a distributivity test *)
val op_distributive : (module LCheck.LATTICE_TOPLESS with type elem = ’a) ->

(module LCheck.LATTICE_TOPLESS with type elem = ’b) ->
((’a * ’a) QCheck.PP.t * (’a * ’a) QCheck.Arbitrary.t *
((’a -> ’b) -> (’a * ’a) QCheck.Prop.t) * string * int -> ’c) -> ’c

(* The combinator for adding additional arguments to the left *)
val pw_left : (module ARB_ARG with type elem = ’a) ->

((module LATTICE_TOPLESS with type elem = ’b) ->
(module LATTICE_TOPLESS with type elem = ’c) ->
(’d QCheck.PP.t * ’d QCheck.Arbitrary.t *
((’f -> ’g) -> ’d QCheck.Prop.t) * string * int -> ’e) -> ’h) ->

(module LATTICE_TOPLESS with type elem = ’b) ->
(module LATTICE_TOPLESS with type elem = ’c) ->
((’a * ’d) QCheck.PP.t * (’a * ’d) QCheck.Arbitrary.t *
((’a -> ’f -> ’g) -> (’a * ’d) QCheck.Prop.t) * string * int -> ’e) -> ’h

(* The combinator for adding additional arguments to the right *)
val pw_right : (module ARB_ARG with type elem = ’a) ->

((module LATTICE_TOPLESS with type elem = ’b) ->
(module LATTICE_TOPLESS with type elem = ’c) ->
(’d QCheck.PP.t * ’d QCheck.Arbitrary.t *
((’f -> ’g) -> ’d QCheck.Prop.t) * string * int -> ’e) -> ’h) ->

(module LATTICE_TOPLESS with type elem = ’b) ->
(module LATTICE_TOPLESS with type elem = ’c) ->
((’d * ’a) QCheck.PP.t * (’d * ’a) QCheck.Arbitrary.t *
((’f -> ’a -> ’g) -> (’d * ’a) QCheck.Prop.t) * string * int -> ’e) -> ’h

(* The combinator ceiling off a lattice signature test *)
val finalize : ((’a QCheck.PP.t * ’a QCheck.Arbitrary.t *

((’b -> ’c) -> ’a QCheck.Prop.t) * string * int -> QCheck.test) ->
QCheck.test) -> string * (’b -> ’c) -> QCheck.test

(* Infix syntax for finalize *)

Copyright c© 0000 John Wiley & Sons, Ltd. Softw. Test. Verif. Reliab. (0000)
Prepared using stvrauth.cls DOI: 10.1002/stvr



QUICKCHECKING STATIC ANALYSIS PROPERTIES 29

val ( =:: ) : ((’a QCheck.PP.t * ’a QCheck.Arbitrary.t *
((’b -> ’c) -> ’a QCheck.Prop.t) * string * int -> QCheck.test) ->

QCheck.test) -> string * (’b -> ’c) -> QCheck.test

(* A reusable Boolean lattice ordered under reverse implication ordering *)
module Bool : LATTICE

(* A reusable Boolean lattice ordered under implication ordering *)
module DBool : LATTICE

(* A reusable functor for creating pair lattices *)
module MkPairLattice : functor (A : LATTICE_TOPLESS with type elem = ’a)

(B : LATTICE_TOPLESS with type elem = ’b) ->
LATTICE_TOPLESS with type elem = ’a * ’b

(* A reusable functor for creating list lattices *)
module MkListLattice : functor (A : LATTICE_TOPLESS with type elem = ’a) ->

LATTICE_TOPLESS with type elem = ’a list
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