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Abstract

Refactoring is a popular technique for improving the struc-

ture of existing programs while maintaining their behav-

ior. For statically typed programming languages such as

Java, a wide variety of refactorings have been described,

and tool support for performing refactorings and ensuring

their correctness is widely available in modern IDEs. For the

JavaScript programming language, however, existing refac-

toring tools are less mature and often unable to ensure that

program behavior is preserved. Refactoring algorithms that

have been developed for statically typed languages are not

applicable to JavaScript because of its dynamic nature.

We propose a framework for specifying and implement-

ing JavaScript refactorings based on pointer analysis. We

describe novel refactorings motivated by best practice re-

commendations for JavaScript programming, and demon-

strate how they can be described concisely in terms of

queries provided by our framework. Experiments performed

with a prototype implementation on a suite of existing appli-

cations show that our approach is well-suited for developing

practical refactoring tools for JavaScript.

Categories and Subject Descriptors D.2.7 [Distribution,

Maintenance, and Enhancement]: Restructuring, reverse en-

gineering, and reengineering

General Terms Languages
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1. Introduction

Refactoring is the process of improving the structure of soft-

ware by applying behavior-preserving program transforma-

tions [9], and has become an integral part of current software

development methodologies [4]. These program transforma-

tions, themselves called refactorings, are typically identified

by a name, such as RENAME FIELD, and characterized by

a set of preconditions under which they are applicable and

a set of algorithmic steps for transforming the program’s

source code. Checking these preconditions and applying the

transformations manually is tedious and error-prone, so in-

terest in automated tool support for refactorings has been

growing. Currently, popular IDEs such as Eclipse,1 Visual-

Studio,2 and IntelliJ IDEA3 provide automated support for

many common refactorings on various programming lan-

guages. In addition, there is much recent research literature

on soundly performing a variety of refactorings (see Sec-

tion 7 for an overview).

However, most research on refactoring has focused on

statically typed languages, such as Java, for which express-

ing the preconditions and source code transformations can

take advantage of static type information and name resolu-

tion. Refactoring for dynamic languages such as JavaScript

is complicated because identifiers are resolved at runtime. Of

the few previous approaches to refactoring for dynamically

typed languages, the most well-developed one can be found

in the Smalltalk Refactoring Browser [24], which relies on a

combination of runtime instrumentation and the existence of

a test suite to ensure that behavior is preserved. By contrast,

we aim for a sound technique that does not require compre-

hensive test suites.

In this paper, we present a framework for refactoring pro-

grams written in JavaScript, a dynamically typed scripting

1 http://www.eclipse.org/

2 http://www.microsoft.com/visualstudio/

3 http://www.jetbrains.com/idea/



language that has become the lingua franca of web browsers.

To understand why implementing even simple refactorings

in JavaScript is more challenging than implementing analo-

gous refactorings for statically typed languages such as Java,

consider the RENAME FIELD refactoring in Java. A key re-

quirement when renaming field f of class C to g is to iden-

tify all references to that field so they can be renamed con-

sistently. Renaming all references to a field is easy for Java

programs since static type information is available. For ex-

ample, an expression of the form e.f where the static type

of e is C definitely refers to the renamed field. In contrast, the

corresponding task for a RENAME PROPERTY refactoring in

JavaScript is in general impossible to solve exactly by static

means. While fields in Java are statically declared within

class definitions, properties in JavaScript are only associated

with dynamically created objects and are themselves dynam-

ically created upon first write. Further complications arise

from other dynamic features of JavaScript, such as the abil-

ity to dynamically delete properties, change the prototype

hierarchy, or reference a property by specifying its name as

a dynamically computed string.

We describe a methodology for implementing auto-

mated refactorings on a nearly complete subset of the EC-

MAScript 5 language [7], the chief omission being dynam-

ically generated code (i.e., eval). Our approach relies on

static pointer analysis for JavaScript to define a set of gen-

eral analysis queries. We have used this methodology to

implement both well-known traditional refactorings, such as

renaming, and novel JavaScript-specific refactorings that tar-

get desirable programming idioms advocated by influential

practitioners [5].

In the process, we have devised various techniques to

handle JavaScript’s highly dynamic features and lack of

static typing. For example, while naively over- or under-

approximating the set of expressions e.f that must be modi-

fied when a property f is renamed (e.g., using a conventional

must- or may-point-to analysis) would be unsound, we de-

scribe an algorithm that over-approximates this set in a safe

manner. We also ensure, through preconditions that can be

expressed in terms of the analysis queries, that behavior is

preserved in the presence of complex JavaScript features

such as reflective for-in loops, first-class functions, and

prototype-based inheritance. In cases where we cannot guar-

antee behavior preservation, refactorings are prevented from

being applied.

We have specified and implemented three refactorings

using our approach: RENAME (which is a generalization of

the previouslymentioned RENAME PROPERTY), ENCAPSU-

LATE PROPERTY, and EXTRACT MODULE. We have eval-

uated the quality of our implementations by applying these

refactorings systematically to a set of 50 benchmark pro-

grams, measuring how often refactorings are applied suc-

cessfully and analyzing causes for rejection. Our results

show that most refactorings are performed successfully and

rejections are generally justified by a real danger of unsound-

ness. This demonstrates that our approach is a viable basis

for implementing refactoring tools for JavaScript.

In summary, the major contributions of this paper are as

follows:

• We present a framework for specifying and imple-

menting JavaScript refactorings, based on a set of anal-

ysis queries on top of a pointer analysis.

• We give concise, detailed specifications of JavaScript-

specific refactorings expressed using the framework. To

the best of our knowledge, we are the first to give such

specifications in the context of JavaScript.

• We experimentally validate our approach by exercis-

ing a prototype implementation of the framework and

the refactorings on a set of JavaScript benchmarks. We

demonstrate that the preconditions of our specifications

are not overly conservative, and that a relatively simple

pointer analysis appears to suffice in practice for many

programs ranging in size from 300 to 1700 lines of code.

The remainder of this paper is organized as follows.

Section 2 introduces a motivating example to illustrate

the challenges that arise in defining several refactorings

for JavaScript. Section 3 presents a framework of analysis

queries based on pointer analysis. Section 4 shows how the

three refactorings under consideration are expressed using

this framework. Details of the implementation are described

in Section 5, while Section 6 gives an evaluation of our refac-

torings on a set of JavaScript benchmarks. Related work is

discussed in Section 7. Finally, conclusions are presented in

Section 8.

2. Motivating Examples

Figure 1 shows a small JavaScript program that we will use

to illustrate some of the challenges of refactoring JavaScript

programs. Part (a) of the figure shows a library that defines

two shapes: circles and rectangles. Part (b) shows a client

application that uses this library to draw a number of such

shapes of randomly chosen sizes at random coordinates in

the browser. We will first explain some key details of this

program, and then discuss some of the issues raised by ap-

plying the RENAME, ENCAPSULATE PROPERTY, and EX-

TRACT MODULE refactorings.

2.1 A JavaScript Example Program

As a prototype-based language, JavaScript does not have

built-in support for classes. Instead, they are commonly

simulated using constructor functions. In the example of

Figure 1, two constructor functions are provided: Circle

(lines 1–11) and Rectangle (lines 13–24). These enable the

programmer to create circle and rectangle objects using the

new operator (e.g., line 41). Constructor functions typically

contain statements to initialize a number of object proper-

ties, which are not explicitly declared but created upon the



1 function Circle(x, y, r, c) {
2 this.x = x;

3 this.y = y;

4 this.radius = r;

5 this.color = c;

6 this.drawShape = function (gr) {

7 gr.fillCircle(new jsColor(this.color),

8 new jsPoint(this.x,this.y),

9 this.radius);

10 };

11 }
12
13 function Rectangle(x, y, w, h, c) {
14 this.x = x;

15 this.y = y;

16 this.width = w;

17 this.height = h;

18 this.color = c;

19 this.drawShape = function (gr) {

20 gr.fillRectangle(new jsColor(this.color),

21 new jsPoint(this.x,this.y),

22 this.width, this.height);

23 };

24 }
25 Rectangle.prototype.getArea = function() {
26 return this.width * this.height;

27 };

28 function r(n) { return Math.round(Math.random() * n); }
29
30 function drawAll(sh) {
31 var gr =

32 new jsGraphics(document.getElementById("canvas"));

33 sh.map( function(s) { s.drawShape(gr); });

34 }
35
36 var shapes = [];
37 for (var i = 0; i < 500; i++) {
38 var o = new jsColor().rgbToHex(r(255),r(255),r(255));

39 switch(r(2)){

40 case 0:

41 shapes[i] = new Circle(r(500),r(500),r(50),o);

42 break;

43 case 1:

44 shapes[i] = new Rectangle(r(500),r(500),r(50),r(50),o);

45 alert(shapes[i].getArea());

46 break;

47 }

48 }
49 drawAll(shapes);

(a) (b)

Figure 1. Shapes example. Part (a) shows a small library that defines several types of shapes. Part (b) shows a small client

application that uses the library to draw shapes in the browser.

first write. For example, the constructor for Circle creates

and initializes properties x, y, radius, and color (lines 2–

5) by assigning them values that are passed in as parameters

to the function, and similar for Rectangle.

Both also create properties drawShape on line 6 and

line 19 that contain functions to display the appropriate

geometric shape.4 These functions can refer to their receiver

object using this expressions, and thus act like methods.

Function Rectangle shows another way of emulating

methods that makes use of JavaScript’s prototype-based na-

ture. Functions like Circle and Rectangle are themselves

objects, and hence can have properties. In particular, ev-

ery function object has a prototype property that is im-

plicitly initialized to an empty object. On line 25 we create

a property getArea in this object by assigning it a func-

tion that computes the area of a rectangle. Every object

created by invoking new Rectangle(...) has an inter-

nal prototype property, which references the object stored

in Rectangle.prototype.When a property x is looked up

on this object, but the object does not itself define property

x, the internal prototype is searched for x instead.

Thus, every rectangle has both a getArea and a

drawShape property, the latter defined in the object itself,

the former defined in its internal prototype. But while ev-

ery rectangle has its own copy of drawShape (created on

line 19), there is only one copy of getArea, which is shared

by all rectangles.

4The functions are implemented using jsDraw2D, a graphics library for

JavaScript, which is available from http://jsdraw2d.jsfiction.com/.

Function r (line 28) returns a random value between 0

and its argument n. Function drawAll (lines 30–34) takes as

an argument an array shapes, and on line 33 uses a closure

and the map function to invoke drawShape on each element

of the array. Lines 36–49 contain a sequence of statements

that are executed when the page containing the script is

loaded. This code creates an array of 500 randomly colored

shapes of various kinds, displaying the area of every rectan-

gle upon creation on line 45, and then invokes drawAll to

draw these shapes in the browser.

Note that in the invocation shapes[i].getArea() on

line 45, the function to be invoked is found on the internal

prototype object of shapes[i], but its receiver object (i.e.,

the value of this) is shapes[i] itself, not the prototype

object. This ensures, for instance, that the property access

this.width in line 26 refers to the property defined on

line 16.

We will now discuss the issues that arise when three

refactorings—RENAME, ENCAPSULATE PROPERTY, and

EXTRACT MODULE—are applied to the example program

of Figure 1.

2.2 RENAME

We begin by considering some applications of the RE-

NAME refactoring to the example program of Figure 1. In

JavaScript, there are no property declarations. Although it

is natural to think of the assignment to this.x in Circle

as a declaration, it is just a write access to a property x that

is created on the fly since it does not exist yet. The absence

of declarations and static typing information makes refac-



toring more difficult because it is necessary to determine all

property expressions in a program that may refer to the same

property and rename them consistently. We consider a few

examples:

• The property expression this.x on line 2 in Circle

can be renamed to xCoord. This requires updating the

property expression this.x on line 8 to this.xCoord

as well. However, there is no need to rename the prop-

erty expression this.x on line 14, because the proper-

ties accessed on lines 8 and 14 must reside in different

objects. If we nevertheless do decide to rename this.x

on line 14 to this.xCoord as well, then the subsequent

property expression on line 21 must also be changed to

this.xCoord.

• Refactoring the property expression this.drawShape

on line 6 in Circle to this.draw requires that the

property expression this.drawShape on line 19 in

Rectangle is refactored to this.draw as well: the re-

ceiver s in the expression s.drawShape(gr) on line 33

can be bound to a Circle or a Rectangle object, and

therefore the methods have to be renamed consistently.

Note that Circle and Rectangle are completely unre-

lated; in particular there is no prototype relationship.

As these examples illustrate, the key correctness requirement

for renaming is name binding preservation—each use of a

property in the refactored program should refer to the same

property as in the original program. Name binding preserva-

tion is also a natural correctness condition for other refactor-

ings, as we describe below. Schäfer et al. [26] used this con-

dition successfully to provide sound automated refactorings

for Java, including renaming. Unfortunately, their techniques

rely on explicit declarations and static scoping, so they are

not directly applicable to JavaScript.

A natural approach is to use a static pointer analysis to ap-

proximate name binding information. However, a naive use

of pointer analysis would be unsound. For example, consider

the renaming of this.drawShape on line 6 in Circle de-

scribed above. Renaming only expressions that must point

to the same property as the one referenced on line 6 is insuf-

ficient. A sound must-point-to analysis could indicate that

there is no other access of drawShape that must definitely

point to the same property, therefore requiring nothing else

to be renamed. On the other hand, renaming only expres-

sions that may point to the property referenced on line 6 is

also insufficient. For example, a sound may-point-to analy-

sis could exclude the property expression this.drawShape

on line 19 in Rectangle since it definitely accesses a dis-

tinct property from that of Circle. However, that expres-

sion must in fact be renamed to preserve program behavior,

as we saw above. We define a notion of relatedness in Sec-

tion 3 based on may-points-to information, which captures

the set of property expressions in a program that are affected

by renaming a particular expression a.

50 function dble(c) {
51 var nc = new Circle();

52 for (var a in c) {

53 nc[a] = (a != "radius") ? c[a] : c[a]*2;

54 }

55 return nc;

56 }
57
58 function r(n) { return Math.round(Math.random() * n); }
59
60 function drawAll(sh) {
61 var gr =

62 new jsGraphics(document.getElementById("canvas"));

63 sh.map( function(s) { s.drawShape(gr); });

64 }
65
66 var shapes = [];
67 for (var i = 0; i < 500; i++){
68 var o = new jsColor().rgbToHex(r(255),r(255),r(255));

69 switch(r(2)) {

70 case 0:

71 shapes[i] =

72 dble(new Circle(r(500),r(500),r(50),o));

73 break;

74 case 1:

75 shapes[i] =

76 new Rectangle(r(500),r(500),r(50),r(50),o);

77 alert(shapes[i].getArea());

78 break;

79 }

80 }
81 drawAll(shapes);

Figure 2. Modified client application, with dble function

added.

We now consider a minor variation on the client applica-

tion where a function dble has been added (lines 50–56) as

shown in Figure 2. The client application is the same as in

Figure 1(b) except that dble is used to double the radius of

circles created in line 72.

The function dble takes an argument c, which is as-

sumed to be a Circle object, and returns a new Circle ob-

ject at the same coordinates but with a doubled radius. This

function illustrates several interesting features of JavaScript.

First, on line 51, the constructor of Circle is called with-

out any explicit arguments, which causes the special value

undefined to be passed as default argument. Second,

line 52 shows a for-in loop, in which the variable a it-

erates through the names of properties in the object pointed

to by parameter c. Line 53 also provides several examples

of a dynamic property expression. For example, the dynamic

property expression c[a] on that line refers to the property

of c named by the value of a. Together, these reflective fea-

tures have the effect of copying all property values from the

argument c into the corresponding property of the newly

created object, except for radius, which is also multiplied

by two. These features pose some challenges for refactoring:

• Applying RENAME to this.radius on line 4 is prob-

lematic because of the for-in loop and dynamic prop-

erty expression in dble. For example, renaming the prop-

erty expression to this.radwould require changing the

string constant "radius" on line 53 in order to preserve

behavior. In general, dynamic property expressions may



use values computed at runtime, which would thwart any

static analysis. In order to ensure that dynamic property

expressions do not cause changes in program behavior

when applying the RENAME refactoring, our approach

(as detailed in Section 4) is to conservatively disallow the

renaming of any property in any object on which proper-

ties may be accessed reflectively. Hence, in this example,

we disallow renaming any of the properties in Circle

objects.

• The names of the drawShape methods in Circle and

Rectangle must be kept consistent, because the call on

line 63 may resolve to either one of these, as we ex-

plained above. Since we now disallow renaming any of

the properties in Circle, we must also disallow renam-

ing drawShape in Rectangle.

• The remaining properties of Rectangle, i.e., x, y, width,

and height can still be renamed.

2.3 ENCAPSULATE PROPERTY

In Java, the ENCAPSULATE FIELD refactoring can be used to

encapsulate state by making a field private and redirecting

access to that field via newly introduced getter and setter

methods [9, page 206]. Unfortunately, JavaScript does not

provide language constructs to control the accessibility of

properties in objects: If a function has a reference to an

object, it can access any property of that object. Such a lack

of encapsulation is problematic because it leads to code that

is brittle, and hard to understand and maintain.

A commonly used technique, suggested for instance in

Crockford’s popular textbook [5], uses local variables of

constructor functions to simulate private properties. Local

variables in JavaScript (i.e., variables declared using the

var keyword) can only be accessed within the scope of the

declaring function. In the case of constructor functions, lo-

cal variables exist as long as the object exists, and they can

only be accessed by functions defined within the constructor

function itself. The basic idea of the ENCAPSULATE PROP-

ERTY refactoring is to encapsulate state by storing values in

local variables instead of properties of objects, and to intro-

duce getter/setter methods to retrieve and modify them.

Figure 3 shows how the library of Figure 1 is changed

by applying the ENCAPSULATE PROPERTY refactoring to

the width property of Rectangle, with changed bits of

code highlighted in gray. The width property was changed

into a local variable on line 98, and methods getWidth and

setWidthwere introduced on lines 101–106.5 Furthermore,

the property expression this.widthwas replaced by a call

to getWidth on line 114. Note that there was no need to

introduce a call to getWidth on line 110 because the width

variable can be accessed directly. No calls to setWidth need

to be introduced since there are no write accesses to width.

5This is not to be confused with the new getter/setter mechanism introduced

in ECMAScript 5, which only applies to object literals [7, §11.1.5].

82 function Circle(x, y, r, c) {
83 this.x = x;

84 this.y = y;

85 this.radius = r;

86 this.color = c;

87 this.drawShape = function(gr) {

88 gr.fillCircle(new jsColor(this.color),

89 new jsPoint(this.x,

90 this.y),

91 this.radius);

92 };

93 }
94
95 function Rectangle(x, y, w, h, c) {
96 this.x = x;

97 this.y = y;

98 var width = w;

99 this.height = h;

100 this.color = c;

101 this.getWidth = function() {

102 return width;

103 };

104 this.setWidth = function(w) {

105 return width = w;

106 };

107 this.drawShape = function(gr) {

108 gr.fillRectangle(new jsColor(this.color),

109 new jsPoint(this.x, this.y),

110 width , this.height);

111 };

112 }
113 Rectangle.prototype.getArea = function() {

114 return this.getWidth() * this.height;

115 };

Figure 3. The library of Figure 1(a) after applying ENCAP-

SULATE PROPERTY to the width property of Rectangle.

The source code of the client application in Figure 1(b) is

unaffected by this refactoring because it does not access the

width property.

Name binding preservation is a key correctness condition

also for the ENCAPSULATE PROPERTY refactoring, but there

are other issues as well.

Encapsulating the width property of Rectangle did not

cause any problems, and all other properties of Rectangle

can be encapsulated similarly. However, this is not the case

for the properties of Circle. To see this, consider a sit-

uation where the radius property of Circle is encapsu-

lated in a scenario where the library is refactored together

with the modified client application of Figure 2. The for-in

loop on line 52 in the original program in Figure 2 iterates

through all properties of a Circle object, so the behavior of

this loop changes if radius becomes a variable instead of

a property. The multiplication in the loop is no longer exe-

cuted since there is no radius property to be copied. The

for-in loop will also copy the drawShape property, but

the copied function object will continue to refer to the lo-

cal variables of the original Circle object that was being

copied. As a result, the program would continue to draw cir-

cles, but with just half the radius. The ENCAPSULATE PROP-

ERTY refactoring should clearly be disallowed in this case. A

JavaScript refactoring tool must carefully take into account

how properties are accessed dynamically and prevent EN-



116 var r1 = new Rectangle(0, 0, 100, 200, ’red’);
117 var r2 = new Rectangle(0, 0, 300, 100, ’blue’);
118 r1.drawShape = r2.drawShape;
119 drawAll([r1]);

Figure 4. Alternative client program.

CAPSULATE PROPERTY in cases where it might lead to be-

havioral changes. In this particular case, a tool could conser-

vatively disallow any of the properties of Circle from being

encapsulated.

JavaScript allows one to dynamically assign function val-

ues to properties, which causes further complications. Sup-

pose that we want to apply ENCAPSULATE PROPERTY to the

width property of Rectangle in a situation that includes

the library of Figure 1(a) and the (artificial) client program

of Figure 4. The original version of the program draws a red

100-by-200 rectangle. However, if width is encapsulated,

as shown in Figure 3, a red 300-by-200 rectangle is drawn

instead. To see why, note that the function stored in prop-

erty r1.drawShape and invoked by drawAll comes from

r2.drawShape, and contains the function originally created

during the constructor invocation on line 117. Hence its lex-

ical environment stores the value 300 for width, and this is

the value read on line 110. The height, on the other hand,

is read from property height of object this; the value of

this is always the object on which the function is invoked,

here r1, so this.height yields 200.

The problem can be resolved by replacing the identifier

reference width on line 110 by a call this.getWidth().

In Section 3, we define the notion of well-scopedness to

characterize functions that act as methods of a single object,

making it safe to access the encapsulated property directly.

Roughly speaking, a function is well-scoped if, on every

call, its receiver object is the same as the value that this

had when the function was defined. In the presence of the

client of Figure 4, drawShape is not well-scoped because of

the assignment on line 118. Therefore, our refactoring tool

knows that it must replace the identifier reference width on

line 110 by a call to this.getWidth.

2.4 EXTRACT MODULE

JavaScript does not provide language constructs for modu-

larization and relies on a single global name space for all top-

level functions and variables, even those that are declared in

different files. This is problematic, because it can easily lead

to situations where declarations of global variables and func-

tions in one file are clobbered by those declared in another.

Fortunately, it is possible to obtain most of the benefits of a

module system using closures [5, page 40].

Figure 5 shows the example program of Figure 1 af-

ter applying EXTRACT MODULE to move the Circle

and Rectangle functions into a new “module” called

geometry. The basic idea is that these previously global

functions become local functions inside an anonymous func-

tion, which returns an object literal with properties Circle

and Rectangle through which the functions can be invoked

(lines 149– 152). This anonymous function is invoked imme-

diately (line 153), and the result is assigned to a newly intro-

duced global variable, geometry (line 120). Hence, the con-

structor functions are now available as geometry.Circle

and geometry.Rectangle. Figure 5(b) shows how the

client application of Figure 1(b) is updated, by using these

“qualified names”. Note that this approach has the important

benefit that inside the newly introduced closure function,

there is no need to refer to the geometry variable. For exam-

ple, the name Rectangle on line 145 need not be qualified.

A refactoring tool must take certain precautions when

applying EXTRACT MODULE. For example, observe that

choosing the name shapes for the new module is problem-

atic because a variable with the same name is already de-

clared on line 161. If we were to perform the refactoring

anyway, the shapes “module” would be overwritten, and the

constructor calls on lines 167 and 171 would cause runtime

errors since the empty array shapes does not have proper-

ties Circle or Rectangle.

2.5 Discussion

The examples in this section show that refactoring tools for

JavaScript have to address a number of challenges that do not

arise in statically typed languages such as Java. Chief among

these challenges is the lack of static typing and variable

declarations, and the use of reflective constructs such as

for-in loops. We address these challenges with a number

of query operations defined on top of a pointer analysis

framework. We present the framework and its queries in

Section 3 and put them to work in Section 4 by specifying

the refactorings introduced in this section in more detail.

3. A Framework for Refactoring with

Pointer Analysis

In this section, we develop the technical machinery needed

to precisely specify and implement refactorings like the ones

described in the previous section. We first describe a set of

basic queries to be provided by an underlying pointer analy-

sis such as the one discussed in Section 5. Then, we motivate

the analysis questions a refactoring tool needs to answer by

taking a closer look at some of the issues illustrated above,

and we show how to crystallize them into reusable queries

that can be implemented on top of the basic query interface.

Section 4 will demonstrate how these queries are in turn used

to give detailed specifications for several refactorings.

3.1 Basic Queries

As the foundation of our framework, we assume a pointer

analysis that defines a finite set L of object labels such that

every object at runtime is represented by a label. We assume

that L includes labels to represent environment records [7,

§10.2.1]. For technical reasons, we require that if an object



120 var geometry = (function(){
121 function Circle (x, y, r, c) {

122 this.x = x;

123 this.y = y;

124 this.radius = r;

125 this.color = c;

126 this.drawShape = function (gr) {

127 gr.fillCircle(new jsColor(this.color),

128 new jsPoint(this.x,this.y),

129 this.radius);

130 };

131 }

132
133 function Rectangle (x, y, w, h, c) {

134 this.x = x;

135 this.y = y;

136 this.width = w;

137 this.height = h;

138 this.color = c;

139 this.drawShape = function (gr) {

140 gr.fillRectangle(new jsColor(this.color),

141 new jsPoint(this.x,this.y),

142 this.width, this.height);

143 };

144 }

145 Rectangle.prototype.getArea = function() {

146 return this.width * this.height;

147 };

148

149 return {

150 Circle : Circle,

151 Rectangle : Rectangle

152 };

153 })();

154 function r(n) { return Math.round(Math.random() * n); }
155
156 function drawAll(shapes) {
157 var gr = new jsGraphics(document.getElementById("canvas"));

158 shapes.map( function(s) { s.drawShape(gr); });

159 }
160
161 var shapes = [];
162 for (var i = 0; i < 500; i++) {
163 var o = new jsColor().rgbToHex(r(255), r(255), r(255));

164 switch(r(2)) {

165 case 0:

166 shapes[i] =

167 new geometry.Circle(r(500),r(500),r(50), o);

168 break;

169 case 1:

170 shapes[i] =

171 new geometry.Rectangle(r(500),r(500),r(50), r(50), o);

172 alert(shapes[i].getArea());

173 break;

174 }

175 }
176 drawAll(shapes);

(a) (b)

Figure 5. The example program of Figure 1 after applying EXTRACT MODULE to Circle and Rectangle.

label represents an object allocated by a particular new ex-

pression, then all objects represented by that label are allo-

cated by that expression. Similarly, a single object label can-

not represent two function objects associated with different

textual definitions.

We say that a set L of object labels over-approximates a

setO of runtime objects if every object o ∈ O is represented

by some l ∈ L. For brevity, we will use the term function

definition to mean “function declaration or function expres-

sion” and invocation expression to mean “function call ex-

pression or new expression”.

The pointer analysis should provide the following queries:

objects For any expression e in the program, objects(e) ⊆ L

over-approximates the set of objects to which emay eval-

uate, including objects arising from ToObject conver-

sion [7, §9.9]. For a function declaration f , objects(f)
over-approximates the set of function objects that may

result from evaluating f .

scope For any function definition or catch clause e,

scope(e) ⊆ L over-approximates the set of environment

records corresponding to e at runtime.6 We additionally

define scope(e) := objects(e) for any with expression e.

6Observe that scope(f) for a function definition f is not necessarily the

same as objects(f): the former approximates environment records, the latter

approximates function objects.

proto For any object label ℓ, proto(ℓ) ⊆ L over-approximates

the possible prototype objects of the runtime objects ℓ

represents. We write proto+(L) for the set of transitive

prototypes of L ⊆ L as determined by this query.

props For any object label ℓ, props(ℓ) ⊆ L over-approximates

the set of objects that could be stored in properties of ℓ

(excluding internal properties).

mayHaveProp,mustHaveProp For any object label ℓ and

property name p, mayHaveProp(ℓ, p) should hold when-

ever any object represented by ℓ may have a property p;

mustHaveProp(ℓ, p), conversely, should only hold if ev-

ery object represented by ℓ has a property p at all times

(for instance if ℓ represents an environment record and p

is a local variable declared in that environment).

arg, ret For an object label ℓ and a natural number i, arg(ℓ, i)
over-approximates the set of objects that may be passed

as the ith argument (or the receiver in case i = 0)
to any function labelled by ℓ. Similarly, ret(ℓ) over-

approximates the set of objects that may be returned

from ℓ.

builtin Given the name n of a built-in object as specified in

the language specification [7, §15], builtin(n) returns the
corresponding object label. The object label of the global



object will be denoted as global. We also define

apply := builtin(Function.prototype.apply)
bind := builtin(Function.prototype.bind)
call := builtin(Function.prototype.call)

3.2 Visited and Base Objects

Many preconditions deal with name binding. Any refac-

toring that introduces, renames or removes properties risks

causing name capture, i.e., situations where a property ex-

pression refers to a different object in the refactored pro-

gram. Two key concepts are needed when formulating pre-

conditions to avoid name capture: the visited objects of a

property expression, and its base objects.

Property lookup in JavaScript is, in most circumstances,

prototype based. This means that when evaluating a property

expression e.x, the property x is first looked up on the object

o1 that e evaluates to; if o1 does not have a property of

this name, its prototype object o2 is examined, and so on.

Eventually, an object on is encountered that either has a

property x, or does not have a prototype object (in which

case the lookup returns the undefined value). We describe

this process by saying that the lookup of e.x visits objects

o1, . . . , on; if the property is ultimately found on object on,

we call on the base object of the lookup.

To see how these concepts are useful for specifying refac-

torings, consider the case of a refactoring that adds a prop-

erty y on some object o. This refactoring needs to ensure

that o is not among the objects that any existing property

expression e.y may visit. Otherwise, the base object of an

evaluation of that expression could change, possibly altering

program behavior.

The usual purpose of adding a new property y to an ex-

isting object is to rewrite property expressions that used to

resolve to some property x on that object so that they now

instead resolve to y. For instance, ENCAPSULATE PROP-

ERTY rewrites this.width on line 26 of Figure 1 into

this.getWidth on line 114 of Figure 3 to make it re-

solve to the newly introduced getter function. To prevent

the refactored property expression from being resolved with

the wrong base object or from overwriting an existing prop-

erty, we have to require that a lookup of this.getWidth at

this position in the original program would come up empty-

handed, that is, that none of the visited objects of the prop-

erty expression has a property getWidth. This is indeed the

case in this example because no property getWidth is de-

fined anywhere in Figure 1.

The same considerations apply to the lookup of local and

global variables: global variables are just properties of the

global object, while local variables can be viewed as proper-

ties of environment records. The concepts of visited objects

and base objects can hence be extended to identifier refer-

ences in a straightforward manner as shown in the accompa-

nying technical report [8].

To underscore this commonality, we introduce the um-

brella term access to refer to both identifier references (like

r on line 4 of Figure 1) and property expressions, includ-

ing both fixed-property expressions like s.drawShape on

line 63 of Figure 2 and dynamic ones like nc[a] on line 53

of Figure 2.7 Identifier references and fixed-property expres-

sions are called named accesses.

An over-approximationpossiblyNamed(p) of all accesses
in the program that possibly have name p in some execu-

tion, and an under-approximation definitelyNamed(p) of ac-
cesses that definitely have name p in every execution can be

computed based on purely syntactic information, although

pointer analysis may provide additional information that

can, e.g., be used to determine that a dynamic property ac-

cess is always used as an array index and hence cannot have

a non-numeric property name.

Given the basic queries introduced in Section 3.1, it is not

hard to define queries visited and base to over-approximate

visited and base objects of accesses.

For a property expression e.x, for instance, visited(e.x)
can be computed as the smallest set Lv ⊆ L satisfying the

following two conditions:

1. objects(e) ⊆ Lv;

2. if e.x is in rvalue position, then for every ℓ ∈ Lv with

¬mustHaveProp(ℓ, x) we must have proto(ℓ) ⊆ Lv.

The proviso of the second condition accounts for the fact that

deletion of and assignment to properties does not consider

prototypes.

The definition of visited for identifier references is simi-

lar, using scope to obtain the relevant environment records.

To over-approximate the set of base objects, we first de-

fine a filtered version of visited as follows:

visited(a, x) := {ℓ ∈ visited(a) | mayHaveProp(ℓ, x)}

This discards all object labels that cannot possibly have a

property x from visited(a). For a named access a with name

x in rvalue position, we then define base(a) := visited(a, x),
whereas for a dynamic property access or an access in lvalue

position we set base(a) := visited(a).
It will also be convenient to have a query lookup(e, x)

that simulates local variable lookup of an identifier x at the

position of the expression e, and approximates the set of

environment records or objects on which x may be resolved.

This query can be implemented by traversing the function

definitions, with blocks and catch clauses enclosing e, and

then using scope and mayHaveProp to find possible targets.

3.3 Related Accesses

When renaming an access, it is important to determinewhich

other accesses in the program refer to the same property.

This is not a well-defined question in general: a given access

7The technical report [8] generalizes the concept of accesses even further,

but for expository purposes we refrain from doing so here.



may at different times be looked up on different base objects

and even refer to different property names, so two accesses

may sometimes refer to the same property name on the same

object, while at other times they do not. In general, we can

only determine whether two accesses must always refer to

the same property, or whether they may sometimes do so.

Must-alias information is not very useful for renaming,

as explained in Section 2: when renaming this.drawShape

on line 6 of Figure 1, we also have to rename s.drawShape

on line 33, even though it does not necessarily refer to

the same property. But if we rename s.drawShape, we

also have to rename any access that may refer to the same

property as that access, viz., this.drawShapeon line 6 and

this.drawShape on line 19.

This example suggests that we have to close the set of

accesses to rename under the may-alias relation. More pre-

cisely, let us call two accesses a1 and a2 directly related if

their base object may be the same and they may refer to the

same property name. The set related(a1) of accesses related
to a1 is then computed as the smallest set R satisfying the

following two closure conditions:

1. a1 ∈ R;

2. for every a ∈ R, if a′ is an access such that a and a′ are

directly related, then also a′ ∈ R.

When renaming a1 we also rename all accesses it is re-

lated to. We have argued above why it is necessary to include

all related accesses in the renaming. On the other hand, it is

also sufficient to just rename these accesses: if any access a′

may at runtime refer to the same property as some renamed

access a, then a and a′ are directly related and hence a′ will

also be renamed. The set of related accesses thus represents

a family of properties that have to be refactored together.

3.4 Initializing Functions

The ENCAPSULATE PROPERTY refactoring looks similar

to the ENCAPSULATE FIELD refactoring for languages like

Java and C#, but the very liberal object system of JavaScript

allows for subtle corner cases that the refactoring needs to

handle. While it is common in JavaScript to make a distinc-

tion between normal functions and constructor functions that

are only used to initialize newly created objects, this distinc-

tion is not enforced by the language.

Any function f can either be invoked through a new

expression new f(. . .), in which case the receiver object is

a newly created object, or through a function invocation, in

which case the receiver object is determined from the shape

of the invocation: for an invocation of the form e.f(. . .), the
receiver object is the value of e; for an unqualified invocation

f(. . .), the receiver object is usually the global object.
We capture the notion of a function behaving “like a

constructor” by saying that a function initializes an object o

if it is invoked precisely once with that object as its receiver,

and this invocation happens before any of o’s properties

are accessed. For instance, function Rectangle in Figure 1

initializes all of the objects created on line 44 by invoking

new Rectangle(...).

If a function is only ever invoked using new and never in-

voked reflectively or using a normal function invocation, it

obviously initializes all objects created by these new invo-

cations. This provides an easy way to approximate the set of

objects that are initialized by a function. Let us first define an

over-approximation of the set of possible callees of an invo-

cation expression c by callees(c) := objects(cf ) where cf is

the part of c containing the invoked expression. Now, given a

function definition f , an under-approximation initializes(f)
of the set of objects that f initializes can be determined by

ensuring the following:

1. f is only invoked through new, that is

(a) No function/method call c has

callees(c) ∩ objects(f) 6= ∅.

(b) f is not invoked reflectively, i.e.,

args(apply, 0) ∩ objects(f) = ∅,

and similarly for bind and call.

2. For any new expression n with

callees(n) ∩ objects(f) 6= ∅

we have

callees(n) ⊆ objects(f)

This ensures that n definitely calls f .

The first condition ensures that f is invoked at most once

on each receiver object, and the second condition ensures

that it is invoked at least once. If both conditions hold, f ini-

tializes all its receiver objects, so we can set initializes(f) :=⋃
ℓ∈objects(f) arg(ℓ, 0); otherwise, we conservatively set

initializes(f) := ∅.

3.5 Well-scopedness

Just as there are no genuine constructors in JavaScript, there

are no real methods either. Although it is common to think

of a function stored in a property of an object o as a method

of o that is only invoked with o as its receiver, this is not

enforced by the language, and such a “method” can, in fact,

be invoked on any object. As shown in Figure 4 this leads to

problems when encapsulating properties.

We capture the notion of a function behaving “like a

method” by the concept of well-scopedness. A function f

is well-scoped in a function g if f is defined within g and

whenever an execution of g on some receiver object o eval-

uates the definition of f , yielding a new function object fo,

then this implies that fo is always invoked with o as its re-

ceiver. If g additionally initializes all objects on which it is



177 function A(g) {
178 if (g)

179 this.f = g;

180 else

181 this.f = function() {};

182 }
183
184 var a = new A(), b = new A(a.f);
185 b.f();

Figure 6. Example program to illustrate the approximation

of well-scopedness.

invoked, then f is guaranteed to behave like a method on

these objects.

To prove that a function definition f is well-scoped in

g, as expressed by the query wellscoped(f, g), it suffices to
check the following conditions:

1. f is a direct inner function of g.

2. f is only assigned to properties of the receiver of g:

whenever the right-hand side er of a simple assignment

may evaluate to f (i.e., objects(er)∩objects(f) 6= ∅), the
sole intra-procedural reaching definition of er is f itself,

and the left-hand side of the assignment is a property

expression of the form this.p (for some identifier p).

3. f is only invoked on the object in whose property it is

stored: any invocation expression c that may call f must

be of the form e.p(. . .), and mayHaveProp(o, p) is false
for every o ∈ proto+(objects(e)).

4. f is not invoked reflectively (cf. condition 1b in the defi-

nition of initializes).

The second condition is motivated by considering the

example program in Figure 6. The function stored in a.f is

not well-scoped in A: the receiver of A at the point where the

function is defined is a, yet when it is called through b.f the

receiver object is b. This non-well-scopedness results from

the assignment in line 179 and is detected by condition 2.

3.6 Intrinsics and Reflective Property Access

A number of intrinsic properties are treated specially by

the runtime system, the browser, or the standard library in

JavaScript, for instance the length property of array objects

or the src property of HTML image objects. Refactorings

must not attempt to modify these properties. We hence need

a query intrinsic so that intrinsic(ℓ, p) holds whenever p is

an intrinsic property on an object labelled by ℓ. This query

can be defined in terms of builtin, consulting the relevant

standards [7, 29].

Several standard library functions access properties of

their argument objects in a reflective way: for instance,

Object.keys returns an array containing the names of all

properties of its argument. To make it possible for refactor-

ings to check for this kind of usage, we need a query refl-

PropAcc such that reflPropAcc(ℓ) holds whenever a prop-

erty of an object labelled by ℓ may be accessed reflectively

by one of these functions. This query can be defined in terms

of builtin, arg, ret and props.

Finally, queries builtin and arg also make it possible to

conservatively determine whether a program uses dynami-

cally generated code by checking whether the built-in func-

tion eval and its various synonyms are ever invoked, and

whether the intrinsic property innerHTML is assigned to.

Our refactoring specifications assume that such a check is

performed first and a warning is issued if a use of any of

these features has been detected.

4. Specifications of Three Refactorings

We will now give detailed specifications of the refactorings

RENAME, ENCAPSULATE PROPERTY and EXTRACT MOD-

ULE that were informally described in Section 2.

Each specification describes the input to the refactoring,

the preconditions that have to be fulfilled in order for the

refactoring to preserve program behavior, and the transfor-

mation itself. The preconditions are formulated in terms of

the queries introduced in the previous section.

We also provide a brief informal justification of the pre-

conditions.

4.1 RENAME

Input A named access a and a new name y.

Overview The refactoring renames a and its related ac-

cesses to y.

Definitions Let B :=
⋃

r∈related(a) base(r); this set labels
all objects that are affected by the renaming. Let x be the

name part of the access a.

Preconditions

1. x is not an intrinsic property on B:

∀ℓ ∈ B : ¬intrinsic(ℓ, x)

2. Every access to be renamed definitely has name x:

related(a) ⊆ definitelyNamed(x)

3. The accesses in related(a) can be renamed to y without

name capture:

∀r ∈ related(a) : visited(r, y) = ∅

In this case, we will also say that y is free for related(a).

4. y does not cause name capture on B, that is:

(a) Existing accesses are not captured:

∀r ∈ possiblyNamed(y) : visited(r) ∩B = ∅

(b) y is not an intrinsic property on B:

∀ℓ ∈ B : ¬intrinsic(ℓ, y)



(c) Properties of the objects in B must not be accessed

reflectively, that is:

i. For any for-in loop with loop expression e it must

be the case that B ∩ objects(e) = ∅.

ii. We must have ∀ℓ ∈ B : ¬reflPropAcc(ℓ).

Transformation Rename every access in related(a) to y.

Justification Precondition 2 prevents the renaming if it

could affect a computed property access whose name cannot

be statically determined.

Preconditions 3 and 4a ensure that accesses in the refac-

tored program resolve to the same property at runtime as in

the original program: by 3, an access renamed from x to y

is not captured by an existing property y; by 4a, an existing

access named y is not captured by a property renamed from

x to y.

Preconditions 1 and 4b ensure that the renaming does not

affect properties that have special meaning in the language;

for instance, renaming the prototype of a function or the

length property of an array should not be allowed.

Finally, precondition 4c ensures that none of the objects

whose properties may be affected by the refactoring have

their properties examined reflectively.

4.2 ENCAPSULATE PROPERTY

Input A fixed-property expression a.

Overview This refactoring identifies a function c that ini-

tializes all base objects of a and its related accesses, and

turns the property accessed by a into a local variable of c.

Any accesses to the property from within the function c

can be turned into accesses to the local variable if they hap-

pen from inside well-scoped functions; otherwise they might

refer to the wrong variable as seen in Section 2. Accesses

from outside c are handled by defining getter and setter func-

tions in c and rewriting accesses into calls to these functions.

The preconditions identify a suitable c, determine how to

rewrite accesses, and check for name binding issues.

Definitions Let x be the name part of a, and let g and s be

appropriate getter and setter names derived from x.

Let B :=
⋃

r∈related(a) base(r); this is the set of objects

whose properties named x we want to encapsulate.

Preconditions

1. There is a function definition c with B ⊆ initializes(c).

The getter and setter functions are introduced in c; since

c is invoked on every affected object before any of its

properties are accessed, we can be sure that these func-

tions are in place before their first use.

2. The affected objects do not appear on each other’s proto-

type chains, i.e.,

¬∃b1, b2 ∈ B : b2 ∈ proto+(b1)

3. Every access in related(a) is either a fixed-property ex-

pression or an identifier reference. (The latter can only

happen if a with statement is involved.)

4. There is a partitioning related(a) = Ai ⊎ Ag ⊎ As such

that:

(a) Every a ∈ Ai is of the form this.x, it is not an

operand of delete, and its enclosing function defi-

nition f is well-scoped in c, i.e. wellscoped(f, c).

These are the accesses that will be replaced by identi-

fier references x.

(b) No a ∈ Ag is in an lvalue position.

These accesses can be turned into invocations of the

getter function.

(c) Every a ∈ As forms the left-hand side of a simple

assignment.

These accesses can be turned into invocations of the

setter function.

5. Properties of B must not be accessed reflectively (cf.

precondition 4c of RENAME).

6. Naming checks:

(a) Ai can be refactored without name capture:

∀a ∈ Ai : lookup(a, x) ⊆ {global}

(b) The declaration of the new local variable x in c does

not capture existing identifier references.

∀a ∈ possiblyNamed(x) : visited(a) ∩ scope(c) = ∅

(c) x is not an intrinsic property on B:

∀ℓ ∈ B : ¬intrinsic(ℓ, x)

7. If Ag 6= ∅ then g must be free for Ag and must not cause

name capture on initializes(c) (cf. preconditions 3 and 4

of RENAME). Similarly, ifAs 6= ∅ then smust be free for

As and must not cause name capture on initializes(c).

Transformation Insert a declaration var x into c. Insert

a definition of the getter function into c if Ag 6= ∅, and
similarly for As and the setter function. Replace accesses

in Ai with x, accesses in Ag with invocations of the getter,

in As with invocations of the setter.

Justification This refactoring converts properties of ob-

jects into bindings in environment records. The precondi-

tions ensure that property accesses can be rewritten into ac-

cesses to the corresponding local variable binding, while

preventing any changes to other accesses to properties or lo-

cal variables that do not participate in the refactoring.

Consider a runtime object o labeled by some ℓ ∈ B.

By condition 1, there is precisely one invocation of c on o,

which creates an environment record ρo. In the refactored



program, this environment record contains a binding for a

local variable x, which is captured by the getter and setter

functions stored in properties g and s of o.

Consider now a property access ax in the original pro-

gram that accesses property x of object o. This means that

ax ∈ related(a), so condition 4 ensures that ax is in one of

Ai, Ag and As. In the two latter cases, the property access

will be rewritten into an invocation of the getter method g or

the setter method s on o.

By condition 7 this invocation will not be captured by an-

other method of the same name, and by condition 2 it will not

be captured by the accessor methods of another refactored

object. By condition 1, g and s are already defined, and by

condition 7 they are guaranteed not to have been overwritten

in the meantime, hence the accessor functions set up by c are

executed, accessing the correct binding in ρo.

If ax ∈ Ai, the property access is refactored to a simple

identifier reference x. We know from condition 4a that ax
must occur in some function definition f , which is well-

scoped in c, and that it must be of the form this.x. Hence f

is, in fact, invoked with o as receiver, which by the definition

of well-scopedness means that the invocation of c whose

bindings are captured by f also has receiver o. In other

words, f captures the bindings of ρo. Condition 6a ensures

that the identifier reference x in the refactored program is

not captured by any other local variable, and hence accesses

the binding of x in ρo as desired.

The requirement about ax not being an operand of

delete is purely technical: local variable bindings cannot

be deleted in JavaScript.

Since the set of properties of o has changed in the refac-

tored program, any code that reflectively accesses properties

of o or the set of property names of o may change its be-

havior; conditions 3, 5 and 6c guard against this. Finally,

condition 6b ensures that no existing local variable bindings

are upset by the newly introduced local variable x in c.

Remarks Note that condition 4 makes it impossible to

refactor accesses like ++e.x that both read and write the en-

capsulated property, unless they can be replaced by an iden-

tifier reference. It is straightforward to extend the refactoring

to take care of such accesses, at the cost of a slightly more

complicated transformation involving both getter and setter

invocations in the same expression [8].

4.3 EXTRACT MODULE

Input Contiguous top-level statements s1, . . . , sm con-

taining a set P = {p1, . . . , pn} of identifiers to extract and

an identifierM to be used as module name.

Overview The global variables p1, . . . , pn are turned into

properties of a newly declared global module variable M .

Schematically, the transformation performed by the refac-

toring is as follows:

s1;

.

.

.

sm;

⇒

var M = (function() {

var p1, . . ., pn;

s1; . . . sm;

return {

p1: p1, . . ., pn: pn

};

})();

We refer to the code definingM as the module initializa-

tion code. To reason about the correctness of the transforma-

tion, it is helpful to partition program execution into three

phases: before, during and after execution of the initializa-

tion code. Being a top-level statement, the module initializa-

tion code is executed only once.

None of the variables in P must be accessed before mod-

ule initialization since the module M containing them has

not been defined yet. After module initialization, on the

other hand, they can be accessed as properties of M , i.e.,

M.p1, . . . ,M.pn. It is clearly not possible to access them in

this way during module initialization (M is, after all, not de-

fined yet), but we can instead access the corresponding local

variables p1, . . . , pn if they are in scope.

Closures created during module initialization may still be

able to access a local variable even after module initializa-

tion has finished. This should, however, be avoided unless

it can be proved that the variable is never assigned to af-

ter module initialization: if not, the local variable pi and

the property M.pi may have different values, which could

change program behavior.

The preconditions determine a setQ of accesses that have

to be converted into property accesses of the formM.pi, and

a set U of accesses that can use the local variables of the

module. The preconditions also prevent access to module

variables before initialization and name binding issues.

Definitions Let S be the set of all accesses appearing in

the statements s1, . . . , sm, and let I ⊆ S be the accesses

that are not nested inside functions. Accesses in I are thus

guaranteed to only be evaluated during module initialization.

Let I∗ be an over-approximation of the set of all accesses

that may be evaluated before or during module initialization.

This can be obtained by building a transitive call-graph of all

top-level statements up to sm, using query callees to deter-

mine possible callees of invocations. Finally, let C contain

all accesses in the program except those in I∗. Accesses in

C are thus guaranteed only to be evaluated after module ini-

tialization is complete.

For p ∈ P , we define Ap to be the set of accesses that

may refer to the global variable p, andAP :=
⋃

p∈P Ap. We

define mutable(p) to hold if Ap contains a write access that

does not belong to I , i.e., if p may be written after module

initialization is complete.

Preconditions

1. Any access that may refer to some property in P must

refer to that property, i.e., for every p ∈ P and a ∈ Ap:

a ∈ definitelyNamed(p) ∧ visited(a, p) = {global}



Figure 7. The refactoring plug-in for Eclipse. The user has attempted to rename Vector.prototype.removeFirst to

remove, which the tool correctly determines would clash with an existing property of the same name.

2. There is a partitioningAP = Q ⊎ U as follows:

(a) Q ⊆ C

(b) M is free for every q ∈ Q (cf. precondition 3 of

RENAME).

(c) For every u ∈ U referring to p ∈ P , the following

holds:

i. u ∈ I ∨ (u ∈ S ∧ ¬mutable(p))

ii. u is an identifier reference.

iii. lookup(u, p) ⊆ {global}.

3. M does not cause name capture on global (cf. precondi-
tion 4 of RENAME).

4. No p ∈ P is an intrinsic on global :

∀ℓ ∈ B : ¬intrinsic(ℓ, p)

Transformation Replace s1, . . . , sm with the definition of

moduleM as shown above; qualify accesses in Q withM .

Justification The refactoring introduces a new global vari-

able M and removes the global variables p1, . . . , pn. Con-

dition 3 ensures that no existing access to a variable M is

captured by the newly introduced module variable, and that

the set of global variables is not examined reflectively. Con-

dition 4 ensures that none of the global variables to be mod-

ularized has special semantics. It should, for instance, be im-

possible to extract the global variable window into a module.

The remaining preconditions ensure that accesses to

global variables p1, . . . , pm can be consistently refactored.

Condition 1 requires that any access either must definitely

refer to some p ∈ P , or must not refer to any variable in

P . Condition 2a checks that accesses in Q, which are to be

qualified with a reference to M , are only evaluated after the

module is defined. For the same set of accesses, condition 2b

ensures that the reference to M that will be inserted by the

refactoring cannot be captured by an existing variableM .

Finally, condition 2c makes sure that every access u ∈ U ,

which used to refer to one of the global variables p ∈ P ,

can directly access the local variable this variable has been

turned into. Sub-condition 2(c)i requires that u is either only

evaluated during module initialization, or that it refers to an

immutablemodule member and is lexically nested within the

module definition. Either way it can access module mem-

bers without qualification. Sub-condition 2(c)ii rules out the

somewhat subtle case of an access of the form e.p, where

e evaluates to the global object, but may have side effects;

such an access cannot simply be turned into an identifier ref-

erence p, as this would suppress the side effects of e. Sub-

condition 2(c)iii ensures that no existing local variable will

capture the refactored access u.

5. Implementation

We have implemented a refactoring tool in Java that offers

the refactorings described in Section 4. The tool is integrated



as a plug-in into Eclipse as shown in Figure 7.8 In this

section, we will describe the pointer analysis that underlies

the implementation of the framework that we presented in

Section 3.

We first derive a flow graph from the source code of

the original program, similar to the one used in the TAJS

program analysis [18]. From this flow graph, we create a

def-use graph that abstracts away control flow and with

statements. We then run a pointer analysis using standard

techniques, with lattice and constraints that are reminiscent

of the ones used in Gatekeeper [12] (although without using

Datalog). The use of a def-use graph captures a small amount

of flow sensitivity, similar to what SSA-form has been shown

to contribute to a flow-insensitive analysis [16].

For context sensitivity, we experimentedwith both k-CFA

and object sensitivity (i.e., using the value of this as the

context), and found object sensitivity to be the most effec-

tive. The analysis uses heap specialization (i.e., some object

labels include a context component) and a simple widening

function to ensure termination when combined with object

sensitivity.

To obtain a useful modeling of arrays, we introduce a spe-

cial property name NumberProperty representing all proper-

ties whose name is a number (i.e., array entries). For dy-

namic property expressions where the property name is def-

initely a number, the analysis reads/writes the NumberProp-

erty of the receiver; otherwise, it conservatively reads/writes

all of its properties.

Several built-in functions (such as call and apply) are

supported by means of specialized transfer functions. All

other built-in functions are modelled by simple JavaScript

mock-up functions that we include in the analysis.

We model the HTML DOM and some other browser

features using a special object label DOM. Some global

variables, such as document, are initialized to refer toDOM.

Moreover, we conservatively assume that (1) any property of

DOM may point to DOM, (2) any function reachable from

DOM may be invoked withDOM as the this argument and

any number of actual arguments that all may point to DOM,

and (3) if DOM is invoked as a function, it stores all its

arguments as properties on DOM, and returns DOM. Rules

2 and 3 together take care of event handlers being registered

on HTML elements. We avoid many of the challenges that

arise with the more detailed modeling used in TAJS [20] by

using a relatively simple abstract domain.

Given this basis, the queries of the framework of Sec-

tion 3 are straightforward to implement, as are the refactor-

ings themselves.

8Note that this is purely a UI-level integration; the underlying analysis

and the code for precondition checking and program transformation is

independent of Eclipse.

6. Evaluation

To gain some insight into the practical applicability and use-

fulness of our approach, we have evaluated our refactoring

tool on a collection of existing JavaScript programs.

In situations where the tool determines that a requested

refactoring can be performed, the refactoring preconditions

ensure that it is safe to perform the refactoring, without

changing the behavior of the program. When a refactoring

attempt is rejected by the tool, either the refactoring would

in fact change the behavior of the program, in which case the

answer given by the tool is correct, or the rejection is caused

by the analysis being too conservative. In the latter case, the

imprecision may be in the refactoring preconditions that are

defined in terms of our queries (Section 4), in the definition

of the derived queries on top of the basic ones (Section 3.2–

3.6), or in the underlying pointer analysis that we employ

to implement the basic queries (Section 5). To quantify how

often these situations occur, we aim to answer these research

questions:

Q1: How often is a refactoring rejected because its precon-

ditions are too conservative?

Q2: How often is a refactoring rejected because a derived

query is defined too conservatively?

Q3: How often is a refactoring rejected because of impreci-

sion in the underlying pointer analysis?

For the RENAME refactoring, it is also relevant how it per-

forms compared to the naive alternative of simply using

search-and-replace through the program source code:

Q4: How often does our RENAME refactoring give a dif-

ferent outcome than syntactic search-and-replace as per-

formed in syntax-directed editors?

We collected a suite of benchmark programs and de-

signed a set of experiments for each of the refactorings spec-

ified in Section 4 to evaluate them with regard to these ques-

tions.

Table 1 shows an overview of our evaluation results, ex-

plained in more detail below: for every refactoring, the ta-

ble shows the total number of attempted refactorings on our

benchmarks in column “total applications”, with the num-

ber of successful applications in the next column; we parti-

tion the set of rejected applications according to our research

questions into cases where overly strict preconditions pre-

vented the application of an otherwise unproblematic refac-

toring, cases where imprecise derived queries were an obsta-

cle, cases where the underlying pointer analysis itself was at

fault, and finally cases where the rejection was indicative of

a real danger of unsoundness.

We will now first give an overview of our benchmark

collection, then present detailed evaluation results for each

of the refactorings, and finally summarize our findings by

answering the research questions.



refactoring
total

applications

successful

applications

rejected applications

total
imprecise imprecise imprecise

justified
preconditions queries analysis

RENAME 16612 10693 5919 0 0 669 5250

ENCAPSULATE PROPERTY 510 363 147 35 0 30 82

EXTRACT MODULE (1) 50 43 7 0 0 0 7

EXTRACT MODULE (2) 15 11 4 0 0 0 4

Table 1. Quantitative evaluation of our refactoring tool.

6.1 Benchmark Programs

We have gathered 50 JavaScript programs. Four are taken

from the V8 benchmarks,9 23 from Chrome Experiments,10

18 from the 10K Apart Challenge,11 and 5 from IE Test

Drive.12 When collecting these benchmarks, we explicitly

excluded programs that our pointer analysis cannot analyze

in a few minutes and ones that use non-trivial dynamic code

execution (e.g., using eval). Four of the benchmarks use

trivial dynamic code, such as setTimeout("loop();",

50), which we have manually replaced by the more manage-

able variant setTimeout(loop, 50). For 27 of the bench-

marks, the tool produces a warning that they may contain

assignments to the innerHTML property of a DOM object,

which can potentially be used to run dynamically generated

code, however manual inspection revealed that this is not the

case in any of the programs.

Each benchmark comprises between 300 and 1700 lines

of JavaScript code, and all perform non-trivial tasks. On

a 3.0 GHz PC, each benchmark is analyzed in less than

4 seconds using 256 MB memory. The time required for

refactoring-specific computations is negligible compared to

the time taken by the pointer analysis.

6.2 RENAME

Our RENAME refactoring can rename both local variables

and properties. Local variables are trivial to rename since

there are no with statements in our benchmarks, so we focus

on renaming of properties.

We have systematically applied our refactoring to every

property expression and property initializer in each bench-

mark, with the aggregate results shown in Table 1 in the row

labeled RENAME. Out of a total of 16612 attempted rename

operations, 10693 were successfully applied, and 5919 were

rejected by our tool. Further analysis revealed that of these

rejections, 5250 were justified. Two benchmarks are respon-

sible for the remaining 669 rejections. In raytracer from

Chrome Experiments, there are 1062 renamable accesses but

665 of these are wrongly rejected, due to the pointer analy-

sis being imprecise. In flyingimages from the IE Test Drive

9 http://v8.googlecode.com/svn/data/benchmarks/

10 http://www.chromeexperiments.com/

11 http://10k.aneventapart.com/

12 http://ie.microsoft.com/testdrive/

benchmarks, the program adds some custom properties to a

DOM element, which due to our imprecise DOM model are

then assumed to be intrinsic; thus our tool refuses to rename

these properties. The remaining 48 benchmarks do not give

rise to any RENAME-specific spurious warnings.

To evaluate how our tool compares to a simple search-

and-replace performed at the level of the abstract syntax tree

(AST) in a syntax directed editor, we use the equivalence

classes defined by the related query to divide all the accesses

in a benchmark into components. Accesses in a single com-

ponent always get renamed together. Our tool distinguishes

itself from simple search-and-replace tools when different

components contain accesses with the same name. In par-

ticular, our tool will rename a smaller set of accesses than

search-and-replace would, and if one component can be re-

named while another cannot (e.g., an access in it may refer

to an intrinsic property), search-and-replace would change

the program’s behavior, whereas our approach would reject

the refactoring.

The tool finds that 28 of the 50 benchmarks containmulti-

ple renamable components with the same name, and 19 con-

tain same-name components where some can be renamed

and others are correctly rejected (18 benchmarks fall into

both categories). Overall, our tool succeeds in renaming

1567 components, with 393 of them having a name in com-

mon with another component in the same program.This in-

dicates that our RENAME refactoring will often be more pre-

cise than search-and-replace in practice.

To summarize, RENAME leads to smaller source code

transformations than search-and-replace in about 25% of the

cases. Of the refactoring attempts that were not justifiably

rejected, it issues spurious warnings in only 6% of the cases.

The spurious warnings are all caused by imprecision in the

pointer analysis.

6.3 ENCAPSULATE PROPERTY

We have exhaustively applied the ENCAPSULATE PROP-

ERTY refactoring to every property expression of the form

this.x appearing in an lvalue position inside a function that

is invoked at least once in a new expression, with the results

shown in Table 1 in the row labeled ENCAPSULATE PROP-

ERTY.

In the 50 benchmarks, there are 510 such expressions.

Our tool is able to successfully encapsulate 363 of them,



ignoring warnings about assignments to innerHTML. In the

remaining 147 cases, the tool reports a precondition failure

and rejects the refactoring.

For 82 of these cases, the rejection is justified: in three

cases, getter/setter methods already exist; in eight cases the

encapsulated property would shadow references to a global

variable; in the remaining 71 cases there is a name clash with

a parameter or local variable of the enclosing function. We

manually verified that these cases can be refactored success-

fully if the naming conflict is first resolved by renaming.

Of the 65 remaining cases, where the refactoring is re-

jected although it should have been successful, 35 are due

to a limitation of our specification of ENCAPSULATE PROP-

ERTY: it requires all objects on which the property is encap-

sulated to be initialized by the same function. In some cases,

however, there are identically named properties on objects

constructed by different constructors, which need to be en-

capsulated at the same time because there are accesses that

may refer to either property. Supporting this situation seems

like a worthwhile extension.

Finally, there are 30 cases where the pointer analysis

yields imprecise results that cause spurious precondition vi-

olations. Of these, 19 cases could be fixed by improving the

modelling of standard library array functions.

The concept of well-scopedness and the conservative

analysis to determinewell-scopedness described above prove

to be adequate on the considered benchmarks: there are 28

cases where properties to be encapsulated are accessed from

within an inner function of the constructor, and in all cases

the analysis can establish well-scopedness, allowing the ac-

cess to be replaced by an identifier reference instead of a

getter invocation.

In summary, our tool is able to handle about 85% of

the encapsulation attempts satisfactorily (not counting the

justifiably rejected attempts). The remaining 15% are caused

by, in about equal parts, restrictions of the specification and

imprecision of the pointer analysis.

6.4 EXTRACT MODULE

The EXTRACT MODULE refactoring is difficult to evaluate

in an automated fashion, since appropriate module bound-

aries have to be provided for every benchmark. We have

performed two sets of experiments. In the first experiment,

we extracted, for every benchmark, the code in each HTML

script element into its own module; in the case of stand-

alone benchmarks we chose source files as the unit of mod-

ularization instead. The results of this experiment are shown

in Table 1 in the row labeled EXTRACT MODULE (1). In the

second experiment, we manually determined a suitable mod-

ularization for a subset of our benchmarks and used our tool

to perform it; again, the results are shown in Table 1 in row

EXTRACT MODULE (2).

For the first experiment, the automated modularization

was successfully performed on 43 out of 50 benchmarks.

On the remaining seven benchmarks, the refactoring was re-

jected since they contain accesses to module members for

which the refactoring cannot prove that they either definitely

happen only during module initialization, or definitely hap-

pen only after initialization. These rejections turn out to be

justified: the accesses in question are performed by event

handlers registered before or during module initialization.

While it is highly likely that these handlers will not fire until

after initialization is complete, this is not guaranteed.

In three cases, the rejections are arguably due to the very

coarse module structure imposed by this experiment. If the

code that installs the event handlers is excluded from the

module, the handlers are guaranteed to only fire after ini-

tialization and the refactoring can go ahead. In the remain-

ing four benchmarks, on the other hand, event handlers are

installed through HTML attributes before the handler func-

tions are even defined, which could potentially cause races

even in the original program.

For the second experiment, we randomly selected 15

benchmarks that are not already modularized and whose

global variables have sufficiently descriptive names to make

it easy to manually determine a possible modularization. In

three of these programs, we took comments into account that

already suggested a functional grouping of global functions.

Our tool can perform the proposed modularization on 11 of

the 15 benchmarks. The remaining four are again rejected

due to potential races on event handlers.

In both experiments, our tool was thus able to handle all

test cases correctly. The categorization of accesses according

to whether they are evaluated before or after module initial-

ization proved to be a valuable aid in detecting potentially

subtle bugs that could be introduced by the refactoring.

6.5 Summary

Overall, the results of our evaluation are promising. Most

attempted refactorings are performed successfully, and when

our tool rejects a refactoring it mostly does so for a good

reason. We briefly summarize our findings and answer the

general research questions posed at the beginning of this

section.

Q1: Rejections due to rigid preconditions Spurious rejec-

tions resulting from overly conservative preconditions are

not very common: this happens in 35 out of 510−82 appli-

cations (8.2%) of ENCAPSULATE PROPERTY, and not at all

for RENAME and EXTRACT MODULE.

Q2: Rejections due to derived queries The derived queries

are always sufficiently precise in our experiments. For in-

stance, ENCAPSULATE PROPERTY needs to prove well-

scopedness for 28 functions, and all of them are indeed

shown to be well-scoped by the algorithm described in Sec-

tion 3.5.

Q3: Rejections due to imprecise pointer analysis Spuri-

ous rejections resulting from imprecision of the pointer anal-

ysis occur occasionally: 669 of 16612−5250 applications



(5.9%) of RENAME and 30 of 510−82 applications (7.0%)

of ENCAPSULATE PROPERTY are rejected for this reason;

and none for EXTRACT MODULE.

Q4: Improvement over naive search-and-replace For 393

out of 1567 groups of accesses that must be renamed to-

gether (25%), RENAME avoids some of the unnecessary

modifications performed by AST-level search-and-replace.

These results indicate that the precision of the refactoring

preconditions, the derived queries, and the pointer analysis

is sufficient for practical use, and that our technique has

advantages in practice compared to naive approaches.

6.6 Discussion

The validity of our evaluation may be threatened by (1)

benchmark selection, (2) analysis limitations, and (3) selec-

tion of refactoring targets.

While we only consider a relatively small number of

benchmarks of modest size, the programs included do

demonstrate a variety of application areas, from the more nu-

merically oriented V8 benchmarks to browser-based games

and visualization programs in the other benchmark sets.

They also exhibit very different programming styles, with

some benchmarks making heavy use of the object system

and others written in an entirely procedural style.

One notable feature of all our benchmarks is that none

of them make use of a framework library such as jQuery,

Prototype, or MooTools. The pointer analysis currently used

in our implementation cannot tackle such libraries due to

scalability issues. It is possible that the meta-programming

techniques employed by some of these frameworks could

lead to very imprecise analysis results that may lead to a

large number of spurious rejections. In this case, it could be

worthwhile to extend the analysis with special knowledge

about particularly tricky framework functions.

Our analysis has certain limitations that may affect the va-

lidity of our results. In particular, our implementation only

analyzes code that is reachable either from top-level state-

ments or from the DOM. Other code does not influence

the refactoring and is itself not affected by refactoring. This

means that our tool cannot safely be applied to library code

alone, since most of the functions in a library will be consid-

ered dead code when there is no client to invoke them. For

statically typed languages, this problem can be side-stepped

by assuming, for instance, every method to be an entry point,

with the parameter types providing a conservative approxi-

mation of the possible points-to sets of arguments. This is

not easy to do in JavaScript, and making worst-case assump-

tions about argument values would lead to unacceptable pre-

cision loss. All of our benchmarks are standalone applica-

tions, yet about half of them contained some amount of un-

used code. This indicates that the issue may indeed deserve

further attention.

As a second restriction, our analysis currently does not

attempt to analyze dynamically generated code. We handle

this in our refactoring tool by issuing a warning if a potential

use of such code is detected to alert the user of possible

changes to the behavior of the program.

Finally, our pointer analysis does not currently model

ECMAScript 5 getter and setter properties on object literals,

but these are not used in the benchmarks anyway.

These shortcomings of the analysis, however, do not seri-

ously jeopardize the validity of our approach, since we have

been careful to introduce a clean separation between anal-

ysis and refactoring by means of the framework described

in Section 3. This makes it easy to plug in a more powerful

pointer analysis without having to change the specifications

or implementations of the refactorings themselves.

As a final threat to validity, one might question the se-

lection of targets on which to apply our refactoring tool.

We have based our evaluation on exhaustively applying the

refactorings to as many targets in the code as possible to

avoid selection bias. Many of these applications would most

likely not make sense in an actual development context; it

is hence not clear what percentage of spurious rejections a

user of our tool would experience in practice. However, the

overall percentage of spurious rejections in our experimental

evaluation is so low as to make it seem likely that our tool

would behave reasonably in practice.

7. Related Work

Two broad categories of related work can be distinguished:

previous work on refactoring in general, and work on static

analysis of JavaScript programs.

7.1 Refactoring

The field of refactoring started in the early 1990s with the

Ph.D. theses of Opdyke [23] and Griswold [11]. Since then,

the refactoring community has focused on developing au-

tomated refactoring tools for both dynamically typed lan-

guages (e.g., [22, 24]), and for statically typed languages

(e.g., [10, 27, 28]). The discussion below will focus on pre-

vious work on refactoring for dynamically typed languages.

Work by Roberts et al. on the Refactoring Browser [24]

targets Smalltalk, a dynamically typed language in which

some of the same challenges addressed in this paper arise.

For method renaming, e.g., it becomes difficult or impossible

to determine statically which call sites need to be updated

in the presence of polymorphism and dynamically created

messages. Unlike our approach, which is based on static

pointer analysis, Roberts et al. adopt a dynamic approach to

this problem, in which renaming a method involves putting

a method wrapper on the original method. As the program

runs, the wrapper detects sites that call the original method

and rewrites those call sites to refer to the renamed method

instead. The main drawback of this approach is that it relies

on a test suite that exercises all call sites to be rewritten.

The Guru tool by Moore [22] provides automatic refac-

toring for the Self programming language. Guru takes a col-



lection of objects, which need not be related by inheritance,

and restructures them into a new inheritance hierarchy in

which there are no duplicated methods, in a way that pre-

serves program behavior. Moore’s algorithm is based on a

static analysis of the relationship between objects and meth-

ods in the system. Unlike our work, Moore’s approach does

not involve the programmer in deciding what refactorings to

apply and where to apply them.

Refactoring support in IDEs for JavaScript appears to be

in its infancy. Eclipse JSDT [6] and the JetBrains JavaScript

Editor [21] aim to provide refactoring support for JavaScript,

but the current implementations are fairly naive. RENAME in

the JavaScript Editor, for instance, seems to essentially just

perform search-and-replace on the AST. Renaming property

x in Circle in the example of Figure 1, for instance, would

also rename all properties with name x in the jsDraw2D

library that the program uses.

Two projects at the IFS Institute for Software focused

on developing JavaScript refactoring plug-ins for Eclipse

JSDT [2, 3], but their results do not seem to have been

published and are not currently available.

7.2 Analysis for JavaScript

Several authors have pursued forms of static program anal-

ysis for JavaScript. The TAJS analysis tool by Jensen et

al. [18–20] aims at detecting common programmingerrors in

JavaScript programs. Anderson et al. [1] define a type sys-

tem for a core calculus based on JavaScript along with an

associated constraint-based type inference algorithm. Jang

and Choe [17] use a constraint-based analysis for optimiz-

ing programs written in a restricted variant of JavaScript.

The Gatekeeper tool by Guarnieri and Livshits [12] and the

Actarus tool by Guarnieri et al. [13] use static analysis to

enforce security policies in JavaScript programs, e.g., that

a program may not redirect the browser to a new location

or that untrusted information cannot flow to sensitive opera-

tions. Guha et al. [15] describe a core calculus for JavaScript

and use that formalism to design a type system that stati-

cally ensures a form of sandboxing. Other work by Guha

et al. [14] involves a k-CFA analysis for extracting mod-

els of client behavior in AJAX applications. The Kudzu

tool by Saxena et al. [25] performs symbolic execution on

JavaScript code and uses the results to identify vulnerability

to code injection attacks.

Like our work, many of these analyses rely heavily on the

results of a pointer analysis. For example, the TAJS tool per-

forms a pointer analysis as part of its analysis, the optimiza-

tion technique by Jang and Choe relies directly on pointer

analysis, and Gatekeeper’s security policies are expressed

in terms of a Datalog-based pointer analysis. In all of these

instances, the pointer analysis provides may-point-to infor-

mation, similar to the underlying analysis in our refactoring

framework. However, as we have illustrated in Sections 2

and 3, may-point-to information does not directly provide

a useful abstraction for sound refactorings in JavaScript,

which has motivated the higher-level concepts that appear as

queries in our framework, such as the notions of relatedness

and well-scopedness.

8. Conclusion

We have presented a principled approach for tool-supported

refactoring for JavaScript programs. The key insight of our

work is that—despite the challenging dynamic features of

the JavaScript language—it is possible to capture fundamen-

tal correctness properties of JavaScript refactorings using a

small collection of queries in a framework based on pointer

analysis. With this framework, we have demonstrated that

the complex preconditions of refactorings, such as RENAME,

ENCAPSULATE PROPERTY and EXTRACT MODULE, can be

expressed in a concise manner. Our experiments show that

the refactoring preconditions we formulate have high accu-

racy.Most importantly, if a programmer’s request to perform

a refactoring is rejected by the tool, it is usually because the

refactoring would in fact change the behavior of the pro-

gram.

In future work, we will focus on advancing the scalability

of the underlying pointer analysis, and we plan to provide

specifications and implementations of other refactorings by

way of our framework. Another direction of work is to adapt

our techniques to other dynamically typed languages.
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