
Message Safety in Dart✩

Erik Ernst1, Anders Møller, Mathias Schwarz2, Fabio Strocco

Department of Computer Science, Aarhus University
Aabogade 34, 8200 Aarhus, Denmark

Abstract

Unlike traditional static type checking, the type system in the Dart programming lan-
guage is unsound by design, even for fully annotated programs. The rationale has been
that this allows compile-time detection of likely errors and enables code completion in
integrated development environments, without being restrictive on programmers.

Despite unsoundness, judicious use of type annotations can ensure useful properties of
the runtime behavior of Dart programs. We present a formal model of a core of Dart with
a focus on its type system, which allows us to elucidate the causes of unsoundness. Our
main contribution is a characterization of message-safe programs and a theorem stating
that such programs will never encounter ‘message-not-understood’ errors at runtime.
Message safety is less restrictive than traditional type soundness, and we argue that it
forms a natural intermediate point between dynamically typed and statically typed Dart
programs.

Keywords: type systems, optional types

1. Introduction

Most mainstream object-oriented languages are statically typed, with soundness prop-
erties ensuring that certain errors cannot occur at runtime. It is also well known that
dynamically typed languages without type annotations can offer great flexibility at the
cost of potential type related errors at runtime. Many intermediate levels have been
proposed and studied, e.g. [2, 3, 5, 13, 16, 20, 21, 23, 27, 28]. The Dart programming
language [11] strikes an interesting new balance, with a type system far less restrictive
than required for traditional soundness. Dart permits programmers to provide type an-
notations selectively and thereby decide which parts of the program should be statically
type checked. The type system is not sound in the traditional sense: even for fully an-
notated programs, the static type checker may miss some type-related errors. Hence,
two kinds of such errors may appear at runtime: ‘message-not-understood’ if an object

✩An earlier version of this article was presented at the Dynamic Languages Symposium 2015 [12].
Email addresses: eernst@cs.au.dk (Erik Ernst), amoeller@cs.au.dk (Anders Møller),

mro.schwarz@gmail.com (Mathias Schwarz), fstrocco@cs.au.dk (Fabio Strocco)
1Current affiliation: Google, Inc.
2Current affiliation: Uber, Inc.

Preprint submitted to Science of Computer Programming June 29, 2016

property lookup operation fails, and ‘subtype-violation’ if a value assigned to a variable
or field does not match the declared type.

By separating these two kinds of errors and slightly restricting Dart’s type system, we
show that there exists a natural intermediate point between the existing type checking
in Dart and a traditional sound type system. In a message-safe program, which passes
this modified type system, message-not-understood runtime errors cannot occur, but
subtype-violation errors are still possible. We argue that message safety is a valuable
step when evolving programs from dynamic to static typing, because it establishes a firm
connection from each lookup to the corresponding declaration.

To show that message-safe programs can be defined precisely and that they have the
desired properties, we have created a formal model of a core of the Dart programming
language, in the style of Featherweight Java [15] and based on the most recent language
specification [11].

The contributions of this paper are as follows:

• We present a core calculus of Dart called Fletch, thereby elucidating the type system
of the Dart language and the causes of unsoundness.

• We define the notion of message-safe programs, which can be viewed as a natu-
ral level between dynamic and static typing. The significance and relevance of
message-safe programs are motivated by their potential role in practical software
development. To support gradual evolution from dynamically typed to message-safe
programs, we outline a generalization of message safety from complete programs
to program fragments.

• We formalize the syntax, the small-step operational semantics, and the type system,
together with a soundness theorem stating that message-safe programs do not cause
message-not-understood errors in checked mode execution.

• As part of the formalization process, we discovered a property of the type rule
for function subtyping that was not intended by the Dart language designers and
that affects message safety. We argue empirically that this can easily be fixed. We
additionally report on initial experimental results that support the use of message
safety in software development.

The paper is organized as follows. Section 2 presents our conceptual analysis, de-
fines the notion of message-safe programs, and describes a practical approach to manage
gradual typing using message safety. Next, Section 3 introduces our formalization of a
core of Dart, and Section 4 presents the soundness results. Our practical experiments
are described in Section 5. Section 6 discusses related work and Section 7 concludes.

2. Analysis and Background

This section briefly describes the Dart language with a focus on the type system de-
sign. We then define message-safe programs and outline a two-step approach to structure
transformations from untyped to typed programs.

2

2.1. The Dart Programming Language

The Dart language is a recently introduced object-oriented programming language
that shares many traits with Java [14] and C# [9], and others with JavaScript [10]. Al-
though the Dart language is primarily aimed at web programming, it is a general purpose
language, and our results are applicable independently of any application domain. The
language is class based, and objects do not change class nor add or remove members
during their lifetime. This positions the language near the Java style of mainstream
object-orientation. The family resemblance is also strong in the syntax, and with many
other details.

However, a fundamental difference is that type annotations are optional in Dart pro-
grams, and the dynamic semantics of the language is independent of the type annotations.
This creates strong connections to many dynamically typed languages, e.g., JavaScript.
That connection is underlined by the fact that one of the main techniques to execute
Dart programs is via translation into JavaScript. A native Dart virtual machine is also
available [25].

The Dart language offers a useful trade-off between dynamic and static typing, and
its type system deserves a more in-depth discussion.

2.2. The Dart Approach to Typing

We consider two kinds of type-related runtime errors:

• A message-not-understood error may occur at object property (field or method)
lookup operations; for example, at x.p if the object x does not have the specified
property p, or at x.m(y,z) if x.m does not resolve to a closure, or the number of
arguments is wrong. Technically, this is a NoSuchMethodError exception.

• A subtype-violation error may occur at assignments, parameter passing, and return
expressions (i.e., the operations with an associated dataflow); for example, at x =
y if the runtime type of y is not a subtype of the declared type of x. Technically,
this is a TypeError exception.

Dart typing involves the dynamic semantics, which has two modes of execution. Pro-
duction mode execution proceeds without any use of type annotations. It will never fail
due to a subtype-violation error, but it might fail due to a message-not-understood error.

Checked mode execution includes subtyping tests at assignments, parameter passing,
and return operations at runtime to detect subtype-violation errors. Checked mode
can also have message-not-understood errors, and both modes can of course have other
errors, e.g., divide by zero. The idea is that checked mode execution may be used
by programmers during development to catch type-related errors as with static typing,
whereas production mode will continue to execute if at all possible.

There is a significant difference between sound static typing and the level of type
checking that the standard Dart type system employs. As mentioned, Dart type check-
ing is so permissive that it allows for many programs that cause runtime type errors.
This is the consequence of a conscious trade-off by the language designers [19]: Sound
type systems require programmers to handle a large amount of complexity in order to
enable a sufficiently expressive style of programming. Conversely, a type system that is

3

not sound can be simpler and more flexible. In general, the Dart type system detects
obviously wrong typing situations instead of guaranteeing type correctness, which makes
it somewhat similar to success typing [16]. However, the lack of soundness does not
make type declarations less useful for other purposes. In particular, types can be very
helpful in making the programmer’s expectations and intentions explicit, thus enabling
type sensitive lookup and completion features in integrated development environments
(IDEs).

There are several causes of type unsoundness in Dart. First, initialization, assignment,
and argument passing must satisfy an assignability check rather than a subtype check;
the difference is that both subtypes and supertypes are allowed, but unrelated types are
rejected. This means that the type system accepts code that might work, but rejects code
that will definitely not work (in checked mode — it might still work in production mode).
This is of course not sound, but it does single out the cases where the types are obviously
wrong and hence require attention. Second, generic types are considered covariant (e.g.,
List<Car> is a subtype of List<Vehicle> iff Car is a subtype of Vehicle). This is not
sound, but the trade-off is useful and meaningful, as known from arrays in Java. Third,
function types require only assignability for the argument types and for the return type,
rather than the usual sound scheme where argument types are contravariant and return
types covariant. Similarly, method overriding only requires assignability for argument
and return types.

A fact worth noting is that assignability is not transitive. The following program
fragment is accepted by the Dart type checker, because both assignments satisfy the
assignability requirement (integers are objects in Dart), but an int value is not assignable
to a String variable, and hence a checked mode execution will fail:

Object obj = 1;

String s = obj; // fails at runtime in checked mode

The lack of transitivity makes assignability quite inconvenient to work with in a formal
model. For example, it invalidates the typical line of reasoning in a type soundness
proof: Assume that we consider a variable declaration with an associated initialization
expression, T1 x = e, and that we have a proof that e has the type T2, which is a subtype
of T1. Typing succeeds, because it is allowed to initialize x with a value whose type is
a subtype of the declared type T1. Now assume that a step is taken in the execution of
the program, changing e to e′, and assume that we have a proof that e′ has the type
T ′

2, which is a subtype of T2. At this point, the standard proof (of the type preservation
part of soundness) proceeds to use the transitivity of subtyping to conclude that T1 x = e

′

is type correct. However, without transitivity, we cannot conclude that T1 x = e
′ is type

correct.
Interestingly, we have succeeded in obtaining our message-safety soundness result

using a less restrictive type system where the assignability requirements in the standard
Dart type rules have been omitted. In the same vein, the Dart language specification
includes the notion of a type being more specific than another type, which amounts to a
slightly modified version of subtyping. This relation is transitive, and we use it directly
in our treatment of soundness (Section 3.4).

4

2.3. Message-Safe Programs

Under which conditions can a Dart programmer be certain that his program will not
raise any message-not-understood error during checked mode execution? This section
presents the core concept that can lead to such a guarantee. Surprisingly, this can be
achieved without taking the full step to traditional type soundness.

We define a message-safe Dart program as one that satisfies the following require-
ments:

1. The annotation dynamic does not occur, neither explicitly nor implicitly. Specifi-
cally, all fields, method signatures, and variables have type annotations, and type
parameters cannot be omitted.

2. Type checking the program produces no static type warnings3 using the standard
Dart type checker with the following modifications:

(a) Overriding methods must have covariant return types. That is, if a superclass
C1 contains a method m with return type T1 and a subclass C2 of C1 contains
a method m with return type T2 then T2 must be a subtype of T1. Similarly,
the types of overriding fields must be covariant (overriding for fields makes
sense because all accesses use getters and setters).

(b) Subtyping among function types requires covariant return types. That is, the
type of a function with return type T1 is a subtype of one with return type T2

only if T1 is a subtype of T2.

One of our key contributions is to demonstrate that these requirements suffice, as shown
in the following sections for a core language. Requirement 1 is not surprising, as dynamic
effectively disables static type checking. Informally, requirement 2(a) is motivated by the
fact that a method override with an unrelated return type could easily cause a message-
not-understood error for a property looked up on the returned value, and similarly for
2(b). Clearly, it is not hard to implement a checker that decides for any given Dart
program whether it is message safe.4

Examples. We show three small programs that demonstrate the need for the message-
safety requirements. Consider the following class definitions:

class A {

A f;

A m(Object x) {

return new A();

}

}

class B extends A {

Object f = new Object();

Object m(int x) {

return new Object();

}

}

3The notion of a static type warning in the Dart specification corresponds to a type error in most
other languages; the point is that even though the type check fails, it is possible to run the program.

4Our implementation (http://www.brics.dk/fletch/)
required modifying less than 200 LOC in Google’s dartanalyzer tool.

5

All of the following programs fail with a message-not-understood runtime error in checked
mode execution, for different reasons. The standard Dart type checker emits no warnings,
whereas our message-safety type checker catches the error in each case.

• A x = new B();
x.m(42).f;

The overriding method m violates requirement 2(a). A runtime error occurs because
x.m(42) returns a value of type Object, which does not have an f property. It is not
surprising that this causes a message-not-understood error that we must prevent.
Statically we expect x.m to have type Object→ A, but dynamically we encounter
a function of type int → Object, which is not a subtype of the former, and in
particular it violates the standard requirement that the return type of a function
type is covariant. Note, however, that we do not have to require contravariance for
argument types, because the associated failure will be a subtype-violation error,
which is allowed.

• A x = new B();
x.f.m(117);

The overriding field f violates requirement 2(a). A runtime error occurs because
x.f yields a value of type Object, which does not have an m method. Noting that
x.f semantically is a getter, i.e., a function that gets the value of the field named
f, it is easy to see that the situation is the same as for the previous example.

• typedef A MyFunType(Object x);
MyFunType g = (String x) => new Object();

g("foo").f;

The type of the anonymous function stored in g is not assignable to g, as require-
ment 2(b) is violated. A runtime error occurs because the function returns a value
of type Object, which does not have an f property. Once again, the underlying is-
sue is that we must enforce return type covariance for functions, in this case applied
to a first class function value.

2.4. Full Type Safety

Although we focus on message safety in this paper, full type safety, where neither
message-not-understood nor subtype-violation errors are possible, can be ensured stati-
cally by the following additional modifications to the type checker:

3. Every assignability check is replaced by a subtype check (or, equivalently, assignabil-
ity is redefined to coincide with subtyping).

4. Generic class subtyping requires invariance rather than covariance.
5. (a) Method overriding requires contravariant argument types, and field overriding

must be invariant.
(b) Function subtyping requires contravariant argument types.

We formalize these modifications in Section 3.6.
These additional requirements, especially those involving invariance, may obviously

cause many useful Dart programs to be rejected. Even though it is possible to replace
invariance by less restrictive (but more complex) variants, this observation supports our
argument that message safety is a flexible and simple alternative to full type safety.

6

Examples. To motivate requirements 3–5, consider the following class definitions:

class A {

Object m(Object x) {

return new A();

}

}

class B<X extends A> extends A {

X f;

}

class C extends A {

Object m(int x) {

return new Object();

}

}

The following four programs fail with a subtype-violation runtime error in checked mode
execution, for different reasons. The standard Dart type checker and the message-safety
type checker emit no warnings since they do not prevent subtype-violation errors, but
with full type safety each error is caught statically.

• C x = new A();

The assignment violates requirement 3. A runtime error occurs because the right-
hand side of the assignment has type A that is not a subtype of the declared type C.
This is unsurprising: it is a standard requirement for sound typing that assignments
admit subtypes, but not supertypes.

• B<A> x = new B<B<A>>();
x.f = new C();

The first assignment violates requirement 4. The program is well typed by the
message-safe type system since x.f has static type A and the right-hand side of the
field assignment has type C that is a subtype of A. At runtime, x will have type
B<B<A>>, but the right-hand side of the field assignment has type C that is not a
subtype of B<A>. This situation where a generic class is considered to be covariant
in a type argument that occurs in a contravariant position (the argument type of
the setter for f) is also a well-known source of soundness violations, documented
by Cook in 1989 [7].

• A x = new C();
x.m("");

The overriding method m in class C violates requirement 5(a). A runtime error
occurs because m at runtime belongs to the class C, so the formal parameter has
type int but the argument has type String. The underlying issue is again function
type subtyping. In Section 2.3 it was sufficient to enforce covariance for the return
types of functions, but in order to maintain full type safety we must also enforce
contravariance for argument types, which is violated for the method m in class C.

• typedef int MyFunType(Object x);
MyFunType x = (int x) => 0;

x("");

7

The x assignment violates requirement 5(b). At runtime the formal parameter of
x is int and the argument has type String that is not a subtype of int. As
explicitly stated, the underlying issue is again argument type contravariance, this
time concerned with a first class function value.

In summary, even though message-safety allows for a substantially more flexible approach
to typing than traditional, sound type rules, the steps needed to go from message-safety
to full type safety are simple and unsurprising.

2.5. Message Safety and Nominal Identity

A useful intuition about message-safe programs is that they make programmers decide
on a specific choice of the meaning of every property (method or field) that is used in
the program. More concretely, for every property lookup (e.g., x.f) in such a program,
the declared type of the receiver object (x) ensures that the property (f) is defined.
This aligns well with the use of nominal typing in object-oriented programming (unlike
structural typing, which allows any two types that are structurally similar to be confused).
Since Dart types are nominal, we say that message-safe programs enforce the commitment
to a specific nominal identity for each property lookup operation. Such a nominal identity
determines the location in the source code where a definition of the property is given. The
documentation about how to use or redefine this property (type annotations, informal
comments, etc.) should reside there, or in a statically known superclass. Late binding
may cause the invocation of a method, e.g., x.m(y), to execute a method implementation
in a proper subtype of the one that contains the statically known declaration. However,
both the programmer writing the invocation and the programmer redefining the property
will know statically where to find the appropriate documentation of the semantics. This
helps maintaining consistency.

Of course, that documentation may be absent, misleading, or just informal, but com-
pared to the non-message-safe situation where a given property being looked up could
resolve to many different declarations in a large software system (essentially any declara-
tion with the right name), we believe that the static commitment to a nominal identity
is a powerful tool for clarification of the intended use and semantics, thus promoting
well-understood and correct software.

2.6. Message Safety for Program Fragments

The notion of message safety also makes sense for program fragments, not only for
complete programs. In fact, such a generalization is almost trivial in most cases. Consider
a property access expression of the form x.f or x.m(...) where x is a local variable
or a formal argument to a method; in this case a local check on the declared type of
the receiver x suffices to ensure that the property access will never cause a message-not-
understood error in checked mode at runtime. For the field access we just check that
the receiver type declares a field (or getter) named f, and for the method call we check
that the method exists, with the given arity. If x is a field in this object we check that
its declared type includes the requested property. Similarly, for an access expression
applied to a returned value, e.g., x.m(...).f or x.m(...).n(...), we check that the
return type of m declares that property. For every class we encounter, the covariance
check in 2(a) is applied modularly (i.e., to that class alone), which ensures that every
looked up property based on a field or a returned value has the statically declared type in

8

every superclass. Finally, first-class closures in Fletch support a direct inspection of their
dynamic type (as opposed to the approaches using blame assignment where checks must
be delayed because the type of a higher-order value cannot be inspected dynamically),
which makes it possible to treat them just like objects when considering message safety.
Clearly, this is just as modular as a standard type check, e.g., in the Java programming
language.

One minor complication arises due to the fact that in Dart (unlike other languages
with gradual typing) the type dynamic may appear in the runtime type of entities,
which may cause violations of the type annotations in the program fragment under
consideration. Modular message safety checking therefore includes the constraint that
type parameters in the runtime type of generic instances and the return type of function
closures cannot be dynamic.

From a software engineering point of view, a developer who is working with a large
program can use a modular message-safety check on one property lookup at a time, for
example focusing on a critical program fragment and thereby obtaining the benefits of
message safety for that fragment, without requiring the conditions from Section 2.3 to
be satisfied for the entire program. This aligns well with the concept of gradual typing
that is a cornerstone of the Dart design. If a lookup pertains to a receiver whose type is
declared outside the program fragment of interest (consider, for example, an expression
x.y.z where y is declared in the class of x and is the receiver for the lookup of z), it
may be useful to make remote adjustments (changing the type of y), or it may be better
to introduce a local variable with a suitable type, holding a reference to that receiver
(x.y). The choice will depend on which of the two adjustments fits better into the given
software development context.

2.7. A Two-Step Approach Toward Type Safety

The Dart language specification [11, page 124] suggests that a sound type checker
can be implemented and used, for example, as a stand-alone tool. This is a rather well-
understood undertaking, and we will only briefly discuss full type safety in this paper.
Instead, we observe that message-safe programs constitute an intermediate form between
dynamic typing and full static type safety, which enables a structured evolution toward
type safe programs. The set of message-safe programs separates such a transformation
into a predominantly local step that considers the usage of object properties at property
lookup operations where message-not-understood errors may occur, and a global step
that considers subtype constraints at assignments and other dataflow operations where
subtype-violation errors may occur.

As an example, consider the following untyped program:

class Account {

var balance = 0;

withdraw(amount) {

balance -= amount; return amount;

}

}

pay(account,amt) {

return account.withdraw(amt) == amt;

}

make() { return new Account(); }

main() { var acc = make(); pay(acc,10); }

9

The first step toward a type safe program is to make the program message-safe, the
main part of which is adding type annotations. For the programmer, a useful way to
think about this transformation is that every lookup operation (as in x.f) enforces a
sufficiently informative type (of x) to ensure that the corresponding lookup (of f) will
succeed. In the example above, the use of account.withdraw(amt) thus forces account
to have a sufficiently informative type to ensure that it has a withdraw method with one
argument. Here is a corresponding message-safe program (changes highlighted):

class Account {

int balance = 0;

Object withdraw(Object amount) {

balance -= amount; return amount;

}

}

Object pay(Account account, Object amt) {

return account.withdraw(amt) == amt;

}

Object make() { return new Account(); }

void main() { Object acc = make(); pay(acc,10); }

Note that acc can have type Object because no properties are used via this variable, in
contrast to account. It is not required for message-safe programs that all types are as
general as possible (e.g., pay could return type bool), but it is likely to be a practical
and maintainable style to commit only to the types required for property lookups.

The second step in the transformation to a type safe program is to propagate types
according to the dataflow that takes place in assignments and argument passing opera-
tions. Whenever a value is passed from some expression into a variable, the expression
must have a type that is a subtype of that variable, and similarly for function arguments
and return values. This is achieved by replacing declared types by subtypes in a pro-
cess similar to constraint propagation, until the program satisfies the standard subtype
constraint everywhere. A corresponding statically safe program is as follows:

class Account {

int balance = 0;

int withdraw(int amount) {

balance -= amount; return amount;

}

}

Object pay(Account account, int amt) {

return account.withdraw(amt) == amt;

}

Account make() { return new Account(); }

void main() { Account acc = make(); pay(acc,10); }

In general, both steps may require restructuring of the program code itself, not just
insertion or adjustment of type annotations: e.g., the code may be inherently type unsafe
(such that some executions will produce a message-not-understood error at runtime), or
it may be safe only according to a structural typing discipline (such that some property
accesses will succeed with different unrelated nominal types at different times). But for
programs that have a safe nominal typing, it seems plausible that the constraint solving

10

step could be performed automatically. However, exploring algorithms for that is future
work.

Note that the type annotations in the first step can be chosen entirely based on the
local use of features of each object, without any global considerations. This fits nicely
with the expected importance of IDE support for code completion. The message-safe
program may raise subtype-violation type errors at runtime, but it will not raise message-
not-understood errors. Hence, in message-safe programs, the type annotations justify the
actual property lookups, while implicit downcasts are still allowed, which enables a more
flexible flow of data compared to traditional sound typing.

2.8. Message Safety for Other Languages

The essence of message safety is strict treatment of lookups and flexible treatment of
dataflow. It would be straightforward with, for example, the Java and C# programming
languages to allow for part of the flexibility that Dart offers by modifying compilers to
insert downcasts, rather than rejecting the program as untypable when a downcast is
needed but not specified.

Message safety then corresponds to the standard type checks applied to lookups, and
the constraints on programs would rule out the dynamic type in C# and anything in the
Java language that relies on the invokedynamic byte code. Thus, at the technical level
there are no deep difficulties in providing the same combination of nominal safety and
dataflow flexibility that we are proposing for Dart.

3. Fletch

Fletch5 is a calculus that aims to capture the essence of the Dart language, including
the interaction between types and checked mode execution. Fletch includes just enough
elements from Dart to faithfully characterize the core of the Dart type system and the
associated dynamic semantics.

We first specify two distinct type systems for Fletch: the standard type system, which
faithfully models the core of the Dart type system, elucidating how Dart typing works;
and the message-safe type system, which embodies the additional constraints required
for making programs message safe. The type systems are so similar that we specify them
using a single set of type rules; highlighted elements in the type rules should then be
omitted or included as described in captions. The message-safe type system is the main
type system that is used in the soundness proof, and the standard type system is used
to show how that relates to Dart. In Section 3.6 we briefly describe a third variant that
ensures full type safety.

The calculus supports ‘typeless’ programs: put dynamic in all locations where a
type is required. It also supports message-safe programs: the message-safe type system
enforces programs with no occurrences of dynamic to be message safe, i.e., it embeds the
requirements from Section 2.3.

As Fletch is designed to model a core of Dart, similar in spirit to how Featherweight
Java [15] models the full Java language, it is practically infeasible to guarantee that Fletch

5The first version of our Fletch calculus was published before the unrelated Google experimental
runtime system of the same name.

11

CL ::= class c <X ✁N> extends N {F M}
F ::= G f ;
M ::= T m(G x) {return e; }
e ::= y | e.p | e.p = e | x = e | e(e) |

new N() | fn | JT, eK | τ = e | l

T ::= G | void
G ::= X | N | dynamic | ⊥ | (G) → T
N ::= c<G>

fn ::= T (G x) ⇒ e
y ::= x | this | null
p ::= f | m

l ::= ι | τ

Figure 1: Fletch syntax. Boxed parts occur only at runtime.

precisely follows the semantics of Dart using testing or formal verification. Instead, we
base our confidence on the fact that the description has been checked by central members
of the Dart team at Google.

Like in other calculi, many features have been omitted, e.g., general statements.
Notable omissions are conditional expressions (b ? e1:e2, similar to e.g. Java), type tests
(e is T , like instanceof in Java), and type promotion (allowing types to be refined
based on type tests in conditionals), which are relevant for the Dart type system, but
not essential when studying message safety.

Apart from a couple of trivial syntactic abbreviations and some extensions needed
to describe runtime states, Fletch is a syntactic subset of the Dart language, such that
Fletch programs can easily be adapted to become Dart programs.

3.1. Syntax

Dart is an imperative language with classes, whose syntax builds on the family of
languages that includes Java, C++ and C#. Figure 1 shows the syntax of Fletch. The
declaration categories CL, M , and F define classes, methods, and fields, and they are
unsurprising. As usual, a denotes the possibly empty list a1, . . . , an, n ≥ 0.

Expressions (e) specify computations including variable and property lookup, assign-
ments, function invocations, object creation, anonymous functions, and runtime expres-
sions. Variables (y) denote method arguments (x) and the predefined names this and
null. Locations (l) are variable locations (τ) or heap locations (ι), which we will discuss
in Section 3.2. Names of fields, methods, classes, method arguments, type parameters,
variable locations, and heap locations are disjoint, and denoted by f , m, c, x, X , τ , and
ι respectively. In a slight abuse of notation we will use grammar nonterminals to indicate
sets of terms; for example, e stands for the set of all syntactic expressions and we also
use e as a metavariable that ranges over this set.

Frame expressions JT, eK arise when a function is invoked. Such an expression carries
the declared return type of the invoked function. This enables a check on the type of the
returned value, as required for checked mode execution.

12

o : Obj = G× Fields × Methods

φ : Fields = f →֒ G× LocH

µ : Methods = m →֒ LocH

σ : Heap = LocH →֒ Obj ∪ fn

ν : VarEnv = LocV →֒ G× LocH

s : State = VarEnv × Heap × e

Figure 2: Semantic entities.

The anonymous function syntax T (G x) ⇒ e is slightly different from the corre-
sponding syntax in Dart, which omits the return type T . It would be easy to introduce
a preprocessing phase that obtains the statically known type of the returned expression
e and adds it as the explicit return type. In other words, the explicitly declared return
types for Fletch anonymous functions do not add essential information to programs.
However, they do eliminate the need for some complicated machinery to compute the
statically known return type whenever needed — which includes the dynamic semantics
in checked mode. We deviate slightly from Dart here to avoid unnecessary complexity.

The class definitions in a program are modeled as a class table CT : c →֒ CL, which
maps a finite set of class names into class definitions (‘→֒’ indicates a partial function).
Each class definition class c <X ✁N> extends N {F M} defines a class c with
superclass N , fields F , and methods M . Each type parameter X has an upper bound N
(the actual Dart syntax is X extends N).

A class table CT is well-formed iff Object 6∈ dom(CT), but every other class name
used in CT is defined, and inheritance is acyclic. A Fletch program is a pair (CT, e) where
CT is a class table and e is an expression, and it is well-formed iff CT is well-formed and
both e and all expressions within all classes in CT contain only well-formed types (see
Section 3.5) and identifiers that are defined in the relevant environment.

3.2. Semantic Entities

The operational semantics of Fletch requires more complex semantic entities than
many other calculi. We need to model a heap in order to express mutability, which
we cannot ignore, because the semantics of lexically scoped closures and checked mode
execution depend substantially on being in a mutable rather than an immutable setting.
We need an extra level of indirection on method arguments in order to model first class
closures and lexical nesting. Since local variables would be given the same treatment as
method arguments, had they been included in the model, we will use the word variable
as interchangeable with method arguments.

We model the heap by the maps denoted by σ, and the indirection for variables by
the maps denoted by ν. The former maps each heap location ι ∈ LocH to an object or
a closure, and the latter maps each variable location τ ∈ LocV to a type and a heap
location, as shown in Figure 2. We use the word heap to designate the former, variable
environment to designate the latter, and environment to designate any of the two. LocH

and LocV are disjoint, countably infinite sets.
A good intuition about ν is that it is a log that models all the local state used in

the execution so far. Each variable x is systematically replaced by an invocation specific

13

variable location τ , which ensures that variables are aliased across all nested scopes for
each invocation of a method, but distinct for different method invocations.

We illustrate this using an example. Assume that a method m is invoked and returns
an object containing two closures cl1 and cl2, where cl1 will mutate a variable x and cl2
will use x. An execution of cl1 changing x must then work such that cl2 evaluates x to the
new value. On the other hand, no such interaction is allowed between cl2 and a closure
created from the same expression as cl1 during a different invocation of m. By the use of
variable environments, all occurrences of x will be replaced by a variable location τ1 in
the first invocation, and by τ2 6= τ1 in the other invocation. Mutations of x will modify
the given variable environment to map τ1, resp. τ2, to new heap locations.

In this way, we model all the bindings in the runtime stack, including the ones in
activation records that have already been discarded. An alternative approach would be
to model the runtime stack directly. Our approach enables a significant simplification:
we avoid modeling migration of variables to the heap in case a closure using variables in
an activation record escapes out of the corresponding method invocation, and we avoid
specifying how to detect that situation.

To be able to express checked mode execution, variable environments ν provide not
only a heap location for every variable location, but also the statically declared type of
the corresponding variable, as represented by the syntactic metavariable G from Figure 1.

We also introduce objects, closures, field maps, and method maps. An object o
contains its runtime type G, a map φ from field names to declared types and heap
locations, and a map µ from method names to heap locations. A closure is simply
represented by an anonymous function fn . There is no need to equip a closure with an
environment: upon invocation it contains no free variables, because they are all replaced
by variable locations, and this is replaced during object creation by a variable location
τthis.

Notationally, [τ/y]e denotes capture avoiding substitution in a Fletch expression e: all
free occurrences of y in e are replaced by τ . The same notation is used for substitution of
types, etc. We also use brackets to denote maps of any type, i.e., finite, partial functions,
listing each binding in the map. For instance, [τ 7→ (G, ι)] is the map that maps τ to
(G, ι), and [] is the map that is everywhere undefined.

The state of a Fletch program during execution is represented by s (see Figure 2).
The class table, CT, is frequently consulted during execution. It is constant throughout
any program execution so we will leave it implicit, as is common in object calculi since
Featherweight Java [15].

The null location is predefined, which motivates the use of the base environments
νbase = [] and σbase = [ιnull 7→ onull], where onull = (⊥, [], []) represents the predefined
null object. Every runtime environment will extend one of these.

3.3. Dynamic Semantics

We specify the dynamic semantics of Fletch in terms of a small-step operational
semantics −→ that relates States to States, that is, each configuration is a triple 〈ν, σ, e〉.
The rules for expression evaluation in Fletch are shown in Figure 3. Every successfully
terminating expression evaluates to a heap location ι, which is the only kind of value
that Fletch supports. Expression evaluation may have side effects in terms of updates to
the heap or the variable environment.

14

We use the shorthand ν[τ 7→ ι] standing for ν[τ 7→ (G, ι)] where ν(τ) = (G, ι′)
for some ι′. Similarly, ν(τ) = ι means that there exists a G such that ν(τ) = (G, ι).
Evaluation of a variable location [E-Var-Read] amounts to a lookup in ν for a location τ .
Assignment to a variable location τ [E-Var-Write] updates the variable environment ν
to map that variable location to the given value. The subtype check in the premise
is included iff the execution uses checked mode, in which case it is enforced that the
runtime type of the new value ι is a subtype of the statically declared type of the variable
location τ . Assignment to a field [E-Field-Write] looks up the object at ι1 and creates a
new heap σ′ that differs from the old heap only at ι1, which contains the object updated
only at the selected field f to have the new value ι2. Note that field assignment requires
the field to exist, both in checked mode and in production mode. In checked mode it
is also enforced that the new field value conforms to the declared type. Evaluation of
a field [E-Field-Read] or a method [E-Method-Read]s is straightforward, and the null
literal [E-Null] evaluates to the null heap address.

The new expression [E-New] creates and initializes a fresh object based on the given
class, with a null valued fields map, and with closures corresponding to the method
declarations in the methods map. Occurrences of this in method bodies are replaced
by the location τthis of the new object; the method arguments will be similarly re-
placed upon invocation of each method. The auxiliary functions fields and methods

collect the set of fields and methods, respectively, for a given type, taking class in-
heritance and type parameter substitution into account, similar to ftype and mtype

from Figure 11. We use name to extract the field names and method names, that is,
name(F) = f for a field declaration F = G f and name(M) = m for a method declara-
tion M = T m(G x) { returne; }. Similarly, type(F) extracts the declared type for a
field declaration.

Closure creation [E-Func] stores the given closure in the heap and evaluates to the
corresponding heap location. Closure invocation [E-Call] evaluates the body of the
function in a new variable environment ν′ created by combining the current variable
environment ν with bindings from the formal to the actual arguments of the invocation,
replacing variables by fresh variable locations in the body. In checked mode, the dynamic
types of the actual arguments are checked against the formal argument types. The
resulting expression packages the declared return type T of the closure together with the
closure body, which is needed in order to be able to check that the dynamic return value
conforms to the declared return type. The return step [E-Return] performs this check,
if in checked mode, and produces the contained value.

Figure 4 shows how a failed runtime configuration can be detected, which is necessary
in order to distinguish between an execution that stops with a subtype-violation or a null
pointer error vs. one that stops by encountering a message-not-understood. The former
is a configuration 〈ν, σ, e〉 where ν;σ ⊢ e ACCEPTABLE_ERROR; the latter is any other
stuck configuration.

We omit the associated congruence rules, both in Figure 3 and in Figure 4, as they
are entirely unsurprising.

As Figure 3 shows, the dynamic semantics of Fletch requires the ability to answer
certain simple type-related questions. It must be possible to determine the runtime types
of objects and closures and the statically declared types of variables. Figure 5 shows the
definition of typeof, which takes a heap location ι or a variable location τ and determines
the requested type.

15

[E-Var-Read]
ν(τ) = ι

〈ν, σ, τ 〉 −→ 〈ν, σ, ι〉

[E-Var-Write]
ν′ = ν[τ 7→ ι] ⊢ typeof(ι, σ) <: typeof(τ, ν)

〈ν, σ, τ = ι〉 −→ 〈ν′, σ, ι〉

[E-Field-Write]

σ(ι1) = (c<G>, φ, µ) φ(f) = (G′,_)

σ′ = σ[ι1 7→ (c<G>, φ[f 7→ (G′, ι2)], µ)] ⊢ typeof(ι2, σ) <: G′

〈ν, σ, ι1.f = ι2〉 −→ 〈ν, σ′, ι2〉

[E-Field-Read]
σ(ι1) = (_, φ,_) φ(f) = (_, ι2)

〈ν, σ, ι1.f〉 −→ 〈ν, σ, ι2〉

[E-Method-Read]
σ(ι1) = (_,_, µ) µ(m) = ι2

〈ν, σ, ι1.m〉 −→ 〈ν, σ, ι2〉

[E-Null] 〈ν, σ, null〉 −→ 〈ν, σ, ιnull〉

[E-New]

F = fields(c<G>) M = methods(c<G>)

o = (c<G>, [name(F) 7→ (type(F), ιnull))], [name(M) 7→ ιmi
])

σ0 = σ[ι 7→ o] where ι is fresh
ν′ = ν[τthis 7→ (c<G>, ι)] where τthis is fresh

∀Mi ∈ M : σi = σi−1[ιmi
7→ Ti mi(Gi xi) ⇒ [τthis/this]ei]

where Mi = Ti mi(Gi xi) {return ei; } and ιmi
is fresh

〈ν, σ, new c<G>()〉 −→ 〈ν′, σn, ι〉

[E-Func]
σ′ = σ[ι 7→ T (G x) ⇒ e] where ι is fresh

〈ν, σ, T (G x) ⇒ e〉 −→ 〈ν, σ′, ι〉

[E-Call]

σ(ι0) = T (G x) ⇒ e

ν′ = ν[τ 7→ (G, ι)] where τ is fresh ⊢ typeof(ι, σ) <: G

〈ν, σ, ι0(ι)〉 −→ 〈ν′, σ, JT, [τ/x]eK〉

[E-Return]
⊢ typeof(ι, σ) <: T

〈ν, σ, JT, ιK〉 −→ 〈ν, σ, ι〉

Figure 3: Computational rules for expressions in Fletch. The boxed premises involving typeof are
omitted for production mode execution, but included for checked mode execution.

16

ν;σ ⊢ ιnull.p ACCEPTABLE_ERROR ν;σ ⊢ ιnull.f = ι ACCEPTABLE_ERROR

ν;σ ⊢ ιnull(ι) ACCEPTABLE_ERROR

⊢ typeof(ι, σ) 6<: typeof(τ, ν)

ν;σ ⊢ τ = ι ACCEPTABLE_ERROR

σ(ι1) = (_, φ,_) φ(f) = (G,_) typeof(ι2, σ) = T ⊢ T 6<: G

ν;σ ⊢ ι1.f = ι2 ACCEPTABLE_ERROR

typeof(ι, σ) = (G) → T typeof(ιi, σ) = T ′

i ⊢ T ′

i 6<: Gi

ν;σ ⊢ ι(ι) ACCEPTABLE_ERROR

⊢ typeof(ι, σ) 6<: T

ν;σ ⊢ JT, ιK ACCEPTABLE_ERROR

Figure 4: Acceptable runtime errors in message-safe programs.

typeof(ι, σ) =

{

G if σ(ι) = (G,_,_)
(G) → T if σ(ι) = T (G x) ⇒ e

typeof(τ, ν) = G if ν(τ) = (G,_)

Figure 5: Definition of typeof(ι, σ), which looks up the dynamic type of a heap location ι in the heap σ,
and typeof(τ, ν), which looks up the declared type of a variable location τ in the variable environment ν.

The Dart language includes getter and setter methods. They can be explicitly de-
clared, but otherwise for each declared field the compiler automatically provides a getter
and a setter, and for each method a getter returning a tear-off closure.6 Although all
fields are private in Dart, they can be accessed from other classes by implicit uses of
getters and setters. For instance, if class C contains field f then new C().f will call
the automatically generated getter method named f that returns the value of the field
f. Similarly, new C().f = e will call the generated setter method named f= that sets
the field f to the value of its argument e. To keep Fletch simple, we model only the
automatically generated getters and setters.

3.4. Subtyping

A type environment ∆ is a finite map from type variables to class types. We use
the notation X1 <: N1, . . . , Xn <: Nn for explicit listings, where <: is also used for the
subtyping relation described later. Each element X <: N indicates that X must be
bound to a subtype N ′ of N .

6A tear-off in Dart is a closure that has been derived from a method [11].

17

∆ ⊢ ⊥ ≪ T ∆ ⊢ T ≪ dynamic ∆ ⊢ T ≪ T

∆ ⊢ T1 ≪ T2 ∆ ⊢ T2 ≪ T3

∆ ⊢ T1 ≪ T3

∆ ⊢ X ≪ ∆(X)

∆ ⊢ G1 ≪ G2

∆ ⊢ c<G1> ≪ c<G2>

CT(c) = class c<X ✁N> extends d<G1> {· · · }

∆ ⊢ c<G2> ≪ [G2/X]d<dynsub(G1)>

Figure 6: Typing specificity.

Typing specificity is a partial order on types. We say that T1 is more specific than T2

in the type environment ∆ iff ∆ ⊢ T1 ≪ T2 is provable according to Figure 6. Note that
the rules follow the declared extends relationship, but they leave some special cases to
subtyping (defined below).

Type rules for type specificity do not describe the full subtype relation for Fletch
types. The special type annotation dynamic allows the programmer to leave a type
unspecified in the program, and unchecked by the compiler. The type dynamic behaves
as a supertype and as a subtype of any other type in the language, and no type warnings
ever appear for expressions of type dynamic. Generic type parameters may also be
declared as dynamic.

An unfortunate side effect of the type dynamic is that the subtype relation in Fletch
is not transitive. For example, it is the case that ∆ ⊢ List<int> <: List<dynamic>
and ∆ ⊢ List<dynamic> <: List<String>. If the rules had been transitive we could
conclude ∆ ⊢ List<int> <: List<String>, which should not hold. Transitivity only
holds among class types, but not when the type dynamic is used.

We need to define a simple syntactic transformation of types to promote dynamic to
the bottom type:

dynsub(T) =

⊥ if T = dynamic

c<dynsub(G)> if T = c<G>
T otherwise

With dynsub(T), we can define the subtype relation as shown in Figure 7. Notice
that [Sub-Dyn-Sub] makes dynamic a subtype of all other types. This ensures ∆ ⊢
List<dynamic> <: List<String>, as ∆ ⊢ List<⊥> ≪ List<String>, which solves
the previously mentioned transitivity problem.

We also use dynsub in the definition of typing specificity for class inheritance (last
rule in Figure 6). As an example, for a class defined by class DynList extends

List<dynamic> {}, we have DynList ≪ List<⊥> ≪ List<int>, and therefore
DynList <: List<int> as one would expect.7

7The Dart language specification erroneously omits this substitution of dynamic; the language de-
signers have confirmed that this is indeed an error, and Google’s implementation agrees.

18

[Sub-Dyn-Sub]
∆ ⊢ dynsub(T1) ≪ T2

∆ ⊢ T1 <: T2

[Sub-Funs]
assignable

∆
(G1, G2) assignable

∆
(T1, T2) or T2 = void

∆ ⊢ (G1) → T1 <: (G2) → T2

[Sub-Funf]
assignable

∆
(G1, G2) ∆ ⊢ T1 <: T2 or T2 = void

∆ ⊢ (G1) → T1 <: (G2) → T2

[Sub-Object] ∆ ⊢ (G1) → T1 <: Object

Figure 7: Subtyping. The standard type system (most closely modeling Dart) uses [Sub-Funs], and
the message-safe variant uses [Sub-Funf]. The boxes just point out the differences (cf. Section 2.3,
requirement 2(b)).

∆ ⊢ T1 <: T2

assignable
∆
(T1, T2)

∆ ⊢ T2 <: T1 ¬isfun(T1) ∨ ¬isfun(T2)

assignable
∆
(T1, T2)

Figure 8: Assignability. The predicate isfun(T) holds iff T is a function type.

The notion of assignability in object-oriented languages often coincides with subtyp-
ing. As Figure 8 shows, the assignability relation in Fletch is strictly larger than the
subtyping relation: types are assignable if either of them is a subtype of the other. Type
parameters are treated likewise. While this clearly allows programmers to assign values
to variables that cause runtime failures in checked mode, the static type checker does
reject direct assignments between unrelated types. As an example, the following program
is type correct by these rules:

class C<X,Y> {

int x;

C<String,Object> y;

void initX() {this.x = new Object();}

void initY() {this.y = new C<Object,String>();}

}

The careful reader may notice a subtle detail in the subtyping relation: as subtyping
is used not only for static type checking, but also in checked mode runtime execution,
the necessary modification of the function subtyping rule also affects the runtime se-
mantics. Providing alternative static type checkers for Dart is explicitly encouraged by
the language specification, in accordance with the choice by the language designers that
presence of static type warnings does not prevent execution; however, changing the run-
time semantics is another matter. Interestingly, the Dart language designers are seriously
considering our proposal to replace [Sub-Funs] by [Sub-Funf], also at runtime [19]. Also
note that message safety can be achieved even without this change to the runtime se-

19

mantics by letting the compiler apply a simple program transformation using extra local
variables for results returned by first-class closures.

3.5. Expression Typing

The typing judgment ν;σ; ∆; Γ ⊢ e : T indicates that the expression e is well typed
with the type T in the environments ν, σ, ∆ and Γ. Here, ν maps variable locations to
heap locations, σ maps heap locations to objects or closures, ∆ maps type variables to
their upper bounds, and Γ maps variables (including null and this) to their declared
types. The initial environments for an execution are νbase and σbase (see Section 3.2),
∆base = ∅, and Γbase = {null : ⊥}.

The Fletch type system differs from the Dart language specification in a couple of
ways. In particular, in Figure 9 there are several type rules concerned with runtime
expressions, e.g., heap locations, that are absent in the Dart specification because it
does not formalize the dynamic semantics. The [T-Function] rule contains the return
type, which is absent in the Dart syntax; we gave reasons for having it in Section 3.1.
Furthermore, the message-safe variants of many rules encode requirements specific to
message-safe programs.

As mentioned in Section 2 there is a conflict between the use of assignability and
proofs of soundness, which is the reason why the assignability premises are boxed in
Figure 9. These premises are treated specially in our message-safety soundness proof
(Section 4).

The rules [T-Var], [T-Read], [T-Write], [T-Assign], and [T-Call] are unsurprising
apart from the assignability checks, which allow some types to be both subtypes and
supertypes where typical type systems would require a subtype. The [T-New] rule is
very simple because mutability allows us to omit constructors. [T-Function] is also
standard, noting that the list G x cannot contain any duplicate variable names.

Finally, the rules [T-Runtime-Loc], [T-Runtime-Frame] and [T-Runtime-VAssign]
are simple extrapolations from programs to runtime expressions, to be used in the sound-
ness proof. The typeof function determines the type of a heap location or variable
location (see Figure 5).

Figure 10 defines a few auxiliary functions: accessor is a shorthand for prop-
erty lookup, foverride defines requirements on redeclaring a field in a subclass, and
moverride defines requirements on method overriding. The bound∆(T) function re-
places the type variables in the type T by their upper bound as defined in the type
environment ∆.

Figure 11 defines field and method type lookup by the functions ftype and mtype.
The only nonstandard element of ftype is the treatment of the receiver type dynamic

where all field names are considered to be defined and having the type dynamic. Similarly,
the only nonstandard part of mtype is that a receiver of type dynamic is considered to
have all methods, each of which also has the type dynamic.

Figure 12 defines what it means for a type T to be well-formed in a type environment
∆, written ∆ ⊢ T OK. Type well-formedness requires subtyping for type parameters
rather than assignability: if we have a class definition class c<X ✁ String> {. . .} then
c<Object> is not a well-formed type, since X must be a subtype of String.

Figure 13 shows the top-level rules for typing of classes that causes all the other
elements of type checking to be applied. The notation nodup(a) indicates that the list a
contains no duplicates.

20

[T-Var] ν;σ; ∆; Γ ⊢ y : Γ(y)

[T-Read]
ν;σ; ∆; Γ ⊢ e : T accessor(bound∆(T), p) = G

ν;σ; ∆; Γ ⊢ e.p : G

[T-Write]

ν;σ; ∆; Γ ⊢ e1 : T1 accessor(bound∆(T1), f) = G

ν;σ; ∆; Γ ⊢ e2 : T2 assignable
∆
(T2, G)

ν;σ; ∆; Γ ⊢ e1.f = e2 : T2

[T-Assign]
ν;σ; ∆; Γ ⊢ e : T assignable

∆
(T,Γ(x))

ν;σ; ∆; Γ ⊢ x = e : T

T-Dynamic-Calls

ν;σ; ∆; Γ ⊢ e0 : dynamic ν;σ; ∆; Γ ⊢ e : T

ν;σ; ∆; Γ ⊢ e0(e) : dynamic

[T-New]
∆ ⊢ N OK

ν;σ; ∆; Γ ⊢ new N() : N

[T-Call]
ν;σ; ∆; Γ ⊢ e0 : (G) → T ν;σ; ∆; Γ ⊢ e : T ′ assignable

∆
(T ′, G)

ν;σ; ∆; Γ ⊢ e0(e) : T

[T-Function]
∆ ⊢ G OK ν;σ; ∆; Γ, x : G ⊢ e0 : T ′ assignable

∆
(T ′, T)

ν;σ; ∆; Γ ⊢ T (G x) ⇒ e0 : (G) → T

[T-Runtime-Loc] ν;σ; ∆; Γ ⊢ ι : typeof(ι, σ)

[T-Runtime-Frame]
ν;σ; ∆; Γ ⊢ e : T ′ ⊢ T ′ <: T

ν;σ; ∆; Γ ⊢ JT, eK : T

[T-Runtime-VLoc] ν;σ; ∆; Γ ⊢ τ : typeof(τ, ν)

[T-Runtime-VAssign]
ν;σ; ∆; Γ ⊢ e : T assignable

∆
(T, typeof(τ, ν))

ν;σ; ∆; Γ ⊢ τ = e : T

Figure 9: Expression typing. Boxed parts in conclusions are Fletch artifacts that do not occur in the
actual Dart syntax; boxed premises are treated specially in the proof of message-safety soundness (see
Section 4). The rule [T-Dynamic-Calls] is included in the standard type system and omitted in the
message-safe type system (cf. Section 2.3, requirement 1).

21

ftype(G1, f) = G2

accessor(G1, f) = G2

mtype(G1,m) = G2

accessor(G1,m) = G2

ftype(bound∆(N), f) = G2

implies ∆ ⊢ G1 <: G2

foverride∆(f,N,G1)

mtype(m, bound∆(N)) = (G2) → T2

implies ∆ ⊢ G1 → T1 <: G2 → T2

moverride∆(m,N, (G1) → T1)

Figure 10: Auxiliary definitions. Boxed parts enforce properties required in message-safe programs (cf.
Section 2.3, requirement 2(a)); the standard type system uses assignability instead of subtyping in those
rules.

CT(c) = class c<X ✁ . . .> extends N . . . {F . . . }

ftype([G1/X]N, f) = G2 f 6∈ name(F)

ftype(c<G1>, f) = G2 ftype(dynamic, f) = dynamic

CT(c) = class c<X ✁ . . .> . . . { . . . G2 f ; . . . }

ftype(c<G1>, f) = [G1/X]G2

CT(c) = class c<X ✁ . . .> extends N . . . {. . .M}

mtype([G1/X]N,m) = G2 m 6∈ name(M)

mtype(c<G1>,m) = G2 mtype(dynamic,m) = dynamic

CT(c) = class c<X ✁ . . .> . . . { . . . T m(G2 x) { . . . } }

mtype(c<G1>,m) = [G1/X]((G2) → T)

Figure 11: Lookup definitions.

3.6. Modifications for Full Type Safety

Figure 14 formalizes the additional modifications from Section 2.4 that ensure full
type safety. Note that class subtyping is modified via the typing specificity definition,
and method overriding is modified via the function subtyping definition.

4. Soundness of Message Safety

Soundness is traditionally associated with Milner’s phrase well-typed programs cannot
go wrong [18], but message safety allows for subtype-violation errors (and null pointer
errors), whereas message-not-understood must be ruled out. As usual, the main steps on
the way to a type soundness proof are progress and preservation.

22

∆ ⊢ dynamic OK ∆ ⊢ ⊥ OK ∆ ⊢ void OK ∆ ⊢ Object OK

∆ ⊢ G OK ∆ ⊢ T OK

∆ ⊢ (G) → T OK

X ∈ dom(∆)

∆ ⊢ X OK

CT(c) = class c<X ✁N> extends N {· · · }

∆ ⊢ G <: [G/X]N ∆ ⊢ G OK

∆ ⊢ c<G> OK

Figure 12: Well-formed types.

∆ = X <: N ∆ ⊢ G OK

CT(c) = class c<X ✁N> extendsN {· · · }
foverride∆(f,N,G)

G f OK in c

∆ = X <: N ∆ ⊢ T OK ∆ ⊢ G OK

∅; νbase; ∆; Γbase, x :G, this : c<X> ⊢ e0 : T0

CT(c) = class c<X ✁N> extends N {· · · }
assignable

∆
(T0, T)

moverride∆(m,N, (G) → T)

T m(G x){ return e0; } OK in c

∆ = X <: N ∆ ⊢ N OK ∆ ⊢ N OK

nodup(X) nodup(f) nodup(m) F OK in c M OK in c

class c<X ✁ N> extends N {F M} OK

Figure 13: Typing of classes.

As discussed in Section 2.3 we focus on checked mode execution. The following
lemmas use a relaxed form of the message-safe type system where the boxed premises
(expressing assignability) in Figure 9 are omitted. We thereby avoid the problems with
non-transitivity of assignability, and, perhaps surprisingly, message-safety soundness still
holds in this weakened type system. As a simple corollary, soundness also holds for the
message-safe type system where the assignability premises are present.

The notation σ OK means that every location in the heap σ is well-formed. (Figure 15
shows what it means for an object to be well-formed, and a similar criterion applies for clo-
sures.) The notation σ ⊢ ν OK means that each variable location in ν is mapped to a pair
(G, ι) such that typeof(ι, σ) is a subtype of G. The notation ν;σ ⊢ e ACCEPTABLE_ERROR
means that the configuration 〈ν, σ, e〉 is a subtype-violation or null pointer error (defined
formally in Figure 4).

In the lemmas and the soundness theorem, it suffices to consider only the base en-
vironments, ∆ = ∅ because we are only interested in soundness for complete programs

23

G1 = G2

∆ ⊢ c<G1> ≪ c<G2>

ftype(bound∆(N), f) = G2

implies G1 = G2

foverride∆(f,N,G1)

[Sub-Funf]
∆ ⊢ G2 <: G1 ∆ ⊢ T1 <: T2 or T2 = void

∆ ⊢ (G1) → T1 <: (G2) → T2

Figure 14: Modifications that ensure full type safety. The boxed parts show the changes compared to the
message-safe type system (cf. Figures 6, 7, and 10). In addition, the second rule of Figure 8 is removed.

fields(c<G>) = H f

methods(c<G>) = T m (G′ x){· · · }
∅ ⊢ typeof(ιf , σ) <: H

typeof(ιm, σ) = (G′) → T

ν;σ ⊢ (c<G>, f : G 7→ ιf ,m 7→ ιm) OK

ν;σ; ∅; Γbase ⊢ T (G x) ⇒ e : (G) → T

ν;σ ⊢ T (G x) ⇒ e OK

ν;σ ⊢ onull OK

Figure 15: Well-formed objects.

(CT, e), and Γ = Γbase because free variables (including this) are always substituted
with variable locations during execution (due to rules [E-Call] and [E-New]).

Informally, the progress lemma says that for any well-typed expression in a well-
formed environment, a) the expression is a value, b) evaluation can proceed, or c) eval-
uation is stuck but not due to message-not-understood.

Lemma 4.1 (Progress). If ν;σ; ∅; Γbase ⊢ e : T and σ OK and σ ⊢ ν OK and e, ν, and
σ do not contain dynamic then

a) e is a value (i.e., a heap location) or

b) 〈ν, σ, e〉 −→ 〈ν′, σ′, e′〉 for some ν′, σ′, e′ or

c) ν;σ ⊢ e ACCEPTABLE_ERROR.

24

Proof By induction in the structure of the typing derivation ν;σ; ∅; Γbase ⊢ e : T . We
here show a sketch of two of the cases and refer to the proof in Coq for further details.8

• Rule [T-Read] where ν;σ; ∅; Γbase ⊢ e.p : T : If e is a value ι, since ι.p is well typed
and all the environments are well formed, σ(ι) is an object that has the prop-
erty p, so we can conclude that 〈ν, σ, ι.p〉 −→ 〈ν, σ, ι′〉 for some ι′, corresponding
to condition b. Otherwise, we can apply the induction hypothesis to get either
〈ν, σ, e〉 −→ 〈ν′, σ′, e′〉 or e is an acceptable error configuration, which by congru-
ence gives conditions b and c, respectively. Notice in particular that the evaluation
cannot result in a message-not-understood error.

• Rule [T-Var] where ν;σ; ∅; Γbase ⊢ y : T : Since y type checks in the environment
Γbase, y must be null, so rule [E-Null] applies, hence condition b is satisfied.
(As discussed above, variables x and this have been substituted earlier by rules
[E-Call] and [E-New].) �

The preservation lemma says that performing an execution step for a well-typed
expression of type T in a well-formed environment will preserve well-formedness and
either lead to a expression whose type is a subtype of T or to an acceptable error.

Lemma 4.2 (Preservation). If ν;σ; ∅; Γbase ⊢ e : T and σ OK and σ ⊢ ν OK and
e, ν, and σ do not contain dynamic and σbase ⊆ σ and 〈ν, σ, e〉 −→ 〈ν′, σ′, e′〉 then both
of the following hold:

1) σ′ OK and σ′ ⊢ ν′ OK and e′, ν′, and σ′ do not contain dynamic and σbase ⊆ σ′

and either

2a) ν′;σ′; ∅; Γbase ⊢ e′ : T ′ where ∅ ⊢ T ′ <: T or

2b) ν′;σ′ ⊢ e′ ACCEPTABLE_ERROR.

Proof By induction in the execution derivation 〈ν, σ, e〉 −→ 〈ν′, σ′, e′〉. We briefly show
three cases; again, see the proof in Coq for further details.

• Rule [E-Var-Read] where 〈ν, σ, τ 〉 −→ 〈ν, σ, ι〉: Condition 1 trivially holds, since
the environments do not change during the evaluation of τ . Since the environments
are well formed we have ν(τ) = (G, ι), so the type T of τ is typeof(τ, ν) = G. The
type T ′ of ι is typeof(ι, σ), and σ ⊢ ν OK implies that typeof(ι, σ) is a subtype of
G, so condition 2a holds.

• Rule [E-Var-Write] where 〈ν, σ, τ = ι〉 −→ 〈ν′, σ, ι〉: The rule can only be applied
if typeof(ι, σ) is a subtype of typeof(τ, ν), so the update from ν into ν′ = ν[τ 7→ ι]
preserves environment well-formedness, so condition 1 is satisfied. Condition 2a
holds because τ = ι is well typed with type T , rule [T-Assign] gives that ι has the
same type T , and subtyping is reflexive.

8The proof (http://www.brics.dk/fletch/) contains some unproven (’Admitted’) lemmas, which are
all at the level of what is typically also omitted in non-mechanically-checked proofs. For example, some
of these lemmas involve preservation of environment well-formedness under execution, which is tedious
to prove in Coq but intuitively not surprising and easy to check manually using the formalization in the
paper.

25

• The congruence rule 〈ν, σ, e〉 −→ 〈ν′, σ′, e′〉 ⇒〈ν, σ, e.p〉 −→ 〈ν′, σ′, e′.p〉: Condi-
tion 1 follows directly from the premise of the rule and the induction hypothesis.
Rule [T-Read] gives that e has some type T1 where accessor(bound∆(T1), p) = T .
If e′ is an acceptable error in the environments ν′ and σ′ then by congruence so is
e′.p, corresponding to condition 2b. Otherwise, e′ type checks with some type T2

that is a subtype of T1. If e′ is ιnull then e′.p is not well typed but it is an acceptable
error, corresponding to condition 2b (notice that this case shows why condition 2b
is relevant in the lemma, unlike traditional preservation lemmas). Otherwise, due
to the definitions of foverride and moverride in the message-safety type system
(Figure 10) we have accessor(bound∆(T2), p) = T ′ where T ′ is a subtype of T .
Rule [T-Read] e′.p then has type T ′, meaning that condition 2a holds.

The proof relies on several minor lemmas, such as, reflexivity of subtyping (which is not
defined as a rule for subtyping, but it is derivable), weakening, and lemmas stating that
the environment updates during program execution preserve well-formedness and type
annotations. �

Subexpressions may change type arbitrarily during evaluation (because both upcasts
and downcasts are allowed), so the preservation lemma generally does not hold if the
assignability premises from Figure 9 were included. As an example, consider the exe-
cution step 〈ν, σ, τB = JA, ιCK.f〉 −→ 〈ν, σ, τB = ιC .f〉 (applying a congruence rule and
[E-Return]) in environments where the type of τB is B, the type of ιC is C, the types B
and C are both subtypes of A, C is not assignable to B, and the field f is defined with
type A in the class A and with type C in the class C. The first expression τB = JA, ιCK.f
type checks using rules [T-Runtime-VAssign], [T-Read], and [T-Runtime-Frame], but
after the execution step the expression τB = ιC .f is ill-typed if including the assignabil-
ity constraints, because C is not assignable to B, which is the type of τB . Also, the
configuration after the execution step is not an acceptable error because the right hand
side of the assignment is not a value (see Figure 4). Execution will eventually reach a
subtype-violation error, but in this case one additional execution step is needed.

From the progress and preservation lemmas we can obtain the soundness result: if an
expression e of type T reduces to a normal form e′, then e′ is a value or e′ is stuck at an
acceptable error (that is, not at a message-not-understood). Note that this soundness
result applies to the message-safety type system with the assignability premises (although
we prove it using the lemmas that consider the type system without those premises).

Theorem 4.3 (Message-safety soundness).
If ν;σ; ∅; Γbase ⊢ e : T and σ OK and σ ⊢ ν OK and e, ν, and σ do not contain dynamic

and σbase ⊆ σ and 〈ν, σ, e〉 −→∗ 〈ν′, σ′, e′〉 and e′ is a normal form then

a) e′ is a value or

b) σ′; ν′ ⊢ e′ ACCEPTABLE_ERROR.

Proof We first show the desired property for the weakened form of the type system
without the assignability premises. This property follows by induction in the derivation
sequence 〈ν, σ, e〉 −→∗ 〈ν′, σ′, e′〉, applying lemma 4.1, lemma 4.2, and a minor lemma
showing that all acceptable error configurations are normal forms (i.e. cannot be evalu-
ated further). As a final step, soundness trivially also holds for the stronger type system
where the assignability premises are present. �

26

Perhaps surprisingly, in the message-safety soundness theorem when the resulting
expression e′ is a value, the type of e′ is not always a subtype of T . Recall that rule
[Sub-Funf] (Figure 7) requires subtyping for function return types but only assignability
for function parameters. This means that subtyping is not transitive, even when dynamic

is not used. As an example, we may have an expression of type T1 = (int) → int, which
in one step evaluates to an expression of type T2 = (Object) → int, which in turn
evaluates to an expression of type T3 = (String) → int. We have T3 <: T2 <: T1 but
not T3 <: T1.

The message-safety soundness theorem is only concerned with terminating computa-
tions, but since every configuration that corresponds to a message-not-understood error
is a normal form, it follows trivially that well-typed expressions can never lead to such
an error, even in a non-terminating computation.

The variant with full type safety (Section 3.6) additionally rules out subtype-violation
errors, and applies to both checked and production mode execution. We omit a formal-
ization of this property.

5. Experiments

Although the focus of this paper is on the theoretical development of message safety,
we have performed experiments to assess the impact of our approach for the Dart lan-
guage. These experiments give insight into how existing Dart code violates the message
safety requirements and whether such code is affected by the proposed modification of
function subtyping.

5.1. Violations of Message Safety

We expect that many existing Dart programs are already message safe and that
violations are likely to indicate programming errors. To investigate whether this is cor-
rect, we applied our implementation9 to a range of publicly available Dart codebases:
dart2js, dartanalyzer, Dart SDK, ace.dart, angular.dart, bot.dart, chrome.dart, dark,
DartRocket, episodes.dart, force.dart, GoogleMaps, json.dart, MongoDB, PostgreSQL,
presentation.dart, Protobuf, Redstone, three.dart, XML, DartURL, and SecurityMonkey.
These programs are, not surprisingly, only partly annotated with types, so they contain
many violations of requirement 1 from Section 2.3. More interestingly, we find a small
number of violations of requirements 2(a) (covariant return types for method overriding)
and 2(b) (covariant return types for function subtyping): 17 of the 22 programs satisfy
both requirements, 4 programs contain a total of 62 violations of 2(a) (most of them in
dart2js and Dart SDK), and 2 programs contain a total of 4 violations of 2(b) (in dart2js
and bot.dart). In the following we show some typical cases. In all cases where we propose
a fix to a message safety violation and where a test suite is available, running the test
suite on the modified program confirms that no subtype-violation errors are introduced
by the changes.

9The implementation and all benchmarks are available at
http://www.brics.dk/fletch/.

27

Violations of 2(a) (Method Overriding)

We first describe two warnings among the 62 caused by non-covariant return types
of overriding methods.

Example 1. The following code has been extracted from the file modelx.dart in dart2js
(we highlight the most important parts):

class ElementX extends Element {

AnalyzableElement get analyzableElement {

...

}

}

class CompilationUnitElementX

extends ElementX

implements CompilationUnitElement {

Element get analyzableElement => ...;

}

Our type checker warns that Element is not a subtype of AnalyzableElement, because of
the return type of the overriding method analyzableElement. We have
AnalyzableElement <: Element, which is enough to satisfy the ordinary Dart type
checker, but message safety would require Element <: AnalyzableElement. We can
easily fix this by changing the return type from Element to AnalyzableElement. Many
others warnings follow this pattern, and they clearly indicate design oversight.10

Example 2. The following code has been extracted from stream_controller.dart in
the dart:async library in Dart SDK.

abstract class _StreamImpl<T> extends Stream<T> {

_BufferingStreamSubscription<T> _createSubscription(

void onData(T data),

Function onError,

void onDone(),

bool cancelOnError) {

...

}

}

class _ControllerStream<T> extends _StreamImpl<T> {

StreamSubscription<T> _createSubscription(

void onData(T data),

Function onError,

void onDone(),

bool cancelOnError) =>

_controller._subscribe(onData, onError,

onDone, cancelOnError);

}

10Discussions on the dart2js forum (https://groups.google.com/a/dartlang.org/forum/#!topic/
compiler-dev/DAcnoauqNNQ) confirm this conclusion.

28

At the overriding method _createSubscription, our type checker reports that the re-
turn type StreamSubscription<T> is not a subtype of _BufferingStreamSubscription.
In this case, it may be problematic to specialize the return type of _createSubscription
in the _ControllerStream class to _BufferingStreamSubscription since its method
body might return an instance of StreamSubscription. Instead, it is safe to generalize
the return type in the super-class to StreamSubscription<T>.

Violations of 2(b) (Function Subtyping)

Only 4 warnings are caused by non-covariant function return types. In each case, the
fix is straightforward.

Example 3. The following code appears in dart2js in the file
cps_ir_builder_visitor.dart:

class IrBuilderVisitor extends

ResolvedVisitor<ir.Primitive>

with IrBuilderMixin<ast.Node> {

ir.Primitive visitConditional(ast.Conditional node) {

return irBuilder.buildConditional(

build(node.condition),

subbuild(node.thenExpression),

subbuild(node.elseExpression));

}

}

Our type checker gives two warnings, at the second and third argument of the call to
buildConditional: Both arguments have type IrBuilder→ Node, and the formal pa-
rameters of buildConditionalhave type IrBuilder→ Primitive. Since Primitive <:
Node, the ordinary Dart type checker does not raise any warning, but Node 6<: Primitive,
so requirement 2(b) is violated.

The following code shows the definitions of Primitive, Node, subbuild, and
buildConditional:

typedef ir.Node

SubbuildFunction(

IrBuilder builder);

abstract class IrBuilderMixin<N> {

SubbuildFunction subbuild(N node) {

return (IrBuilder builder) =>

withBuilder(builder, () => build(node));

}

withBuilder(IrBuilder builder, f()) {

assert(builder != null);

IrBuilder prev = _irBuilder;

_irBuilder = builder;

var result = f();

_irBuilder = prev;

return result;

}

ir.Node build(N node) => node != null ?

29

visit(node) : null;

ir.Primitive visit(N node);

}

ir.Primitive buildConditional(

ir.Primitive condition,

ir.Primitive buildThenExpression(IrBuilder builder),

ir.Primitive buildElseExpression(IrBuilder builder)) {

...

}

abstract class Primitive

extends Definition<Primitive> { ... }

abstract class Definition<T extends Definition<T>>

extends Node { ... }

abstract class Node { ... }

The runtime type of the buildConditional arguments (i.e., the return value of subbuild
function) will always be IrBuilder → Primitive, or else a subtype-violation would
occur at runtime during the call to visit. We can safely change the return type of
SubbuildFunction from Node to Primitive. This makes the program fragment message
safe. No new type warnings appear after the change, and running the dart2js test suite
does not break any tests.

Example 4. The following code has been extracted from the file number_enumerable.dart
in bot.dart :

abstract class NumberEnumerable<T extends num>

extends IterableBase<T> {

num max() => this.reduce((num a, num b) =>

math.max(a, b));

num min() => this.reduce((num a, num b) =>

math.min(a, b));

}

abstract class IterableBase<E> implements

Iterable<E> {

E reduce(E combine(E value, E element)) {

Iterator<E> iterator = this.iterator;

if (!iterator.moveNext()) {

throw IterableElementError.noElement();

}

E value = iterator.current;

while (iterator.moveNext()) {

value = combine(value, iterator.current);

}

return value;

}

}

Our type checker reports a warning at the arguments to the two calls to reduce in
NumberEnumerable. The max and min methods call the reduce method, which is im-

30

plemented in IterableBase<E>, with the combine parameter of type (E, E) → E. The
reduce method parameter has type (T, T) → T in NumberEnumerable<T extends num>,
where T <: num, and the type of the actual argument is (num, num) → num, and the
runtime type is (num, num) → num. Since T <: num, but num 6<: T, we have that
(T, T) → T <: (num, num) → num, and (num, num) → num 6<: (T, T) → T so requirement
2(b) is violated. We can remove these warnings by changing the program as follows.

abstract class NumberEnumerable<T extends num>

extends IterableBase<T> {

num max() => this.reduce((T a, T b) =>

(math.max(a, b) as T));

num min() => this.reduce((T a, T b) =>

(math.min(a, b) as T));

}

If the NumberEnumerable is instantiated with T = int, then the max method could then
fail with a cast error (in Dart, casts are written using the as operator). The difference is
that, before the change the program could only fail in checked mode, and after the change
it can in principle also fail in production mode (casts are also checked in production
mode). The change does not introduce any new type warning and causes no failures of
the bot.dart test suite. A more robust solution that does not involve cast operations can
perhaps be obtained if Dart is extended with generic methods, which is already being
considered for a future revision of the language.

5.2. Modifying Function Subtyping

As explained in Section 3.4, obtaining message safety guarantees in Dart requires not
only modifying the static type system but also, which is more controversial, adjusting
the rule for function subtyping (Figure 7) in checked mode runtime execution. The
Dart language designers have confirmed that the consequences of the rule for function
subtyping in the current language standard were not intended [19].

To demonstrate the need for the change, consider the following program:

class A {}

class B extends A { Object b; }

typedef A FA();

typedef B FB();

class C<X, Y extends X> {

Y downcast(X x) { return x; }

}

A foo() => new A();

void main() {

FA fa = foo;

FB fb = new C<FA, FB>().downcast(fa);

fb().b;

}

The downcast function implicitly performs a downcast from FA to FB without directly
comparing function types. The program is type correct according to the message-safe

31

type system, but it will fail in checked mode execution (as defined by the Dart specifi-
cation, that is, with bivariant input function subtyping) during the fb().b field access,
since the runtime type of fb() will be A that does not provide the b field. By restricting
the checked mode subtyping relation as suggested in Section 3.4, the program will fail
at runtime at the assignment to fb since the result of the downcast invocation has type
() → A that is not a subtype of () → B. The essence of the problem with the original
semantics is that the type annotation FB of fb cannot be trusted. Changing the rule
for function subtyping only statically, and not also in the runtime semantics, would not
solve the problem, because type checking the downcast function does not use function
subtyping. Of course, the error could also be caught statically by disallowing implicit
downcasts entirely in the static type system, but that would result in a large number of
spurious type warnings.

Now, the question is how to implement the proposed change and whether it will affect
existing Dart code. For the first part, we find that the change requires only one new
line of code in the Dart virtual machine and only one new line of code in the compiler
runtime environment, with no measurable effect on the running time of either. For the
second part, we tested if the change affects the dart2js compiler, which is presumably
among the most complex Dart programs that exist. More specifically, we performed the
following experiment using the co19 compiler test suite, which consists of 10 264 tests.
We exercised the dart2js compiler by running co19 on the modified virtual machine. If
correctness of dart2js had relied on the original function subtyping rule, this would likely
have caused some of the tests to fail. Nevertheless, even with such a complex program
and an extensive test suite, not a single test case is affected.

Running the virtual machine test suite on the modified virtual machine resulted in 13
“failed” test cases, all related to subtyping of functions, which shows that the test suite
is sufficiently extensive to detect the changed semantics and indicates that the change
has no unforeseen consequences.

We have presented these results to the Dart language designers who now consider the
proposal for an upcoming revision of the language standard.

6. Related Work

The variant of Featherweight Java by Mackay et al. [17] specifies a core of Java with
mutable references. We have used that formalization as an inspiration for the overall
approach in the creation of our Coq formalization of Fletch. Many parts are very different,
however. In particular, we model first-class closures and unlimited lexical nesting. Access
to mutable state in enclosing scopes is supported, and it uses a notion of an execution log
rather than a traditional stack. The Dart approach to variance is very different from the
approach taken in Java, but in the report [17] there is no notion of variance so we have
added covariant generics to the model. Finally, our core conceptual contribution, message
safety, puts the focus on the value of a consistent nominal commitment to lookup in a
gradual typing context, and there is nothing similar in the report [17] or in the original
work on Featherweight Java [15].

In R4RS [6] there is a dynamic semantics where lambda parameters are mapped
to locations, which makes it possible to model mutable parameters in lexically nested
scopes. Our approach differs from this in that we use substitution to make multiple
usages of the same parameter distinct, and we use an ever-growing log to ensure that the

32

lifetime of each parameter extends beyond the termination of the invocation that created
it. We believe that these two models can be transformed into each other, but note that
our model fits rather well in an object-oriented context because it corresponds closely to
an implementation where stack frames are allocated in the heap (we just abstain from
modeling garbage collection).

Many papers present approaches to typing that allow for more flexibility than full
type safety. We briefly present the most influential ones and the relations to our work.

An early approach which aims to reconcile the flexibility of dynamic typing with the
safety of static typing is soft typing [5, 27]. The basic idea is that an expression whose
type does not satisfy the requirements by the context is wrapped in a type cast, thus
turning the static type error into a dynamic check. The Dart concept of assignability
makes the same effect a built-in property of the dynamic semantics.

Strongtalk [4] is an early system with a similar goal, supporting very expressive (but
not statically decidable) type specifications for Smalltalk. The Dart type system may
have inherited the trait of being optional from there.

Pluggable type systems [3] are optional type systems that may be used with its target
language as needed. The Dart language has been designed to enable the use of pluggable
type systems11, e.g., by insisting that the dynamic semantics does not depend on type
annotations (except for checked mode errors). This allows for a separate, strict type
checker, and it also prepares the ground for the use of a message-safety checker.

Hybrid typing [13] combines static type checking with dynamic checking of type re-
finements based on predicates (boolean expressions). Of special interest is the potential
for statically deciding some predicate based relations (e.g., the implication p1 ⇒ p2),
thus surpassing the static guarantees of traditional type safety. Given that this is con-
cerned with strict static typing enhanced with dynamic predicates, there is little overlap
with Dart typing.

Gradual typing [21] uses conventional type annotations extended with ‘?’, which cor-
responds to the Dart dynamic type. It builds on Ob<: [1] (i.e., it uses structural type
equivalence and does not include recursive types), and hence the foundations differ sub-
stantially from Fletch. Their notion of type consistency does not have a corresponding
concept in Fletch nor in Dart, but is replaced by our inclusion of dynamic in the subtype
rules.

Contracts may contain executable code, thus checking of a contract may involve
arbitrary computation (and hence, no static checking) in Scheme [8, 23], with a special
emphasis on tracking blame for first-class functions that only reveal typing violations
when invoked. Neither Fletch nor Dart supports blame tracking, but it is not needed
because the type of first-class functions can be checked when they are passed as an
argument or assigned to a variable (by construction, they carry tags specifying the type).

Like types [28] were introduced recently, where usage of a like typed variable is checked
statically, but it is checked dynamically that the value of such a variable actually supports
the operations applied to it. It could be claimed that the point of the work on like types
is to support structural typing to some extent, and no such support is present in Dart—
checked mode checks will fail for an assignment to an unrelated type, no matter whether
the object in question would be able to respond to the messages actually sent.

11https://www.dartlang.org/slides/2011/11/stanford/dart-a-walk-on-the-dart-side.pdf

33

The notion of type specificity in Dart is somewhat similar to the notion of naive
subtyping used by Wadler and Findler [24] and by Siek and Wadler [22]. However, they
differ in that Dart specificity is concerned with generic classes whereas those papers are
concerned with function types, and Dart uses a different (and more permissive) rule for
function types. Even the slightly more restrictive rule that we propose for Dart is still
more permissive than naive subtyping in those papers.

Another recent paper presents progressive types [20], letting programmers tune the
typing to allow or prevent certain kinds of runtime errors. Our work is similar in the
sense that it enables programmers to rule out one kind of runtime type errors (message-
not-understood) and allow another (subtype-violation), but it differs because we start
from a type system that is unsound, whereas a progressive type system with an empty
Ω is a fully type safe system.

Finally, TypeScript [2] enables optional type annotations in JavaScript programs.
Using structural types and coinductive subtype rules, the foundations differ substantially
from Dart and Fletch. Moreover, TypeScript does not have a notion of checked mode
execution.

All of these approaches aim to give various trade-offs between dynamic and static
typing. However, none of them present a specific intermediate level of typing strictness
similar to our notion of message-safe programs. Moreover, we believe our work is the
first formalization of the core of Dart.

Success typing is a way to design complete but unsound type systems [16], that is,
type systems where a statically detected type error corresponds to a problem in the code
that definitely causes a runtime error if reached; the ‘normal’ is the converse, namely
soundness, where programs with no static type errors will definitely not raise a type error
at runtime. The point is that a complete (but unsound) type systems will avoid annoying
programmers with a large number of unnecessary static type errors, and just focus on
certain points that are genuinely problematic. The notion of related types [26] has a
similar goal and approach, detecting useless code, such as if-statements that always
choose the same branch, because the test could never (usefully) evaluate to true. The
use of message-safe programs resembles a complete type system, but it is not identical: It
is certainly possible to write a program that produces static type warnings in Dart which
will run without type errors (so the typing is both unsound and incomplete), but the
fact that message-safe programs prevent message-not-understood errors offers a different
kind of guarantee that success typing does not.

7. Conclusion

We have introduced Fletch as a core of the Dart programming language to expose the
central aspects of its type system. Moreover, we have proposed the notion of message-safe
programs as a natural intermediate point between dynamically typed and statically typed
Dart programs. Based on Fletch we have expressed appropriate progress and preservation
lemmas and a type soundness theorem, which demonstrates the fundamental property
that message-safe programs never encounter message-not-understood errors.

This result provides new insights into the design space between dynamic and static
typing. At this point, the theoretical foundation of message safety has been established.
In future work we plan to explore experimentally how tool support can guide Dart pro-
grammers toward type safe programs via message-safe programs. Also, we believe Fletch

34

and our formalization may be useful in further studies of Dart and related programming
languages.

Acknowledgments. We appreciate the comments and suggestions from Gianluca Mezzetti,
Thomas Heinze, and the anonymous reviewers. This work was supported by the Danish
Research Council for Technology and Production, by Google Faculty Research Award
grants, and by the European Research Council (ERC) under the European Unions’s
Horizon 2020 research and innovation program (grant agreement No 647544).

References

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
[2] G. Bierman, M. Abadi, and M. Torgersen. Understanding TypeScript. In Object-Oriented Pro-

gramming - 28th European Conference (ECOOP), pages 257–281, 2014.
[3] G. Bracha. Pluggable type systems. In OOPSLA Workshop on Revival of Dynamic Languages,

2004.
[4] G. Bracha and D. Griswold. Strongtalk: Typechecking Smalltalk in a production environment. In

Proc. Conference on Object-Oriented Programming Systems, Languages, and Applications (OOP-
SLA), pages 215–230, 1993.

[5] R. Cartwright and M. Fagan. Soft typing. In Proc. ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 278–292, 1991.

[6] W. Clinger and J. Rees. Revised4 report on the algorithmic language Scheme. SIGPLAN Lisp
Pointers, IV(3):1–55, July 1991.

[7] W. R. Cook. A proposal for making eiffel type-safe. In Proc. 3rd European Conference on Object-
Oriented Programming, pages 57–70, 1989.

[8] C. Dimoulas, R. B. Findler, C. Flanagan, and M. Felleisen. Correct blame for contracts: no more
scapegoating. In Proc. 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 215–226, 2011.

[9] Ecma International. C# Language Specification, ECMA-334, June 2006.
[10] Ecma International. ECMAScript Language Specification, ECMA-262, June 2011.
[11] Ecma International. Dart Programming Language Specification, ECMA-408, December 2014.
[12] E. Ernst, A. Møller, M. Schwarz, and F. Strocco. Message safety in Dart. In Proc. 11th Dynamic

Languages Symposium (DLS), October 2015.
[13] C. Flanagan. Hybrid type checking. In Proc. 33rd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (POPL), pages 245–256, 2006.
[14] J. Gosling, B. Joy, G. L. Steele Jr., G. Bracha, and A. Buckley. The Java Language Specification,

Java SE 7 Edition. Addison-Wesley Professional, 2013.
[15] A. Igarashi, B. C. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java

and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, May 2001.
[16] T. Lindahl and K. F. Sagonas. Practical type inference based on success typings. In Proc. 8th

International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming
(PPDP), pages 167–178, 2006.

[17] J. Mackay, H. Mehnert, A. Potanin, L. Groves, and N. Cameron. Encoding Featherweight Java with
assignment and immutability using the Coq proof assistant. Technical report, Victoria University
of Wellington, 2012.

[18] R. Milner. A theory of type polymorphism in programming. J. Comput. Syst. Sci., 17(3):348–375,
1978.

[19] Personal communication with Gilad Bracha and the Dart team at Google, 2015.
[20] J. G. Politz, H. Q. la Vallee, and S. Krishnamurthi. Progressive types. In ACM Symposium on

New Ideas in Programming and Reflections on Software (Onward!), pages 55–66, 2012.
[21] J. G. Siek and W. Taha. Gradual typing for objects. In Object-Oriented Programming, 21st

European Conference (ECOOP), pages 2–27, 2007.
[22] J. G. Siek and P. Wadler. Threesomes, with and without blame. In Proceedings of the 37th Annual

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’10, pages
365–376, New York, NY, USA, 2010. ACM.

35

[23] S. Tobin-Hochstadt and M. Felleisen. The design and implementation of Typed Scheme. In Proc.
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
pages 395–406, 2008.

[24] P. Wadler and R. B. Findler. Well-typed programs can’t be blamed. In Proc. Programming Lan-
guages and Systems, 18th European Symposium on Programming (ESOP), pages 1–16, 2009.

[25] K. Walrath and S. Ladd. dart: The Standalone VM. Google, June 2014. https://www.dartlang.
org/docs/dart-up-and-running/contents/ch04-tools-dart-vm.html.

[26] J. Winther and M. I. Schwartzbach. Related types. In Object-Oriented Programming - 25th Euro-
pean Conference (ECOOP), pages 434–458, 2011.

[27] A. K. Wright and R. Cartwright. A practical soft type system for Scheme. ACM Trans. Program.
Lang. Syst., 19(1):87–152, 1997.

[28] T. Wrigstad, F. Z. Nardelli, S. Lebresne, J. Östlund, and J. Vitek. Integrating typed and untyped
code in a scripting language. In Proc. 37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL), pages 377–388, 2010.

36

