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Abstract

This thesis examines the possibility of further optimizing the code

generated by the industrial strength Standard ML compiler MLton.

By studying the code generated by the compiler we identify dead

code and propose two analyses that will detect and remove this dead

code. The �rst improvement will remove general dead exceptions

handlers and the second will remove over�ow checks on integer arith-

metic where over�ow cannot happen. We extract a BNF of the Static

Single-Assignment form used internally in MLton and use this BNF

to formulate two analyses by use of constraint rules. The �rst anal-

ysis collects sets of exception constructors possibly represented by

each variable and the second is a �ow-sensitive integer interval anal-

ysis. Both analyses are implemented in Standard ML and integrated

into the MLton compiler as additional optimization passes. Whereas

the �rst analysis is unsuccessful in optimizing real-world programs,

the second analysis is able to remove 22% of the over�ow checks in

the MLton benchmark suite. The binary size of the programs are

decreased overall (0%-10%) and the run time of arithmetic heavy

programs are decreased signi�cantly - in some cases up to 27%.
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Chapter 1

Introduction

1.1 De�nition of problem

Program optimization is an important aspect of a compiler. The Standard
ML compiler MLton is a whole program optimizing compiler that focuses on
generating fast and small binary executables. This thesis explores the pos-
sibility of performing even better optimizations in the MLton compiler by
identifying and removing dead code induced by unused exception handlers.

Our thesis is twofold: that MLton, the industrial strength compiler de-
veloped over the last 14 years, does not produce optimal code regarding
exception handlers, and that we are able to identify and remove dead ex-
ception handlers using standard static analysis tools.

By using static analysis we expect to identify and remove unused excep-
tion handlers in real-world programs and thereby reduce the size and run
time of the generated binaries.

1.2 Method and overview

The method we will use to identify the dead exception handlers is manual
inspection. By studying the intermediate static single-assignment (SSA)
code generated by the MLton compiler we are able to identify dead excep-
tion handlers that can be removed. One aspect is to detect the dead code
by manual inspection another aspect is providing the compiler with enough
information to detect the dead code as well. We explore what information
the compiler needs and how it can use this information to detect and remove
the dead code.

The thesis is split into two di�erent analyses; the �rst analysis explores
the possibility of detecting general exception handlers that will not be taken.

1



2 CHAPTER 1. INTRODUCTION

By removing handlers for exceptions that are not thrown the resulting bi-
naries are expected to decrease in size. The second analysis is based on a
thorough study of the intermediate SSA code of real-world programs where
a key observation is made; by tracking the possible integer values for each
variable in a �ow-sensitive analysis the compiler will be able to remove
over�ow checks on integer arithmetic at compile time. The Standard ML
speci�cation [Milner et al., 1997] requires all integer arithmetic to check for
over�ow and act accordingly, so this is the default behavior in the SSA code.
By not checking for over�ow where we know it cannot occur we can reduce
the size of the binaries and hopefully reduce the run time of arithmetic
heavy Standard ML code and still adhere to the speci�cation.

Each improvement starts with a couple of examples that show some dead
code and discusses how this might be detected by the compiler. After the
examples we introduce a formal notation for capturing the behavior of the
needed analysis leading to an actual implementation. The implementation
is done in Standard ML and integrated into the existing MLton compiler
as additional optimization phases. The focus of the implementation is to
measure how well the analysis is at detecting and removing dead code. The
success criteria is the e�ect it has on the resulting binaries regarding size
and run time.

The �rst chapter after the introduction gives an overview of the MLton
compiler and the intermediate language in SSA form we are working with.
This chapter also introduces a BNF of the SSA intermediate language that
will be used throughout the rest of the thesis. Chapter three presents the
�rst improvement starting with examples followed by a description of an
existing analysis that will be expanded on. The transformation that the
compiler will perform based on the collected information is then discussed
together with a description of the actual implementation. Lastly the im-
provement is benchmarked and we discuss how well the improvement works
and how it relates to our hypotheses.

The fourth chapter presents the second improvement with a structure
almost identical to the �rst improvement. The report ends with a chapter
covering related work in both exception analysis and interval analysis. We
will conclude on the �ndings of this thesis and discuss the results obtained
from the experiments.



Chapter 2

The MLton compiler

MLton is an open-source, whole-program, optimizing

Standard ML compiler1

During the compilation of ML programs several intermediate languages are
used internally by the MLton compiler. These languages primarily serve
as steps in the translation from ML source code to machine code where
each translation performs one or more transformations on the code from
the previous layer. An overview of the MLton compiler is shown in �gure
2.1, where each of the boxes is an intermediate language and the arrows
between them are the translations.

The input to the compiler is the ML source code where MLLex and
MLYacc are used for lexing and parsing, respectively, resulting in an abstract
syntax tree (AST). On the AST the elaborate pass performs type inference
and type checking and then defunctorization eliminates all module-level
constructs giving a higher-order, polymorphic language with nested case-
patterns called CoreML.

The CoreML language is then translated into an explicitly-typed lan-
guage called XML (eXplicitly-typed ML) by annotating each expression
with its type. This translation also performs match compilation which
�attens case-patterns and adds default cases to make a match exhaustive.
Furthermore this pass lifts all datatype declarations to the top level.

XML is then translated into a simply-typed language called SXML.
This is done by monomorphisation that removes all uses of polymorphism
by duplicating each polymorphic value and datatype declaration for each
type it is used with. Higher-order functions are then removed by using

1http://mlton.org

3



4 CHAPTER 2. THE MLTON COMPILER

closure conversion (defunctionalization) on the SXML code resulting in a
simply-typed, �rst-order language called SSA (Static Single-Assignment).

From SSA the code is translated three times before ending as machine
code. These translations are not described here since they are on a lower
level and deal with register allocation, stack-sizes, etc.

Source AST CoreML

XML SXML SSA

SSA2 RSSA Machine

Lexing &

parsing
Elaborate &

defunctorize

Monomorphise
Closure

conversion

ToRSSA ToMachine

Match compilation & datatype lifting

ToSSA2

Figure 2.1: MLton compiler overview.

The di�erent properties of the intermediate languages make some static
analyses easier on one intermediate language than others. One of the �rst
analyses performed is type checking since the translations later in the pro-
cess are de�ned on well-typed programs only. Each intermediate step has
one or more optimization passes that are performed before further transla-
tion is performed.

As described, one of the translation steps of the compiler is a closure
conversion with defunctionalization that produces code in SSA form. This
intermediate form is interesting since it allows for easy optimization and it
is here that the MLton compiler performs most of the optimizations.
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2.1 Static Single-Assignment form

De�nition 1. In static single-assignment form a variable has only one
de�nition in the program text.

SSA form is a common intermediate representation used for optimization
in modern compilers [Appel, 1998, chap. 19]. As the single-assignment part
of the name suggests, each variable has only one assignment/de�nition in
the program text. The static part emphasizes that the single-assignment
part is a static property and not a dynamic one since an assignment can be
placed in a function that is called several times.

Data�ow analysis is made easier when each variable is reduced to a sin-
gle let-binding that dominates its uses. Furthermore the space required to
represent a def-use chain data structure is linear in the size of the program
in most real-world applications[Appel, 1998, page 427].

A simpli�ed grammar for the SSA form in MLton is shown in �gure 2.2.
The simpli�cation consists of removing constructs that are not relevant for
our purposes.

A program in SSA form in MLton consists of 3 major parts; collections of
datatype declarations, global statements, and functions. One of the functions
is explicitly marked as a "main" function and is the entry for the executable
binary. Each function consists of a number of basic blocks that each consists
of a number of statements ending with a control transfer.

An interesting observation is that arithmetic occurs in a construct with
an explicit Overflow handler attached and that the exception is implicitly
raised by the primitive arithmetic operations. Since the construct that per-
forms possibly over�owing arithmetic is a control transfer the control-�ow
on the primitive Overflow is explicit. The handler for the exception will
then explicitly raise the Overflow exception with the raise control trans-
fer. Another way to perform arithmetic in SSA is to use primitive function
de�nitions that take the operands as parameter and returns the result of
the calculation.

As described in the compilation process of MLton and shown in the
BNF many of the higher-level constructs in ML have been eliminated at
this point in the compilation, e.g., polymorphic values and datatype dec-
larations, higher-order functions, structures, functors. This makes SSA a
relatively simple intermediate language that is simply-typed and �rst-order
with complete type information on variables and functions.
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Program P ::= D∗ F ∗

Function F ::= fun f(x∗) = l() B∗

Block B ::= l(x∗) S

Block statements S ::= D S

| return x

| raise x

| f(V ∗) NonTail {cont=l,handler=H}

| f(V ∗) Tail

| l(V ∗)

| l(A) Overflow => l

| case x of (V => l)∗ | _ => l

De�nition D ::= x← V | x← p(x∗) | x← c(x∗)

Arithmetic A ::= x op x

Handler H ::= l | Caller
Value V ::= x | v

where x ∈ variables, v ∈ literal value

l ∈ labels, p ∈ primitive function

c ∈ datatype constructor, f ∈ function label

op ∈ {+,−, ∗, /}

Figure 2.2: Simpli�ed BNF of the SSA form in MLton.

To give an example of the generated SSA code in MLton we translate the
simple program in Standard ML that calculates Fibonacci numbers in listing
2.1. This simple example uses recursion, pattern matching, and has some
simple integer arithmetic. A reachable call to the fib function is omitted
from the SML example but is necessary when compiling with MLton or else
fib will be marked as unused and removed by an optimization pass.

fun fib 0 = 0

| fib 1 = 1

| fib n = fib(n-1) + fib(n-2)

Listing 2.1: Fibonacci in SML

Compiling the code above with MLton and saving the intermediate SSA
output produces the snippet in listing 2.2 (the comments are mine).
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fun fib_0 (x_1219: word32): = L_1408 ()

L_1408 ()

case x_1219 of (* pattern match on arg *)

0x0 => L_4218 | 0x1 => L_4217 | _ => L_1409

L_4218 ()

return global_2

L_4217 ()

return global_1

L_1409 () (* third case *)

L_1411 (x_1219 - global_1) Overflow => L_4216 ()

L_4216 ()

raise (global_28)

L_1411 (x_1220: word32) (* first rec call *)

fib_0 (x_1220) NonTail {cont = L_1413 , handler =

Caller}

L_1413 (x_1221: word32)

L_1415 (x_1219 - global_5) Overflow => L_4216 ()

L_1415 (x_1222: word32) (* second rec call *)

fib_0 (x_1222) NonTail {cont = L_1417 , handler =

Caller}

L_1417 (x_1223: word32)

L_4047 (x_1221 + x_1223) Overflow => L_4216 ()

L_4047 (x_1224: word32)

return x_1224

Listing 2.2: Fibonacci snippet in SSA

This is only a snippet of the SSA output. Since MLton is a whole-
program compiler pieces of the standard library that has not been optimized
away are included in the output together with a designated main function
that calls fib_0.

In the SSA code above there are no explicit assignments of variables but
there is some implicit value-�ow to the formal parameters of blocks, e.g.,
the return value from the non-tail call to fib_0 in block L_1415 is bound
to the parameter of the continuation block (L_1417) called x_1223.

It should also be noted that the arithmetic performed in the transfers
of the blocks L_1409, L_1413, and L_1417 use the Overflow handler called
L_4216 that simply raises the variable global_28 which is de�ned as the
explicit Overflow exception.

The control-transfers in the basic blocks represents the control-�ow
graph of the program and the optimizations performed in the SSA phase
use this information.





Chapter 3

First improvement

In this chapter we study a �rst example that the existing analyses of MLton
cannot optimize and we discuss an existing analysis that can be extended
to handle this example as well.

First we describe a situation where some dead code exists at compile
time. We give some examples of SSA code containing obvious dead code
and discuss what information is required to detect it. Next we describe
an existing analysis operating on SSA code and discuss how to extend this
analysis with some additional information that enables detection of the dead
code from the example.

With this information we are able to perform some program simpli�-
cations which is the goal of the analysis. After the transformations we
describe the implementation of the improvement as an optimization pass
and how it �ts together with the existing analysis. The analysis is then
run on the examples given and the MLton benchmark suite and the results
are compared to those without the improved analysis regarding binary size,
compile time, and run time.

3.1 Examples

This �rst improvement is mostly based on an arti�cial example. The im-
provement is relatively simple so it is included and evaluated upon later in
this chapter.

The following is a simple SML program that is a small variation of list-
ing 2.1 in chapter 2 that the MLton compiler is able to optimize:

9



10 CHAPTER 3. FIRST IMPROVEMENT

exception E1

fun fib 0 = 0

| fib 1 = 1

| fib n = fib(n-1) + fib(n-2)

val k = (fib 42) handle E1 => (print "error"; 0)

Listing 3.1: Exception example 1

After the optimizations in the SSA phase of the compiler there are no
traces left of the exception E1 since it is never used. This example illustrates
how unused exceptions are removed after they have been marked as unused
by one of the optimizations.

If we extend this example with an additional exception we are able to
�nd a case where the compiler does not remove a handler that cannot be
�red:

1exception E1

2exception E2

4fun fib1 ~1 = raise E1

5| fib1 0 = 0

6| fib1 1 = 1

7| fib1 n = fib1(n-1) + fib1(n-2)

9fun fib2 ~1 = raise E2

10| fib2 0 = 0

11| fib2 1 = 1

12| fib2 n = fib2(n-1) + fib2(n-2)

14val l = (fib1 42) handle E1 => 0

15val k = (fib2 42) handle E1 => (print "E2"; 0)

Listing 3.2: Exception example 2

This example contains two functions that each can raise a di�erent ex-
ception. If one function is called with a handler for the exception of the
other function the handler is not removed. Although this example is arti�-
cial it will be a straight forward analysis to catch this case. Benchmarks will
then be able to tell if this scenario actually occurs in real-world programs
and if it has an impact on the binary size of the programs compiled with
MLton.



3.1. EXAMPLES 11

In the SSA form in MLton all exceptions are constructors of the same
datatype called exn. The earlier type checking phase guarantees that vari-
ables that are raised with the raise keyword have the type exn. This is
not directly stated in the BNF in the production for the raise transfer, so
we instead write:

S ::= . . . | raise x | . . . , where x : exn

This is understood as the raise transfer can raise a variable x that has
the type exn. The type rule is implicit in the BNF. This means that there
cannot be any constructor call in a raise statement, so the exception that
is raised has already been constructed and bound to a variable in a single
assignment.

To understand how handlers work in SSA form in MLton we have trans-
lated the SML example from listing 3.2 and saved the intermediate SSA
output. It is the handler in the call on line 15 that we wish to detect as
dead and eliminate since fib2 cannot raise the E1 exception.

The call to fib2 on line 15 in listing 3.2 is translated to the following
SSA code:

L_131 ()

fib2_0 (global_173) NonTail {cont = L_132 , handler =

Handle L_133}

Listing 3.3: Call to fib2 in SSA

The handler for this call is the label called L_133 and the code for that
label in SSA form is:

L_133 (x_185: exn)

case x_185 of

E1_0 => L_143 | _ => L_144

Listing 3.4: Handler to the fib2 call

We see here that the handler is a case transfer where the single parameter
is deconstructed and matched against the E1_0 constructor that corresponds
to the E1 exception from the example. The default case points to L_144

which is the road to the top-level handler.

If we can guarantee that the variable x_185 can never contain exception
values constructed with E1_0 we can remove the corresponding case and
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only the default case will remain. Simpli�cations to the program that this
analysis can enable are described in a later section.

To make that guarantee about x_185 we take a look at the fib2_0

function in SSA form:

1fun fib2_0 (x_412: word32) = L_288 ()

2L_288 ()

3case x_412 of

40xFFFFFFFF => L_291 | 0x1 => L_290 | 0x0 => L_289

| _ => L_292

5L_291 ()

6raise (global_409)

7L_290 ()

8return global_15

9L_289 ()

10return global_14

11L_292 ()

12L_293 (x_412 - global_15) Overflow => L_294 ()

13L_294 ()

14raise (global_16)

15L_293 (x_413: word32)

16fib2_0 (x_413) NonTail {cont = L_295 , handler =

Caller}

17L_295 (x_414: word32)

18L_296 (x_412 - global_18) Overflow => L_294 ()

19L_296 (x_415: word32)

20fib2_0 (x_415) NonTail {cont = L_297 , handler =

Caller}

21L_297 (x_416: word32)

22L_298 (x_414 + x_416) Overflow => L_294 ()

23L_298 (x_417: word32)

24return x_417

Listing 3.5: The fib2 function in SSA

By enumerating all the raise transfers in the fib2_0 function we see that
it has the possibility of raising the variables global_409 and global_16 on
lines 6 and 14, respectively. By de�nition 1 the values of the two global
variables are never changed from their de�nition and they are de�ned as
follows:

global_16: exn = Overflow_0 ()

global_409: exn = E2_0 ()

Listing 3.6: The two relevant global de�nitions
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These are constructor application de�nitions. One is the Overflow ex-
ception that is raised explicitly after an over�ow occurs in a arithmetic
transfer and the other is the expected E2 exception. If we can make the anal-
ysis aware that the variables that can be raised from the function fib2_0

contains the two globals we can use this information to transform the pro-
gram. These transformations will be described after an improvement to an
existing analysis has been formulated.

3.2 Existing analysis

The MLton compiler has 18 di�erent optimization passes on the SSA form.
These range from constant propagation over inlining to tail-call optimiza-
tion. Also included in these optimizations are dead code elimination in
various forms. Dead code elimination is a necessity in a whole program
compiler since the standard library is simply appended to the code to be
compiled and it is rarely the case that all of the standard library is used
and therefore some of it can be eliminated.

Most of the rough dead code elimination has been done once the compiler
reaches the SSA optimization pass so the dead code elimination performed
here is either to remove unused code left behind by the other optimizations
or to utilize the properties of the SSA form to perform more sophisticated
dead code elimination.

One of the optimization passes on the SSA form is called RemoveUnused

and its purpose is to mark constructs in the code as either used or unused
and subsequently remove those that are marked unused. This optimization
will obviously have to be conservative but also aggressive with the goal of
reducing the resulting binary in size.

To understand this analysis better, we formulate it as extendable con-
straints that encapsulate its behavior. The implementation of the analysis
will also be described brie�y to give an understanding of the algorithm used
to move the data �ow from the constraints around.

3.2.1 Constraints

In this section we describe the data �ow constraints that the existing anal-
ysis, RemoveUnused, generates. First we de�ne lattices that are used to
model the information we associate to the di�erent constructs in the pro-
gram, e.g., variables and functions.

We de�ne a lattice V that associates each variable Var in the program
to either the value used or unused :
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V : Var → {used , unused}

This function lattice relates variables to a simple two point lattice that
models if a variable is used in the program or not. The set has a partial
ordering where unused v unused v used v used and the functions are
ordered pointwise. The de�nition of a variable being used will be given
in the constraints shortly. Initially the analysis marks all variables in the
program as unused .

Next we have two di�erent names for the same lattice structure that
associates SSA functions F to powersets of variables:

Frai : F → ℘(Var)

Fret : F → ℘(Var)

The sets of variables are ordered by inclusion. Frai and Fret are ordered
pointwise. The names Frai and Fret corresponds to the variables that can
be raised or returned, respectively, by a given function. For each function
in the program the variables that can be raised and returned from that
particular function are modeled by these lattices.

The constraints that model the �ow of the program are written in a
form where a premise is above the line and the constraints to be generated
if the premise is ful�lled is below the line. The constraints are not generated
and solved but rather used as a tool to formally express the behavior of the
analysis. The constraints can be extended to capture the behavior of the
improvements that will be introduced later. The data �ow is expressed
with the constraints but the implementation of this data �ow does not use
constraints directly.

To be able to distinguish between label/function de�nitions and calls in
the BNF the following convention is used: When a label/function de�nition
is mentioned it has capital letter parameters, e.g., l(X1, ..., Xn), and calls
have lower case letters as parameters, e.g., l(x1, ..., xn).

The �rst constraint is for the Goto construct:

l(X1, ..., Xn) ∈ P l(x1, ..., xn) ∈ P

V [[x1, ..., xn]] v V [[X1, ..., Xn]]
Goto

This rule is read as follows: If a label l exists in the program as a label
de�nition with the formal parameters X1, ..., Xn and a call to the same label
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l exists in the program as a call with the actual parameters x1, ..., xn then
information �ows in the V lattice from the actual parameters to the formal
parameters.

Two more rules for control transfers are the return and raise rules. These
rules are almost identical except they use di�erent lattices to carry infor-
mation.

(return x) ∈ P func(return x) = f

Fret[[f]] ⊇ {x}
Return

(raise x) ∈ P func(raise x) = f

Frai[[f]] ⊇ {x}
Raise

Both these rules use a helper function called func that is used to name
the SSA function in which a statement exist. The signature of this function
is B → F , so it takes a block statement and returns a function. The
resulting function is only used for its name.

The return and raise rules speci�es that the Fret and Frai lattices at
least include the variables that are returned or raised, respectively. This
information is then used in the following non-tail call rule where the handler
is another label in the program:

f(X1, ..., Xn) ∈ P l′(Xr) ∈ P l′′(Xh) ∈ P
(f(x1, ..., xn) NonTail {cont=l′,handler=l′′}) ∈ P

Fret[[f]] = {r1, ..., rm} Frai[[f]] = {h1, ..., hk}
V [[x1, ..., xn]] v V [[X1, ..., Xn]]
V [[r1]] t ... t V [[rm]] v V [[Xr]]
V [[h1]] t ... t V [[hk]] v V [[Xh]]

NonTail call - label

The above rule for non-tail calls is more complex since it has to deal
with continuation and exception �ow. Like the goto rule information �ows
from the actual parameters of the call to the formal parameters of the called
function. Next a join of all the possible returned variables from the called
function �ows into the parameter of the continuation label. Similarly with
the raised variables, a join of all the possible raised variables from the called
function �ows into the parameter of the handler label. There are two other
productions of calls in the BNF and these are tail-calls and non-tail-calls
where the handler is the calling function. The rule for the Caller handler:
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f(X1, ..., Xn) ∈ P l′(Xr) ∈ P
(f(x1, ..., xn) NonTail {cont=l′,handler=Caller}) = S

S ∈ P func(S) = f′ Fret[[f]] = {r1, ..., rm}
V [[x1, ..., xn]] v V [[X1, ..., Xn]]
V [[r1]] t ... t V [[rm]] v V [[Xr]]

Frai[[f
′]] ⊇ Frai[[f]]

NonTail call - caller

The di�erence here is that the variables raised by the called function
do not �ow to the argument of a handler but instead to the set of raised
variables for the function the call is in. This is the same way the non-tail
call rule works but here the returned variables are handled the same way:

f(X1, ..., Xn) ∈ P S ∈ P
func(S) = f′ (f(x1, ..., xn) Tail) = S

V [[x1, ..., xn]] v V [[X1, ..., Xn]]
Fret[[f

′]] ⊇ Fret[[f]]
Frai[[f

′]] ⊇ Frai[[f]]

Tail call

The tail-call rule has both its return and raise variables passed to the
caller of the function. Until now the rules have been about the �ow of
information in the V lattice but the simple two-point lattice is never raised
from unused to used. This is accomplished by the following rules.

(X ← x) ∈ P

V [[x]] = used
Definition

(X ← p(x1, ..., xn)) ∈ P

V [[x1]] = ... = V [[xn]] = used
Primitive Definition

(l(x1 op x2) Overflow => l′) ∈ P

V [[x1]] = V [[x2]] = used
Arithmetic

(case x of V1=>l1 | ... | Vn=>ln | _=>l′) ∈ P

V [[x]] = used
Case transfer

The analysis marks variables as used in four di�erent places; when a
variable is: (1) used in the expression of a let binding, (2) used as an
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parameter to a primitive function, (3) used as a parameter in a arithmetic
transfer, or (4) deconstructed in a case transfer. The rules above correspond
to these scenarios.

3.2.2 Implementation

The implementation of the existing analysis RemoveUnused is done with a
single pass over the source tree in SSA form that visits all the reachable
code and marks it as used . As described earlier the implementation does
not generate constraints and therefore it can do with just one pass over the
entire program.

There are data structures for the di�erent constructs in the program,
e.g., variables, functions, type constructors, and labels. These structures
model instances of the particular constructs and expose di�erent properties
and operations. The main information in each of these structures is the
two point lattice V . This lattice can then be lifted for each of the con-
structs when the analysis has traversed a place where the construct is used.
The structures are associated with each construct in the program and this
association is expressed by the function lattice. The formal description of
the analysis above only models this used/unused information for variables
and not the other constructs in the program. We have chosen to focus on
variables and their values in the improvement of the analysis. The rest is
removed for clarity.

Constraints are not used as part of the implementation but only used
to formally capture the essence of the analysis and to make it easier to
describe improvements to the analysis.

As mentioned above the analysis is a single pass over the source tree
rather than generating and solving constraints. Since it is a single pass
some measures have to be taken to ensure that result is not dependent
on the order in which the tree is traversed. It could be that a label's
formal parameters are visited before any call to that label is visited and we
therefore cannot know the abstract value of the actual parameters that will
�ow into the formal parameters at this time.

This is handled by introducing listeners or observers as known from the
observer programming pattern. These listeners are anonymous functions
that are attached to the lattice for the formal parameters. These anonymous
functions will be called if the used/unused lattice is lifted from unused to
used and they will propagate the information for those variables. These
variables can themselves have attached functions that will further propagate
the information.
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An entire function can have all its variables connected with listeners
before an actual call to that function is visited. Before the call is visited
none of the structures for variables in the function are marked as used and
when the call is visited the listeners convey this information through all the
reachable statements in the function.

The reason the analysis works with a single pass is because of the sim-
plicity of the lattices used. After a variable is marked as used it cannot
change again and we have at least calculated a post �x-point for the val-
ues. There is no need to iterate the �x-point computation since once the
variables are marked as used they cannot change. They can either be set
by the analysis visiting them and marking them as used, as described in
the last four rules in the previous section, or they can be set by informa-
tion propagation from the anonymous functions attached as listeners. This
propagation will function as the �x-point computation.

3.3 Improvement

We need to keep track of which exn constructor each variable can hold
and which exn constructors each function can possibly raise. With this
information we should be able to distinguish each function's potentially
raised exceptions and remove impossible ones from the handler.

To keep track of the exn constructors we introduce two new lattices:

E : F → ℘(exn)

E : Var → ℘(exn)

These lattices relate functions and variables to powersets of exn con-
structors. The sets are ordered by inclusion and the functions are ordered
point-wise. A variable that is de�ned in a let-binding with a constructor
application has a singleton set related to it. A variable that is a formal
parameter or is assigned the value of a formal parameter have several el-
ements in the lattice corresponding to its φ node in SSA. Functions also
have a powerset of exn constructors related to them and these represent
the possible exceptions they can raise.

First we need a constraint that can capture the exn values as they
are constructed. This can happen in assignments of variables so a new
constraint rule will look like this:

(X ← c(x∗)) ∈ P c : exn

E[[X]] = {c}
Exn Constructor Def.



3.3. IMPROVEMENT 19

The notation c:exn means that c is of the type exn. When a construc-
tor application of the exn datatype is present in the program we ensure that
the exception set for the de�ned variable contains the speci�c constructor.
We then extend the de�nition rule.

(X ← x) ∈ P

V [[x]] = used

E[[X]] = E[[x]]

Definition

The above rule now ensures that the newly de�ned variable contains
the same information as its right-hand side. With the properties of SSA
and the optimizations performed, this rule will happen rarely if not at all.
Since variables are de�ned once and not altered a simple assignment of one
variable to another will not contribute any expressiveness to the program
since instead of X one could simply use x. It is stated here so that our
analysis is not dependent on the SSA code being optimized already. Next
we need to update the raise rule.

(raise x) ∈ P func(raise x) = f

Frai[[f]] ⊇ {x}
E[[f]] ⊇ E[[x]]

Raise

Now this rule ensures that the exception set for each function will con-
tain all the exn constructors that the variables in the raise transfers can
hold.

The non-tail call rule is extended with another constraint that �ows
information about all the exn constructors the called function can raise
into the parameter of the handler.

l(X1, ..., Xn) ∈ P l′(Xr) ∈ P l′′(Xh) ∈ P
(f(x1, ..., xn) NonTail {cont=l′,handler=l′′}) ∈ P

Fret[[f]] = {r1, ..., rm} Frai[[f]] = {e1, ..., ek}
V [[x1, ..., xn]] v V [[X1, ..., Xn]]
V [[r1]] t ... t V [[rm]] v V [[Xr]]
V [[e1]] t ... t V [[ek]] v V [[Xh]]

E[[f]] ⊆ E[[Xh]]

NonTail call - label

The single variable that is the parameter to the handler now contain
a number of possible values. The other non-tail call rule with Caller as
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the handler is extended by the same principle but here the exception con-
structors do not �ow to a variable but is propagated back to the calling
function.

l(X1, ..., Xn) ∈ P l′(Xr) ∈ P
(f(x1, ..., xn) NonTail {cont=l′,handler=Caller}) = S

S ∈ P func(S) = f′ Fret[[f]] = {r1, ..., rm}
V [[x1, ..., xn]] v V [[X1, ..., Xn]]
V [[r1]] t ... t V [[rm]] v V [[Xr]]

Frai[[f
′]] ⊇ Frai[[f]]

E[[f′]] ⊇ E[[f]]

NonTail call - caller

Lastly the tail-call rule is extended with both the exception and return
information propagated to the calling function.

f(X1, ..., Xn) ∈ P S ∈ P
func(S) = f′ (f(x1, ..., xn) Tail) = S

V [[x1, ..., xn]] v V [[X1, ..., Xn]]
Fret[[f

′]] ⊇ Fret[[f]]
Frai[[f

′]] ⊇ Frai[[f]]
E[[f′]] ⊇ E[[f]]

Tail call

Here all the information is simply propagated from the called to the call-
ing function. With this information the analysis should be able to remove
the checks for exn values that the handler can never receive.

Omitted here are the rules for the simple propagation of exn values
from actual parameters to formal parameters. These rules are similar to
the ones described in the previous section regarding the V lattice, but they
�ow information in the E lattice instead.

3.4 Program transformations

With the information the improved analysis provides we are able to con-
servatively know which exception constructors the di�erent handlers can
expect to receive. We can then remove cases for non-occurring exceptions
and in the end get a smaller compiled binary by eliminating the dead code
from it.

After the analysis has completed and we have a set of exception value
each variable can contain, the transformation of the program begins. For
each case-transfer that deconstructs the variable of the type exn we look
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up the set of value from the analysis and compare them to the list of cases
in the transfer. If there exists a case for a exn value that is not in the list
of possible values we remove this case.

If a handler is found only to handle exceptions that can never arise,
as in the example in listing 3.3, all of the cases for these non-occurring
constructors will be removed and only the default case will remain. The
case-transfer can in this situation be replaced by a label call to the label in
the default case.

After this optimization a run of the existing analysis called RemoveUnused
will remove the blocks for which the cases are removed, if they are not used
anywhere else in the program. This will further remove everything those
blocks refers to if it is not used anywhere else in the program, etc.

3.5 Implementation

As mentioned earlier the implementation does not explicitly model con-
straints and solve them. The analysis is originally based on the existing
RemoveUnused optimization but the implementation is no longer a single
pass over the source tree. It is several passes over the source where each
pass contributes to the data�ow captured by the constraints.

First the implementation visits all the global de�nitions in the top of
the program where it �nds all the de�nitions of variables of the type exn.
These de�nitions are constructor de�nitions where a constructor of the ex-
ception datatype is called. The called constructor is added to the structure,
speci�ed as E in the previous section, for the de�ned variable like the rule
Exn Constructor Def. speci�es.

The global de�nitions are traversed one time and are followed by several
passes over the functions in the program. The �rst traversal of the func-
tions and their blocks initializes the E structure for all variables used as
parameters to either a function or a label. The structures will be initial-
ized with the empty set of values. This initialization pass is performed to
ensure we can safely �ow information from one variable to another in the
following passes without worrying about non-initialized structures. This
�rst iteration also creates an E structure for each function that will hold
the information about the potentially raised exceptions for that function.

Since this implementation does not use listeners to propagate the data�ow
it uses a �x-point calculation. The �x-point calculation performs the data�ow
through the program and reaches a �xed state. Several steps are taken in
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each �x-point calculation in accordance with the improved rule from the
previous section.

• Data in the E structure �ows from actual to formal parameters.

• Raise-transfers are visited and the set of exception constructors in
E of the raised variables �ows into the E structure for the current
function.

• Raised exception constructors for functions called as tail-calls or with
handler = Caller �ows into the calling functions E structure.

• Raised exception constructors for functions called as non-tail calls
�ows into the parameter of the speci�ed handler.

When the analysis reaches a �xed state it stops and the transformation
phase begins. The transformation visits all the blocks of all the functions
and looks for case-transfers where the variable t being tested is of the exn
type. When it encounters such a case-transfer it collects the set of possible
exceptions constructors for t and iterates through the cases. Each case
is compared to the possible values of t; if the tested value is found it is
not touched, if the tested value is not found the case is removed from the
resulting list of cases.

When all the cases are compared to the values a �nal check looks at
the number of remaining cases. If there are no remaining cases the entire
case-transfer is replaced with a goto-transfer (label call) to the label in the
default case. This requires that the case-transfer contains a default case
and that is not always true. There is an earlier pass of the SSA tree that
ensures that a case-transfer either has a default case or is exhaustive. In
this implementation non-default but exhaustive case-transfers are not trans-
formed. Such an exhaustive case-transfer is only possible for the compiler
to generate since the user does not know which exceptions the program in
SSA form will contain when writing the code in SML.

After the transformation is performed another pass of the existing op-
timization RemoveUnused is performed to remove potential dead code gen-
erated by the transformation above.

3.6 Benchmark

To see if the improvement has any e�ect it we compare the results from the
example program in listing 3.2 both without the improvement and with the
improvement. The example program has a single print call exactly in the
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handler the analysis will detect as dead and later remove. After the �rst
improvement analysis is complete the existing RemoveUnused analysis will
remove all the code related to the print statement that are imported from
the standard library. This will ensure that this small example will have a
reduced binary size compared to the original without the improvement.

If we study the resulting SSA code with the improvement implemented
we see that the call to fib2_0 now has a di�erent handler:

L_128 ()

fib2_0 (global_167) NonTail {cont = L_129 , handler =

Handle L_130}

Listing 3.7: Call to fib2 after improvement

The handler is now label L_130 that has been transformed compared
to listing 3.4. It now has a label call in place of the case transfer in the
non-improved version. Recall that the original example had a case-transfer
that had a single case for the E1_0 exception and a default case.

L_130 (x_181: exn)

L_134 (tuple_0 , messagers_0 , x_181)

Listing 3.8: Handler to fib2 call after improvement

This label call to label L_134 is from the default case in the original
version. The original default case was a transfer to a label without param-
eters and this label had the call to label L_134 as its only content. The
replacement of the case-transfer with the label call to the default case has
then been replaced with the call to L_134 directly. The small improvement
where a call to a label with no parameters and no statements are replaced
with the transfer for the called label is performed by a pass called Shrink.
This small pass is performed by all optimizations passes on the SSA lan-
guage after they have performed their function. It is a simple pass that
removes instances like the one described above.

As described earlier an extra iteration of RemoveUnused is performed
after the �rst improvement analysis. This will potentially remove dead
code that has become dead after the �rst improvement analysis is done
transforming the program. In �gure 3.1 we compare the sizes of the binary
and SSA �les for the example above so we can get a measure of the amount
of removed code.
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Improvement SSA size Binary size
Without 85.2 KB 188.0 KB
With 71.1 KB 178.4 KB

Figure 3.1: Binary size comparison

There is a 10 KB reduction in the binary size that comes from the
removed print statement in the original SML program in listing 3.2. The
di�erence in compile time is not measurable in this example or for a self
compile so it is negligible.

3.6.1 Benchmark suite

The MLton benchmark suite consists of 43 programs of di�erent complexity.
The programs range from a implementation of the Fibonacci sequence to
the hamlet example that is a single �le consisting of almost 23.000 lines
of code. The benchmark suite is used to measure three di�erent aspects;
compile-time, run-time, and binary size of the benchmark programs. When
running the benchmark suite measuring these three factors there are no
hits from improvement one. This means that there are no instances in the
benchmark suite where a handler is handling an exception that can not
occur.

3.7 Assessment

The �rst improvement of removing unused exception handlers was not
founded on SSA code from the benchmark suite. The reason the improve-
ment was implemented came from SML code that was constructed just to
exploit a shortcoming in the compiler. This approach was a gamble since we
could not predict how many instances that would occur in the benchmark
suite. As it turned out there were no instances in the benchmark suite.
This shows that the improvement might not be an optimization but more
in the direction of a programming error.

We might consider a dead handler form this improvement as a reason
to generate a compiler warning instead of optimizing it away. By silently
removing the handlers because they can never be used the programmer
might think he handles an exception that can actually occur. If we instead
issue a compiler warning that a handler does not handle any exceptions
the programmer might revisit the code and take action. In the example
in listing 3.2 the programmer might actually have wanted to catch the E2



3.7. ASSESSMENT 25

exception instead of E1 from the call to fib2. A compiler warning of a dead
handler would in this case give the programmer a hint of what might be an
actual error.





Chapter 4

Second improvement

The best way to improve the optimizations in MLton would be to detect
and simplify large amounts of dead code and preferably in something that
the compiler generates or is included from the standard library. We will
hand-analyze the generated code the compiler outputs in SSA form to de-
tect places where some additional information will make the analysis able
to detect dead code that it otherwise would not, similarly to the �rst im-
provement. The di�erence this time is the focus on standard library code
or compiler generated code and not so much on arti�cial examples.

This section will study generated SSA code and �nd some examples of
code from the MLton benchmark suite where some dead code might be
detected by static analysis. Di�erent kinds of analyses are discussed in re-
lation to the examples with the goal of �nding one that will detect the most
dead code without being too complex or too expensive.

One thing that meets the eye when looking at the generated code and the
BNF from earlier is that most of the arithmetic is surrounded by generated
over�ow handlers. In the BNF we recall the arithmetic transfer:

S ::= . . . | l(A) Overflow => l| . . .
where A is some arithmetic operation on two variables. This is one of
the two ways arithmetic can be done in SSA form. The second is from
primitive arithmetic functions such as Word32_add, Word8_mul, etc. These
primitive operations are not governed by over�ow handlers and are therefore
only used in speci�c places in the standard library and not used by the
compiler for arithmetic in the user programs. They can of course be used
by optimizations that detect that arithmetic cannot over�ow in a transfer
and then transform the program by replacing an arithmetic transfer with a
primitive arithmetic de�nition.

27
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By compiling the entire MLton benchmark suite and keeping the inter-
mediate SSA output for each program we examine the arithmetic transfers
and look for patterns or simple cases where information could detect over-
�ow handlers as dead.

We generally look for two scenarios: (1) case by case local arithmetic
between a constant and a variable that has been bounded by a compari-
son to a constant or another bound, or (2) patterns that occur often and
where we believe some arithmetic is guaranteed not to over�ow. The second
scenario might for example occur in places where arrays are traversed and
information about the array length will guarantee that an array index will
not over�ow.

4.1 Examples

Example 1

Some examples are found by searching the SSA code of the benchmark suite
programs for places with an arithmetic transfer immediately preceded by a
comparison against a constant. In the SSA output for the �le hamlet.sml
the following snippet is found:

2898L_25120 (x_16013: word32)

2899x_10771: bool = WordU32_lt (x_10769 , global_33)

2900case x_10771 of

2901true => L_22171 | false => L_24271

2902L_22171 ()

2903loop_355 (x_10769 + global_5) Overflow => L_24272 ()

Listing 4.1: Snippet from SSA output for hamlet.sml

It is worth noticing that there are no other call sites to the label L_22171
than the one in line 2901, so we are guaranteed to have been through the
comparison on line 2899 when arriving at that label. The variables with
the global pre�x are de�ned in the start of the program as follows:

global_5: word32 = 0x1

global_33: word32 = 0x3B7

Listing 4.2: The two relevant global de�nitions

By de�nition 1 they are constant. The comparison that must be ful�lled
in order for the addition to occur ensures that the variable x_10769 is less
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than global_33. This ensures that the addition on 32-bit words cannot
over�ow since we at most add 0x3B7 and 0x1.

To better visualize the �ow in the SSA examples in this chapter we
typeset them as �ow graphs. Each label is a node and the transfer for
this label is its outgoing edges. A goto or call transfer is a simple edge
with no information whereas a case transfer has the value of each case on
the outgoing edges. Arithmetic transfers has a dashed line for the over�ow
exception it can potentially raise.

The hamlet example above is visualized in �gure 4.1.

L_25120 (x_16013:word32)

x_10771:bool = x_10769 < 0x3B7

case x_10771 of

L_22171()

x_10769 + 0x1

L_24271()

L_22171()

raise Overflow_0

loop_335()

true false

Overflow

Figure 4.1: Flow graph for the hamlet SSA snippet

It is the dashed over�ow line we aim to detect as dead and later remove
in a transformation of the program.

Example 2

The next example is more complex and is a not a local optimization as
example 1 since it requires knowledge of interprocedural �ow of values.
It is from the benchmark called DLXSimulator.sml and the SML code in
question is:

1249fun exp2 0 = 1

1250| exp2 n = 2 * (exp2 (n-1))

Listing 4.3: Snippet from DLXSimulator.sml
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The intuition of this example is to remove the over�ow handler from
the n-1 arithmetic. This subtraction can potentially over�ow (technically
under�ow) but if we can guarantee that the input value to the exp2 function
is always zero or positive the over�ow check might be super�uous. So to
analyze this example we focus on the calls to exp2 to see if we can guarantee
something about its parameter.

The SSA output for the SML snippet above is:

1665fun exp2_0 (x_1715: word32) = L_1601 ()

1666L_1601 ()

1667case x_1715 of

16680x0 => L_5493 | _ => L_1602

1669L_5493 ()

1670return global_6

1671L_1602 ()

1672L_1604 (x_1715 - global_6) Overflow => L_5492 ()

1673L_5492 ()

1674raise (global_45)

1675L_1604 (x_1716: word32)

1676exp2_0 (x_1716) NonTail {cont = L_1606 , handler =

Caller}

1677L_1606 (x_1717: word32)

1678L_5089 (global_19 * x_1717) Overflow => L_5492 ()

1679L_5089 (x_1718: word32)

1680return x_1718

Listing 4.4: Snippet of SSA output from DLXSimulator.sml

We see that the interesting arithmetic transfer is on line 1672 where the
input variable x_1715 has the variable global_6 subtracted from it. The
globals from this example are as follows:

global_6: word32 = 0x1

global_19: word32 = 0x2

global_45: exn = Overflow_0 ()

Listing 4.5: Global de�nitions from listing 4.4

These are all the globals that occur in the exp2_0 function. The SSA
function in listing 4.4 is visualized as a �ow graph in �gure 4.2. The only
new addition the �ow graph notation is the dotted line that is a continuation
of a function call.

It is one of the dashed lines we aim to eliminate namely the one from
L_1602 to L_5492.
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exp2_0 (x_1715:word32) = L_1601

L_1601 ()

case x_1715 of

L_5493()

return 0x1

L_1602()

x_1715 - 0x1

L_1604 (x_1716:word32)

exp2_0 (x_1716)

L_5492()

raise Overflow_0

L_1606 (x_1717:word32)

0x2 ∗ x_1717

L_5086 (x_1718:word32)

return x_1718

0x0 default

Overflow

Overflow

Figure 4.2: Flow graph for the exp2_0 function

There is a recursive call to exp2_0 in label L_1604 (line 1676 in listing
4.4) that corresponds to the call exp2(n-1) in listing 4.3. First we look
at the recursive call where we assume the parameter to exp2_0 is zero or
positive. Afterwards we try to show that this assumption is valid by looking
at the external calls to exp2_0.

Now assume that in label L_1601 we have the following:

x_1715 ∈ [0; 231 − 1] (4.1)

Since the width of the words are 32 bit and one bit is used for the sign
the maximum value is 231 − 1. The case transfer in label L_1601 branches
on 0x0 and returns. This means that in the default case in label L_1602,
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together with 4.1, we know that:

x_1715 ∈ [1; 231 − 1] (4.2)

By performing the arithmetic transfer in label L_1602 we �ow our knowl-
edge about x_1715 to the parameter for L_1604. So together with 4.2 we
know that

x_1716 = x_1715− 1, therefore

x_1716 ∈ [0; 231 − 2]

The variable used as the actual parameter to the recursive call is x_1716
so the assumed invariant is maintained by this case transfer followed by the
arithmetic transfer.

Now we need to look at the external call sites to the exp2_0 function
and see what bounds we have on the parameters from them to ensure that
the assumption about the input is valid.

By searching through the SSA output of the entire DLXSimulator bench-
mark the following two call sites outside of the function itself are found.

loop_153 (x_2449: word32)

exp2_0 (x_2449) NonTail {cont = L_5348 , handler =

Handle L_5476}

loop_154 (x_2451: word32)

exp2_0 (x_2451) NonTail {cont = L_5352 , handler =

Handle L_5476}

Listing 4.6: External call sites to exp2_0

These call sites look similar in that they both are in a generated label
pre�xed with loop. In both of the call sites the parameter to the label is
directly used as a parameter to the function call. Hence we now need to
focus on the call sites to both loop_153 and loop_154. First we look at
call sites to loop_153:

L_1493 ()

[...]

loop_153 (global_7)

L_5349 ()

loop_153 (x_2449 + global_6) Overflow => L_5350 ()

Listing 4.7: Call sites to loop_153
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There are two call sites to loop_153 where one is in label L_1493 called
with a global constant and one in label L_5349 called as an arithmetic
transfer. The snippet in label L_1493 is there because that code does not
in�uence the call or the parameter to loop_153. If we take a look at the
situation for loop_154 we see that it is almost similar:

L_1565 (BlockOffsetBits_0: word32)

loop_154 (global_7)

L_5353 ()

loop_154 (x_2451 + global_6) Overflow => L_5354 ()

Listing 4.8: Call sites to loop_154

Again two call sites and one with the parameter that is a global constant
and one that is the result of an arithmetic transfer. The global constants in
the program are global_6 and global_7. global_6 de�ned in listing 4.5
and the other is de�ned here:

global_7: word32 = 0x0

Listing 4.9: Global de�nition in DLXSimulator.sml

The two call sites that has global_7 as the parameter ful�lls the in-
variant proposed that the parameter to exp2_0 is zero or positive. The
last thing we need to consider now is the arithmetic transfers where the
result becomes the parameter to exp2_0. These two transfers are additions
of global_6 (0x1) and the original parameter to the same call. Since that
parameter is initially zero and then added to one and passed as a param-
eter again, it means the parameter is either zero or zero added with one a
number of times.

If we look at the call sites to the exp2 function in the original SML code:

fun log2 x =

let

fun log2_aux n = if exp2 n > x

then (n-1)

else log2_aux (n+1)

in

log2_aux 0

end

Listing 4.10: Call sites to exp2 in SML
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This single call is translated into two calls in loops in SSA. The param-
eter n to log2_aux is originally zero and then incremented by one for the
next call. Therefore the invariant is maintained here as well and we have
established that the parameter to exp2_0 is always zero or positive so our
transformation of the n-1 arithmetic transfer is valid.

4.2 Improvement

Over�ow or under�ow of integers is basically concerned with the number
of bits used to express a certain value. If the number of bits required are
larger than what the type can hold the over�ow happens. We therefore need
to model the number of bits used by variables in the program. Previous
work has looked at how this information can be expressed and used in an
analysis of a program [Stephenson et al., 2000]. Although the application
of the results from the analysis di�er we look at the di�erent proposals by
Stephenson et al. [2000] on how to model this information.

Stephenson et al. [2000] propose three di�erent lattice structures to ex-
press the number of bits used for a variable. The �rst and most straight-
forward lattice proposed is a lattice that directly model the number of bits
used for a variable.

>

30

1

0

⊥

Figure 4.3: Number of bits needed to represent the value of a variable

This structure is easy to implement but not accurate. Every increment
of a variable will raise the lattice one bit to soundly handle the worst case,
even though the same number of bits might actually be used. The next
lattice they propose is not relevant for our purpose since it is a vector
of lattices that can be either zero, one, top, or bottom. They include it
since they aim to eliminate unused bits potentially in the middle of a bit
string. The third structure they propose is a regular interval lattice [Cousot
and Cousot, 1976], or range lattice, depending on the literature [Harrison,
1977], that keeps track of a variables lower and upper bound. This lattice
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is more accurate in their example since it bene�ts from the exact precision
of arithmetic and this is the lattice we will use in our improvement.

For our improvement we will use an interval lattice for each variable in
the program. For n bit words let MAX = 2n−1 − 1 and MIN = −(2n−1)
then we de�ne the interval lattice IL:

> = 〈MIN ,MAX 〉

〈MIN ,MAX − 1〉

〈MIN ,MAX − 2〉 〈MIN + 1,MAX − 1〉

〈MIN + 1,MAX 〉

〈MIN + 2,MAX 〉

...
...

...

⊥

〈MAX ,MAX 〉〈MAX − 1,MAX − 1〉. . .〈1, 1〉〈0, 0〉〈−1,−1〉. . .〈MIN + 1,MIN + 1〉〈MIN ,MIN 〉

Figure 4.4: Interval lattice IL

We de�ne the union of intervals t as the operator that takes two intervals
and returns an interval. It is de�ned as:

〈al, ah〉 t 〈bl, bh〉 = 〈min(al, bl),max (ah, bh)〉

The ordering of the interval lattice v is using the union operator and is
de�ned as:

〈al, ah〉 v 〈bl, bh〉 ⇔ 〈bl, bh〉 = 〈al, ah〉 t 〈bl, bh〉

We also de�ne an interval intersection operator u to be the interval
containing all integers in both intervals such that:

〈al, ah〉 u 〈bl, bh〉 = 〈max (al, bl),min(ah, bh)〉

Note that the intersection between two disjoint intervals yields ⊥. The
element > means that we do not know the value statically or that the values
can utilize the entire interval of the type.

With the interval lattice IL we are able to de�ne our lattice that relates
variables to intervals:

I : Var → IL
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The IL lattice is ordered like described above and the function lattice
is ordered point-wise. The analysis will �rst mark all variables with the
bottom element denoting that no information is available.

We de�ne a helper function used to look up the abstract value of a
variable. The �rst version of this helper function is simple and might seem
super�uous but it is necessary since it will be extended later on. We de�ne
a function L with the signature: Var ∗ Label → IL.

L(x, l) = I[[x]]

This lookup function is used to retrieve the interval for the variable x
when it is needed in the label l. Right now it just returns the interval from
the I lattice directly and discards the label parameter since it is a global
property.

4.2.1 Value propagation

To gain information for each variable we must consider what constructs
in the SSA program that gives rise to information and how to update the
interval lattice accordingly. The �rst and most obvious piece of information
we can get for a variable is when it is explicitly de�ned as a literal. We
create a rule that will capture the behavior of a constant de�nition of a
variable on the lattice I.

(X ← v) ∈ P v : word

I[[X]] = 〈v, v〉
Constant Definition

From de�nition 1 we have that this interval for the variable is constant
since the variable is a constant. This information in the interval lattice must
be propagated throughout the program. We will use a helper function label
that returns the label for the block in which a statement exist in the SSA
program text, similar to the func function from the previous improvement.
The propagation rules for the goto transfer is as follows.

l(X1, ..., Xn) ∈ P l(x1, ..., xn) = S
S ∈ P i ∈ {1, . . . , n} label(S) = l′

xi : word

L(xi, l
′) v I[[Xi]]

Goto

This is the goto transfer where a simple �ow from actuals to formals
are performed. We only consider the variables of word type and generate
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a constraint rule for each of those formals. Function calls are similar in
design.

f(X1, ..., Xn) ∈ P l′(Xr) ∈ P
(f(x1, ..., xn) NonTail {cont=l′,handler=H}) = S

S ∈ P i ∈ {1, . . . , n} label(S) = l′′

xi : word

L(xi, l
′′) v I[[Xi]]

NonTail call

(f(x1, ..., xn) NonTail {cont=l′,handler=H}) = S
l′(Xr) ∈ P S ∈ P Xr : word

> v I[[Xr]]
NonTail call - word return

f(X1, ..., Xn) ∈ P (f(x1, ..., xn) Tail) = S
S ∈ P i ∈ {1, . . . , n} label(S) = l

xi : word

L(xi, l) v I[[Xi]]
Tail call

Notice that if the parameter to the continuation label is of type word
it is marked as >. These constraint rules are the basic propagation of
information throughout the program through joins of abstract values in the
formal parameters. We still need to consider the arithmetic transfer that
will apply an operation on two word values and pass the result to a label as
a parameter. These operations needs to be applied to the abstract values
of intervals as well. We therefore de�ne some operations on intervals that
correspond to operations on word values.

Let a, b, c ∈ V ar, let l be the current label, and L(a, l) = 〈al, ah〉, L(b, l) =
〈bl, bh〉 then

c = a+ b⇒ I[[c]] = 〈al, ah〉 +̄ 〈bl, bh〉 = 〈al + bl, ah + bh〉
c = a× b⇒ I[[c]] = 〈al, ah〉 ×̄ 〈bl, bh〉 = 〈al × bl, ah × bh〉
c = a− b⇒ I[[c]] = 〈al, ah〉 −̄ 〈bl, bh〉 = 〈al − bh, ah − bl〉

With the abstract operations above we are able to de�ne the arithmetic
transfer rule.
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l(X) ∈ P l(x1 op x2) = S
S ∈ P label(S) = l′

(L(x1, l
′) ōp L(x2, l

′)) v I[[X]]
Arithmetic

Arithmetic can also occur as primitive operations in de�nitions and these
use the same abstract operations. We need two helper functions that will
return the resulting interval element from one or two interval arguments,
respectively, and a primitive function.

prim1 (p, 〈xl, xh〉) =


〈0, 0〉 −̄ 〈xl, xh〉 , if p = Word_neg

〈0,MAX 〉 , if p = Vector_length

> , otherwise

prim2 (p, 〈x1l , x1h〉, 〈x2l , x2h〉) =


〈x1l , x1h〉 +̄ 〈x2l , x2h〉 , if p = Word_add

〈x1l , x1h〉 ×̄ 〈x2l , x2h〉 , if p = Word_mul

〈x1l , x1h〉 −̄ 〈x2l , x2h〉 , if p = Word_sub

> , otherwise

The binary functions that are considered here are the operators for ad-
dition, subtraction, and multiplication. If a word value is returned from
any other primitive function with two arguments it is assigned the abstract
value >. Similarly the unary functions considered are the negation func-
tion, the length of a vector, and every other primitive function with one
parameter that is assigned to a word type are assigned the abstract value
>. The Vector_length function returns the abstract value of all positive
values including zero since a vector with negative length is not possible.
The parameter to Vector_length is ignored since we do not model the
length of vector types so we return the abstract value for the worst case.
The following functions are used in the primitive de�nition rules for unary
and binary primitive functions.

(X ← p(x)) = S S ∈ P
X : word label(S) = l

I[[X]] = prim1 (p, L(x, l))
Primitive Definition - unary
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(X ← p(x1, x2)) = S S ∈ P
X : word label(S) = l

I[[X]] = prim2 (p, L(x1, l), L(x2, l))
Primitive Definition - binary

The rules above are all used to propagate the abstract values to formal
parameters by joining them. Since our lattice is of �nite height and the
ordering operator on our lattices is monotone the propagation will reach a
�x point if iterated. Without any widening heuristic this could in the worst
case result in 232 − 1 �x point iterations which is unfeasible.

We need to apply a widening heuristic since the arithmetic in the pro-
gram could be placed in a loop or in a recursive function call and we have no
information about the number times the arithmetic is applied. The arith-
metic could potentially be applied inde�nitely and the resulting interval
would reach its �x point with one or both boundaries at MIN or MAX .

Widening

The �rst approach to widening could be to let an interval jump to MIN
or MAX after k number of down or up judgments. The case for k = 1
is explained by Cousot and Cousot [1977] but in their example "[. . . ] the
widening is a rough operation which introduces a great loss of information".
This will not be very accurate and we could be in a case where the large
jumps reaches a �x point that is far from the optimum. It will be fast
to reach a �x point since we are guaranteed to only change each variables
abstract value k times. A narrowing approach will be needed to re�ne the
intervals after a jump to the MIN or MAX .

To make the analysis more accurate, albeit potentially slower, we will
make more and smaller jumps to reach a convergence in the �x point calcu-
lation. Also shortly proposed by Cousot and Cousot [1977] is the notion of
using several steps of widening before widening to the limits. This approach
is what we will continue with and implement in our analysis and it will be
described in detail here.

Let B be a set of integer values. The elements of B will be used as steps
in the widening function. Several heuristics to chose the elements of B can
be employed and in our example we will chose B to be the set of all word
constants in the program including MIN and MAX . As mentioned this
is a heuristic and one could collect empirical data and compare di�erent
approaches but this is not in the scope of this project.
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Now we can de�ne a widening function w on an interval that will be
called on the resulting interval of a join when the join coarsen the bounds
the intervals.

w(〈l, h〉) = 〈max{x ∈ B|x ≤ l},min{x ∈ B|x ≥ h}〉
The resulting interval from w will have the its lower bound as the largest

element in B that is less than or equal to the lower bound of the input.
Similarly its upper bound is the smallest element in B that is equal to or
greater than the upper bound of the input.

In the rare case where a program contains every integer constant in the
range from MIN to MAX for a particular word size this widening heuristic
will be the same as not applying widening at all. Since most programs have
a much smaller set of integer constants in the program text it will be faster
to make a jump between the constants until the widening function reaches
a �x point.

In the implementation of the analysis the widening above is used. Nar-
rowing is not implemented and could be a subject for further study. The
narrowing could be done by performing an iteration of the propagation with-
out widening only changing the MIN and MAX values. This will increase
the precision of the abstract values while still being sound.

Re�nement of abstract values

With the abstract value propagation and the widening in place the analysis
is able to run and produce results. It is possible that these results contain
some places where we can perform transformations of the program but we
can do much better. As in many interval/range analyses information about
boolean comparisons can be used to re�ne the existing information we have
on variables.

When two variables are compared with a less-than operator we can
infer information about both variables. In SSA the boolean comparisons
are always primitive function calls where the result is bound to a boolean
variable. This primitive function call does not give rise to information right
away but only when a case transfer is testing on the boolean variable can
we use the comparison information. In the case transfer the control can
change to the true branch or the false branch of the boolean comparison.
We then have to use the information from the boolean comparison down
through the control paths.

To aid this propagation of re�ned information down through the control
paths we use what is called a dominator tree as described by Appel [1998,
chap. 19]. A dominator tree in this case is a tree of SSA blocks where



4.2. IMPROVEMENT 41

each blocks children are the blocks that it immediately dominates. The
immediate dominator of a block is unique so this structure becomes a tree.

In the MLton compiler the SSA infrastructure has a precomputed dom-
inator tree for each function. This dominator tree can be traversed just like
the dominator indi�erent approach of just visiting the blocks in the order in
which they appear in the list. Traversing the blocks in the dominator tree
allows us to visit case transfers before we visit the di�erent control paths it
can lead to. This will enable us to propagate re�ned information about the
abstract values we obtain from the comparisons down the corresponding
control paths.

We need to formalize three things; (1) how to connect the re�ned in-
formation from a comparison and the resulting boolean variable, (2) how
to propagate this information down the control paths when a case transfer
tests on a boolean variable with connected information, and (3) how to
extract the propagated re�ned information from the control paths.

The �rst step is to connect the information gained from a comparison to
the resulting boolean variable. We get potentially four pieces of information
from a comparison; for both the true and the false branch we have a re�ne-
ment for both variables. We de�ne A to be the lattice mapping a boolean
variable to an interval lattice. This lattice A requires some additional no-
tation to be useful. We write AT,y[[X]] to mean the interval lattice for the
variable y if the boolean variable X has evaluated to true and AF,y[[X]] to
mean the interval lattice for the variable y if the boolean variable X has
evaluated to false.

The lattice above is only used to temporarily store information about
the re�nements obtained from comparisons. First when a case transfer dis-
patches on the boolean variable will the re�ned lattices be made accessible
for the analysis in the control paths. We need a constraint rule for the
primitive function de�nition when the de�ned variable is of boolean type.
We de�ne two operators ≺ and � that both take two intervals and return
an interval. These operators are used to bound the �rst interval given as
argument by the second argument.

〈al, ah〉 ≺ 〈bl, bh〉 = 〈al, ah〉 u 〈al, bh − 1〉
〈al, ah〉 � 〈bl, bh〉 = 〈al, ah〉 u 〈bl, ah〉

These operators are used in the rule for the primitive comparison less-
than. This comparison will assign four intervals to the A lattice for the
given boolean variable.
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(X ← Word_lt(x1, x2)) = S S ∈ P
X : bool label(S) = l

AT,x1 [[X]] = L(x1, l) ≺ L(x2, l)
AT,x2 [[X]] = L(x2, l) � L(x1, l)
AF,x1

[[X]] = L(x1, l) � L(x2, l)
AF,x2

[[X]] = L(x2, l) ≺ L(x1, l)

Primitive Definition - Less-Than

We have connected the boolean variable with the four resulting intervals
from the comparison and we now need to propagate this information down
the control paths when a case transfer tests on a boolean variable. We need
a way to re�ne the intervals for a variable from its global abstract value in
the I lattice. This re�nement should be on a control path basis and not a
global property.

By taking advantage of the dominator tree we can assign a mapping
from blocks in the SSA program to variables to interval lattices. When
the analysis visits a case transfer where the test is on a boolean variable
that have been assigned the four intervals from the rule above we assign
mappings from the blocks of the two cases to both variable each with an
interval lattice.

Let a fact F be a mapping from a SSA block to a mapping from a
variable to an interval lattice: F : B → Var → IL. Initially the interval
lattice IL is ⊥ for all variables and this is interpreted as non-existing fact,
that is: no fact for the speci�c variable is assigned the block. This lattice F
will require the entire subtree of the assigned block to know which blocks
have facts assigned which is infeasible. This is solved by recursively looking
at a blocks ancestor in the dominator tree whenever we need to know the
abstract value for a variable. If we do not �nd an interval that is di�erent
from ⊥ we interpret this as there is no re�ned value for the speci�c variable
and we will use the global abstract value from the I lattice.

Facts need to be created for the relevant control paths which the follow-
ing rule for the case transfer does.

(case x of true=>l | false=>l′) ∈ P x : bool
AT,y[[x]] = i AT,z[[x]] = i′

AF,y[[x]] = i′′ AF,z[[x]] = i′′′

i v F [[l]][[y]] i′ v F [[l]][[z]]
i′′ v F [[l′]][[y]] i′′′ v F [[l′]][[z]]

Case Transfer - Bool

The case transfer is also able to give information about the intervals if
the tested values are words types and are equal to the bounded elements
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in the interval. For simplicity we only consider case transfers with a single
case for a constant word value and a default case.

(case x of v=>l | _=>l′) ∈ P x : word
I[[x]] = 〈xl, xh〉 xl = v

〈xl + 1, xh〉 v F [[l′]][[x]]
〈v, v〉 v F [[l]][[x]]

Case Transfer - Lower

(case x of v=>l | _=>l′) ∈ P x : word
I[[x]] = 〈xl, xh〉 xh = v

〈xl, xh − 1〉 v F [[l′]][[x]]
〈v, v〉 v F [[l]][[x]]

Case Transfer - Upper

These two rules removes a single value from the edge of an interval and
propagate this re�ned information to the default case. Then they propagate
the constant interval to the path from the value case. These rules can be
extended to include series of values that each can re�ne that interval in the
default case but this is omitted since it is not clear how much this happens
in real-world programs. We create a generic case transfer rule where each
value literal is used for a constant interval that is propagated through the
respective control path.

(case x of v1=>l1 | . . . | vn=>ln | _=>l) ∈ P
i ∈ {1, . . . , n} x : word

〈vi, vi〉 v F [[li]][[x]]
Case Transfer - Literals

We now have the re�ned information assigned to the start of the control
path and we need to access this information during the traversal of the
dominator tree. Every time we need the abstract value of a variable we
�rst need to look at the re�ned intervals in the ancestors in the dominator
tree of the blocks we are currently visiting. If this yields no result other
than ⊥ we use the global value as normal. To enable this search in the
ancestor chain we rede�ne our lookup function L to include the recursive
search in the ancestors.

L(x, l) =

{
LA(x, l) , if LA(x, l) 6= ⊥
I[[x]] , otherwise
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Now the rede�ned lookup function �rst calls a second lookup function
LA. If the second lookup function returns something di�erent than ⊥ the
re�ned value is returned, if not then the global value from the I lattice
is returned like before. The LA function is de�ned as a recursive function
that returns an element from the IL lattice. We de�ne a helper function
anc that takes a label as input and returns the ancestor in the dominator
tree for that label.

LA(x, l) =


F [[l]][[x]] , if F [[l]][[x]] 6= ⊥
⊥ , if anc(l) = ∅
LA(x, anc(l)) , otherwise

This function searches the dominator ancestor tree for a value di�erent
than ⊥ meaning that a re�ned value exist for the variable x. If it reaches a
label with no ancestor in the dominator tree and no element other than ⊥
is found for the variable then we return ⊥ to indicate that L should return
the global value for the variable.

The analysis is now complete and the propagation and subsequent re-
�nement of values is iterated until there is no change in the state of the
lattices used in the analysis. This state we call a �x point and we are
able to perform the detection of dead over�ow handlers and perform the
transformation of the program.

4.3 Program transformations

After the analysis is done and we have reached a �x point for the abstract
values for all the word variables we transform the program. Our goal is
to remove checks for over�ow where it can never occur. We need to visit
all arithmetic transfers and look at the abstract values for the arguments.
To detect an arithmetic transfer that cannot possibly over�ow we need
to perform the operation on the abstract values and test if the resulting
interval is within the bounds of the word size.

For each arithmetic transfer let a and b be the arguments to the arith-
metic operator op and let MIN and MAX be the smallest and largest num-
ber, respectively, that the resulting variable can hold. These two numbers
depend on the number of bits in the word and whether or not the value is
signed by using one bit for the sign. Let I[[a]] = 〈al, ah〉 and I[[b]] = 〈bl, bh〉
and a op b = c then we have I[[c]] = I[[a]] ōp I[[b]] = 〈cl, ch〉.

Now to detect if an arithmetic transfer is guaranteed not to over�ow we
look at the bounds of the resulting interval. If cl > MIN and ch < MAX
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no over�ow can happen and we are able to transform this arithmetic transfer
by removing the over�ow check.

To remove the over�ow check we must translate the arithmetic transfer
into a primitive function call and a goto transfer. Hence we translate

l(x1 op x2) Overflow => l′

into

x← pop(x1, x2)

l(x)

where x is a fresh variable and where pop is the primitive function corre-
sponding to the operator in the arithmetic transfer; Word_add, Word_sub,
or Word_mul. We add a statement before the transfer in the block and we
change the arithmetic transfer to a goto transfer.

The size of the intermediate SSA output is not reduced much from the
transformation. The transformation itself will remove only a few instruc-
tions in the resulting binary. The most notable, albeit small, decrease in
binary size comes from an additional run of the analysis RemoveUnused

that might remove the block l′ from the example above and every block
this dominates, if l′ is not used anywhere else in the program.

4.4 Implementation

The implementation of the analysis is structured in two parts like the pre-
vious improvement; analysis and transformation. The analysis follows the
constraint rules from the previous section but does not model or solve these
constraints explicitly. Rather the behavior expressed by the constraint rules
are captured in a �x-point data�ow analysis.

The analysis and transformation is around 1.000 lines of code and the
interval lattice implementation is about 400 lines of codes including blank
lines.

The interval lattice contains the relevant operations to intersect, join,
arithmetic operations, etc. It also contains the code to restrict an interval
lattice to be less than another interval lattice used in the boolean primi-
tives. Structurally an interval lattice contains a value and a size. The size
represents the number of bits in the type of the variable modeled by the lat-
tice and the value is either >, ⊥, or a pair of interval elements. An interval
element is either MIN , MAX , or an integer x so that MIN < x < MAX .
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The size is used by the lattice to know when an operation might need to
go from an integer interval element to either MIN or MAX . It should be
mentioned that the pair of interval elements (MIN , MAX ) is the same as
the value > and that a pair like (MAX , MIN ) is not legal. A normalization
function that is called after each operation ensures that no illegal values are
produced and that (MIN , MAX ) is replaced by the value >.

The analysis itself starts by assigning an interval lattice to all word-typed
variables in the program assigning them the value ⊥. This includes globals,
formal parameters and variables assigned in blocks. After an iteration over
the word-typed globals each one will have its interval lattice updated to
re�ect its identical constant interval bounds.

There are two functions used to perform the �x-point calculation; they
are called propagate and visitFunction. The �rst function is used to
join the values of actual parameters of all calls and gotos in the program
to their respective formal parameters. This includes performing the arith-
metic abstractly on the lattices in the arithmetic transfers and joining the
resulting value on the formal parameters for the called label. The second
function is used to traverse each SSA function and to extract information
from primitive operations like Word_add and Vector_length that will be
used in the subsequent propagation of values.

The visitFunction is called for each function in the program and tra-
verses each function following its dominator tree. The dominator tree is
precalculated for each function when the code is translated into SSA form.
The dominator traversal will visit all the blocks in the function at some
point but the order in which the blocks are traversed is advantageous to the
propagation of the bounded intervals produced by the boolean primitive
functions. These boolean variables have the four states expressed in the
A lattice from the comparison assigned to it. These are the two cases for
each variable used in the comparison. One for the true case and one for
the false case for each variable. When a case transfer matches on a boolean
variable with the four states in the lattice A assigned to it these states will
be propagated down in the dominator tree at the respective control paths.
This behavior is identical to the one expressed in the constraint rules in
section 4.2.1.

This allows the analysis to have di�erent intervals for the same variable
for di�erent control paths making the analysis �ow sensitive. To allow for
this extra information to be stored it is not enough to have the variable
assigned an interval in the I lattice since this is global property. Therefore
each block in the program can have a list of facts (F s) assigned. A fact
is a variable and an interval lattice that represents a re�ned interval for
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the variable. To establish a lookup chain for the facts each block is also
assigned its nearest ancestor in the dominator tree that contains a fact. If
a block is not assigned a fact it is not in the ancestor chain. This allows
the compiler to search through the ancestor chain �rst for an interval for a
given variable; if no fact for that speci�c variable is found in the ancestor
chain the global interval lattice is taken from the I lattice.

This use of a dominator tree in this case ensures that a boolean com-
parison of variables will be visited before any blocks dominated by this
comparison. This ensures that the assignment of facts has happened before
they are used. If the blocks are traversed in the order in which they appear
in the SSA program text this property is not guaranteed.

After the iteration of these functions has reached a �xed state, where all
the joins in the iteration no longer changes the state of the interval lattices,
the information obtained is used to transform the program. We now have
a conservative approximation of the intervals for each word-typed variable
and we can perform the abstract arithmetic in the arithmetic transfers and
detect potential dead over�ow handlers. The transformation is a rewrite of
the entire program where almost every instruction is reused as it were except
the arithmetic transfers that are rewritten as described in the previous
section.

4.5 Benchmark

In this section we look at the e�ect of the analysis and transformation on
the examples found earlier in this chapter. We then extend the search for
changes to the entire MLton benchmark suite where di�erent measures will
tell how many instances of the transformation has taken place and how that
is re�ected in the binary sizes of the resulting �les. We will look at compile
time and run time of the improved programs as well.

First it should be mentioned that the compiler with the improvement
of course compiles the benchmark suite with no problems. Besides that it
passes the regression suite for the MLton compiler consisting of 271 SML
programs that tries to catch the corner cases of the compiler. It also com-
piles and runs the MLton compiler itself.

Example 1

If we look at the �rst example in listing 4.1 we have an over�ow arithmetic
that can't possibly over�ow. When compiling the hamlet.sml �le with the
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improvement and search for the speci�c instance from example 1 we �nd
the snippet shown in listing 4.11.

2790loop_355 (x_10769: word32)

2791x_10772: bool = WordU32_lt (x_10769 , global_33)

2792case x_10772 of

2793true => L_22171 | false => L_24271

2794L_22171 ()

2795x_18279: word32 = Word32_add (x_10769 , global_5)

2796loop_355 (x_18279)

Listing 4.11: Snippet from improved SSA output for hamlet.sml

We can see that the over�ow arithmetic transfer has been translated
into a primitive function de�nition that performs the same operation but
no longer actively checks for over�ow. This example has been transformed
as expected from the initial study of over�ow arithmetic. The informa-
tion required to transform this example comes from an assignment to the
global variable global_33 and from the boolean primitive de�nition of
WordU33_lt.

When the de�nition of the boolean variable x_10772 is visited in line
2791 in listing 4.11 four new facts are created and assigned to it. Since the
abstract value of x_10769 before the boolean de�nition has no relevance we
will here assign it the value >. So we let L(x_10769, loop_355) = > and
of course L(global_33, loop_355) = 〈951, 951〉. Now the boolean variable
x_10772 have the following four facts assigned to it:

True:

AT,x_10769[[x_10772]] = 〈MIN , 950〉
AT,global_33[[x_10772]] = 〈951, 951〉

False:

AF,x_10769[[x_10772]] = 〈951,MAX 〉
AF,global_33[[x_10772]] = 〈951, 951〉

The boolean variable now holds potential facts to be propagated down
the control paths if it is matched in a case transfer with a true and a false
case. This match happens in line 2792 where the true facts are added to
the label L_22171 and the false facts are added to the label L_24271. As
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a technicality it should be mentioned that in the implementation, since the
abstract value for the variable global_33 has not changed from its global
value, no fact is propagated for this global variable. This minimizes the
ancestor chain that contains the facts and that will in turn minimize the
time is takes to look up a fact.

The facts are now assigned to the labels in the case transfer and the
labels will be visited by the analysis since they are below in the dominator
tree. When the analysis visits the original arithmetic transfer on line 2903 in
listing 4.1 it needs the abstract value for the two variables used as operands
for the arithmetic operator. These values will �rst be searched for in each
entry in the ancestor chain and if not found there looked up in the global
environment I. The global variable is not added to the facts for the label
L_22171 since it has not changed from its global value but the abstract
value for the variable x_10769 is found in the list of facts for the label. The
analysis then uses this value for the test of the unreachable over�ow.

In the example above the abstract operation is performed with the
two values found in the list of facts and global environment, respectively:
〈MIN , 950〉 +̄ 〈1, 1〉 = 〈MIN +1, 951〉. Neither MIN +1 or 951 are above or
below the boundaries for a 32 bit word. The arithmetic transfer meets the
requirements for not producing over�ow at run-time and is transformed.

Example 2

The second example with its main part shown in listing 4.4 is also trans-
formed after the new analysis. The improved version of the SSA function
exp2_0 is shown in listing 4.12.

1665fun exp2_0 (x_1715: word32): {raises = Some (exn),

returns = Some (word32)} = L_1601 ()

1666L_1601 ()

1667case x_1715 of

16680x0 => L_5493 | _ => L_1602

1669L_5493 ()

1670return global_6

1671L_1602 ()

1672x_3059: word32 = Word32_sub (x_1715 , global_6)

1673exp2_0 (x_3059) NonTail {cont = L_1606 , handler =

Caller}

1674L_1606 (x_1717: word32)

1675L_5089 (global_19 * x_1717) Overflow => L_5492 ()

1676L_5492 ()

1677raise (global_45)

1678L_5089 (x_1718: word32)
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1679return x_1718

Listing 4.12: Snippet of improved SSA output from DLXSimulator.sml

By comparing with the original code before the improvement it can be
observed that some transformation has taken place. The arithmetic transfer
we identi�ed earlier as one where over�ow is known not to be occurring on
run-time is translated into a primitive function de�nition and a goto trans-
fer. The label L_1602 now directly calls the exp2_0 function recursively
instead of �rst going through label L_1604 as in listing 4.4. This transfor-
mation is performed by a generic pass called Shrink that is performed after
every other optimization pass. The Shrink pass will transform a goto trans-
fer to a target block that contains no statements directly into the transfer
from the target block.

The invariant described earlier that the input to the exp2_0 function is
zero or positive is valid. By looking at the abstract values after the a �x
point is reached we get the following value for the parameter:

L(x_1715, exp2_0) = 〈0,MAX 〉

If we follow this value to the �rst block in the dominator tree L_1601

we see a case transfer on a word variable. The rule called Case Transfer
- Lower has created two facts for both the branches of the case transfer.
There is the simple constant interval that is assigned the label L_5493 and
the re�ned interval where one is added to the lower bound of the tested value
and added to the default case. This means that we have the following:

L(x_1715, L_1602) = 〈1,MAX 〉

In the original example in listing 4.4 we have an arithmetic transfer in la-
bel L_1602 with the following operation and operands: x_1715 - global_6
that in abstract values translate into the following: L(x_1715, L_1602)
−̄ L(global_6, L_1602) that when our �x point is reached is the same as:
〈1,MAX 〉 −̄ 〈1, 1〉 = 〈0,MAX − 1〉. Since neither 0 nor MAX − 1 is below
or above the possible values no over�ow can happen and the arithmetic
transfer is up for transformation.

The invariant is upheld by the result from above, 〈0,MAX − 1〉, being
the input to the recursive call to exp2_0. Without the re�ned information
from the case transfer the subtraction would result in the value for the
variable x_3059 being widened to 〈MIN ,MAX 〉.
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4.5.1 Benchmark suite

As mentioned in the section for the improvement 1 the MLton benchmark
suite consists of 43 programs of di�erent complexity. The benchmark suite
is used to measure three di�erent aspects; compile-time, run-time, and bi-
nary size of the benchmark programs. To measure the e�ect of the second
improvement we use these benchmarks and compare them with the MLton
compiler1 without our improvement.

When considering the three factors we measure we need to focus on
what the improvement we have done achieves. We remove over�ow han-
dlers which in itself is a small transformation and the expected binary size
reduction of that transformation alone is small. A larger binary reduction
must come from subsequent transformation where larger chunks of now
detectable dead code is removed.

The run time is expected to be reduced by the transformation but with
only a few arithmetic over�ow checks removed the arithmetic must be in
hot code that is run intensively to make a di�erence. So the run time
reduction depends on the number of times some arithmetic is performed
at run-time and the amount of those arithmetic operations that have their
over�ow check removed by the transformation.

Compile time is a property that depends on the implementation of the
improvement pass. We expect the compile time to be increased since our
analysis is far from optimized. Our widening is potentially slow since it
might require many steps to reach a �x point. We put only a small emphasis
on compile time since this can be reduced considerably by optimizing the
implementation and the �x point computation.

So the �rst interesting measure we will look at is the number of over�ow
handlers that are transformed in the benchmark suite. In �gure 4.1 we
see the number of transformed instances and the total number of over�ow
handlers in the entire benchmark suite.

Handlers Transformed
4240 913

Table 4.1: Number of transformed over�ow handlers

The number of over�ow handlers that the improvement is able to trans-
form is 22% of the total number of over�ow handlers. This is probably
the most important measure of the improvement since the improvement
can only remove over�ow handlers and nothing else. So the percentage of

1Latest version from repository: 20110614
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removed handlers is the basis for the measured binary size and run time
reductions.

In �gure 4.2 on page 56 we see the binary sizes (in bytes) of all the pro-
grams in the benchmark suite both with and without our improvement and
we see how much of a di�erence there is. Each program in the benchmark
also has the number of over�ow handlers that are transformed in its column
called hits.

We see a reduction in every benchmark program regarding binary size
where some reductions are small and a few are relatively large. As men-
tioned the binary size of the transformation itself is small but after the
transformation new code might be detected as dead and removed by the
RemoveUnused or the Shrink pass that is performed after the improvement.

There are two binary size reductions that are considerably larger than
the rest. The delta reduction for flat-array and mandelbrot are almost
12KB. The large reduction in these two programs are partly caused by all
over�ow handlers being removed in both cases. This leads to the over�ow
exception itself being removed from the program since it is no longer used.
Some more code regarding the top-level exception handling and reporting
is then transformed and further reductions take place. All these subsequent
reductions come from the Shrink and the RemoveUnused passes.

Figure 4.3 on page 57 shows the run time of the benchmark programs
with and without the improvement and again a delta column shows the
di�erence between the two. As mentioned the run time is depended on
both the number of removed over�ow handlers and the number of times
these transformed arithmetic operations are performed. The run time is an
average of several runs to reduce �uctuations in the results.

The delta numbers that are below one tenth of a second should be
considered so small that the �uctuations in the measurements are a relevant
factor. There are benchmarks with a considerable number of hits but with
almost no run time reduction but as mentioned before the number of times
the arithmetic is performed at run-time is an important factor.

There are some measurements where a considerable reduction in run
time has taken place. Benchmarks such as matrix-multiply, imp-for,
mandelbrot, and tailfib all have a considerable reduced run time. In
�gure 4.5 on page 53 we visualize the reduced run time in a few benchmarks.
The time reduction relative to the total run time make the optimization
noticeable in these benchmarks. The four mentioned benchmarks all have
relatively few removed over�ow handlers but the removed ones are in critical
places. In the Fibonacci benchmark the arithmetic with minus one and
minus two in the tail recursive calls are removed. These are performed
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Figure 4.5: Examples of reduced run times

many times when the program is run. The same is the case for the other
benchmarks that have hot arithmetic transformed so it does no longer check
for over�ow.

An interesting observation is the reduction in tailfib contra the miss-
ing reduction in the non-tail call version of Fibonacci numbers called fib.
The fib benchmark does not have the arithmetic for minus one and minus
two transformed. The reason for this is that there are no boolean compar-
isons in the program but rather a case transfer that matches on zero and
one. The SSA for the case transfer can be seen in listing 4.13.

L_1422 ()

case x_1226 of

0x0 => L_4235 | 0x1 => L_4234 | _ => L_1423

Listing 4.13: Case matching in fib

This case is not handled by our constraints since there are more than
one constant literal being tested for. An extension to the implementation
could be to handle the case with an arbitrary number of constant literals
re�ning an interval. When the abstract value for the variable x_1226 is
widened to have a lower bound of zero a re�ned interval would �ow to the
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default case with a lower bound of two, since the case for zero and one are
part of the case transfer.

The compile time for the new improvement is bounded by the �x point
calculation that takes up most of the compile time. Figure 4.4 on page 58
shows the compile time for each program in the benchmark suite.

Again the delta �gures that are below one tenth of a second are within
the deviation of the measurements and are not necessarily a re�ection of
the change from the new improvement.

The widening function depends on the number of integer constants in
the program. This means that large programs with many di�erent integer
constants take longer to reach a �x point. There are a few benchmarks with
a notably increase in compile size; hamlet, mlyacc, model-elimination,
and vliw all have an increase above one second and some have an increase
above 50%. The compile time for the MLton compiler itself is also increased
signi�cantly.

Further work on the implementation will be to optimize the code and
work on the �x point calculation. The code is not production ready but it
will self-compile, pass the regression tests and the benchmark suite.

4.6 Assessment

Our second improvement was directly based on SSA generated code from
the programs in the benchmark suite. This is in contrast to the �rst im-
provement that was based on an arti�cial example. This approach ensured
that we at least had the few examples we found where we could perform
some optimization. As it turned out the analysis can �nd much more. Not
only did we detect and transform the places we identi�ed by studying the
SSA code but the analysis was able to gather information that would be dif-
�cult to do by hand. The whole program propagation of values and several
layers of boolean comparison lead to 913 transformations in the benchmark
suite.

The examples we identi�ed by hand has been presented after the anal-
ysis has transformed them and the changes in the code has been discussed.
These few examples are only a small fraction of the total number of trans-
formations. There are places where a program performs arithmetic on the
result from a primitive call to Vector_length. Some of these places comes
from the translated user programs and some from the included standard
library. Most of the transformations come from the boolean comparisons
that bound integer intervals from above or below. These bounds re�ne the
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intervals and give the much needed information used to make the actual
transformations.
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+

Benchmark # hits Size without Size with ∆
barnes-hut 25 158,891 157,407 -1,484

boyer 4 224,771 224,419 -352

checksum 6 117,667 117,267 -400

count-graphs 19 138,959 138,415 -544

DLXSimulator 22 188,590 188,046 -544

fft 12 136,160 135,264 -896

fib 4 117,551 117,423 -128

flat-array 4 117,119 104,631 -12,488

hamlet 41 1,219,895 1,219,175 -720

imp-for 4 117,367 117,063 -304

knuth-bendix 25 170,930 170,278 -652

lexgen 29 261,261 260,637 -624

life 7 137,239 136,647 -592

logic 4 181,663 181,583 -80

mandelbrot 5 117,383 104,643 -12,740

matrix-multiply 8 119,063 118,359 -704

md5 20 137,998 137,502 -496

merge 7 118,831 118,463 -368

mlyacc 79 574,885 572,357 -2,528

model-elimination 67 680,992 679,920 -1,072

mpuz 12 122,479 122,095 -384

nucleic 4 268,215 268,023 -192

output1 14 141,718 140,902 -816

peek 19 141,830 141,398 -432

psdes-random 9 120,959 120,239 -720

ratio-regions 18 139,747 139,427 -320

ray 34 223,099 222,491 -608

raytrace 69 308,684 307,084 -1,600

simple 36 290,826 290,218 -608

smith-normal-form 53 249,054 247,326 -1,728

tailfib 5 117,399 117,079 -320

tak 4 117,567 117,383 -184

tensor 34 163,437 162,653 -784

tsp 19 143,086 142,806 -280

tyan 45 201,270 200,726 -544

vector-concat 3 118,683 118,587 -96

vector-rev 5 118,391 118,007 -384

vliw 44 435,832 434,920 -912

wc-input1 24 161,532 160,628 -904

wc-scanStream 24 169,436 168,532 -904

zebra 14 202,158 201,934 -224

zern 32 141,925 140,501 -1,424

Table 4.2: Binary sizes of the benchmark suite (sizes are in bytes)
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+

Benchmark # hits RT without RT with ∆
barnes-hut 25 3.73 3.72 -0.01

boyer 4 14.30 14.34 0.04

checksum 6 7.44 7.44 0.00

count-graphs 19 6.17 6.15 -0.02

DLXSimulator 22 5.03 5.01 -0.02

fft 12 3.79 3.78 -0.01

fib 4 13.62 13.87 0.15

flat-array 4 6.94 6.92 -0.02

hamlet 41 9.60 9.59 -0.01

imp-for 4 8.88 6.55 -2.33

knuth-bendix 25 5.88 5.83 -0.05

lexgen 29 5.46 5.45 -0.01

life 7 6.28 6.29 0.01

logic 4 5.48 5.48 0.00

mandelbrot 5 8.70 8.20 -0.50

matrix-multiply 8 6.25 4.56 -1.69

md5 20 11.65 11.38 -0.27

merge 7 6.09 6.09 0.00

mlyacc 79 5.61 5.61 0.00

model-elimination 67 9.59 9.56 -0.03

mpuz 12 6.02 6.00 -0.02

nucleic 4 4.23 4.13 -0.10

output1 14 7.42 7.41 -0.01

peek 19 17.10 17.26 0.16

psdes-random 9 7.19 7.31 0.12

ratio-regions 18 21.69 21.68 -0.01

ray 34 5.02 5.00 -0.02

raytrace 69 3.71 3.70 -0.01

simple 36 4.58 4.57 -0.01

smith-normal-form 53 2.64 2.63 -0.01

tailfib 5 10.54 8.45 -2.09

tak 4 6.16 6.69 0.53

tensor 34 12.94 12.94 0.00

tsp 19 6.31 6.29 -0.02

tyan 45 6.16 6.14 -0.02

vector-concat 3 12.43 12.42 -0.01

vector-rev 5 9.08 9.42 0.34

vliw 44 5.68 5.69 0.01

wc-input1 24 10.99 10.90 -0.09

wc-scanStream 24 7.85 7.82 -0.03

zebra 14 7.44 7.46 0.02

zern 32 6.03 5.89 -0.14

Table 4.3: Run times (RT) of the benchmark suite (times are in seconds)
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+

Benchmark # hits CT without CT with ∆
barnes-hut 25 2.39 2.38 -0.01

boyer 4 2.50 2.67 0.17

checksum 6 1.94 1.88 -0.06

count-graphs 19 2.06 2.17 0.11

DLXSimulator 22 2.48 2.80 0.32

fft 12 2.04 2.04 0.00

fib 4 1.89 1.89 0.00

flat-array 4 1.90 1.91 0.01

hamlet 41 10.42 29.57 19.15

imp-for 4 1.94 1.89 -0.05

knuth-bendix 25 2.28 2.33 0.05

lexgen 29 2.83 3.34 0.51

life 7 2.00 2.02 0.02

logic 4 2.32 2.32 0.00

mandelbrot 5 1.90 1.87 -0.03

matrix-multiply 8 1.92 1.89 -0.03

md5 20 2.04 2.06 0.02

merge 7 1.90 1.86 -0.04

mlyacc 79 5.92 14.29 8.37

model-elimination 67 5.44 9.21 3.77

mpuz 12 1.91 1.91 0.00

nucleic 4 3.38 3.49 0.11

output1 14 2.03 2.04 0.01

peek 19 2.02 2.09 0.07

psdes-random 9 1.98 1.94 -0.04

ratio-regions 18 2.16 2.34 0.15

ray 34 2.56 2.98 0.42

raytrace 69 3.31 4.20 0.89

simple 36 2.98 3.55 0.57

smith-normal-form 53 2.70 2.98 0.28

tailfib 5 1.88 1.84 -0.04

tak 4 1.90 1.86 -0.04

tensor 34 2.36 2.62 0.26

tsp 19 2.06 2.12 0.06

tyan 45 2.48 3.06 0.58

vector-concat 3 1.90 1.87 -0.03

vector-rev 5 1.91 1.88 -0.03

vliw 44 4.16 6.75 2.59

wc-input1 24 2.18 2.38 0.20

wc-scanStream 24 2.22 2.47 0.25

zebra 14 2.54 2.74 0.20

zern 32 2.08 2.16 0.08

Table 4.4: Compile times (CT) of the benchmark suite (times are in sec-
onds)



Chapter 5

Related work

In this section we present related research in the topics of this thesis. We
cover exception analysis in ML and interval analysis in general. We will also
mention di�erent approaches to handling over�ow of integer arithmetic in
other languages where minimizing the overhead is also an issue.

An analysis over SSA form in general is presented by Ziarek et al. [2008]
where they introduce functional SSA, a variant of classical SSA. Ziarek
et al. [2008] presents a tuple �attening transformation and incorporate this
into the MLton compiler. The analysis is based on a grammar of functional
SSA, a formal semantic for the tuple �attening program transformation,
and a proof of type safety and correctness of the transformation. [Fluet
and Weeks, 2001] also present an analysis over SSA and use this in the
MLton compiler. They introduce a small subset of the SSA form in MLton
called FOL and present a grammar for this language. The analysis is used
to transform functions that always returns to the same place into continu-
ations. Their approach is to use the dominator tree for the analysis much
like we have done in our interval analysis. A comparison between SSA and
continuation-passing style is presented by Kelsey [1995] that also presents
a small grammar for a SSA procedure.

5.1 Exception analysis of ML

Several approaches to exception analysis in ML has been proposed in the
literature. One of the main focus areas has been on the distinction between
precision and e�ciency of the analyses. Type and E�ect systems extend the
type system to have an e�ect component that states the side-e�ects that can
arise from applying a function of a particular function type. Guzmán and
Suárez [1994] extend the type system for a subset of ML with the notion of

59
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escaping exceptions, though they do not model exceptions as constructors
with arguments. With this extension of the type system they are able to
infer not only the types of the program but the exceptions as well using an
extended type inference algorithm.

Uni�cation of equality constraint approaches generally have an e�cient
run time but are often imprecise since they cannot model the direction of the
value �ow within the program. Pessaux and Leroy [1999] use an extended
type system that uses uni�cation to keep track of escaping exceptions on a
subset of ML. In addition to adding e�ects on function types they extend the
types for integers and exceptions to restrict the values those types can have.
To represent these possible values they use a notion of rows representing
sets and the uni�cation is done on these.

A di�erent approach uses inclusion constraints over set-expressions [Yi
and Ryu, 2002], also known as control-�ow analysis. These are theoretically
more precise but have a worse run-time complexity since they are able to
model the direction of the value �ow within the program quite accurately.

An attempt at unifying the constraint-based approaches has been made
[Fähndrich and Aiken, 1997, Fähndrich et al., 1998]. Fähndrich et al. [1998]
instantiate their general constraint framework BANE with an analysis for
uncaught exceptions in ML. Their resulting uncaught exceptions reported
by the implementation for ml-lex are the same as the ones reported by Yi
[1998].

Yi [1998] take a di�erent approach using a collection analysis based
on abstract interpretation techniques. This approach is usually regarded
as impractical on real-world programs since the run time scales horribly
on the input size. The approach is, however, good in the sense that the
design of the analysis can be derived once you have the abstraction of the
concrete semantics of the language. The language used by Yi [1998] is an
intermediate language that the SML programs are translated into.

What the above analyses have in common is the end goal of the result;
they all want to report the uncaught exceptions of the program. While this
is a very di�erent problem than the analysis itself, some choose to skip this
detail altogether [Pessaux and Leroy, 1999] while others are more focused
on the aspect of visualization [Fähndrich et al., 1998, Guzmán and Suárez,
1994], but the motivation for the analysis is based on the notion of report-
ing of uncaught exceptions back to the user.

Fähndrich et al. [1998] divide exceptions in ML into four categories
where one is called pervasive exceptions. These are control-�ow exceptions
raised by primitive operations by the built-in system, e.g., Overflow and
Subscript. They choose to ignore this category of exceptions in their
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analysis since they do not model integer constants or integer arithmetic.
The result of this is that their analysis assumes these exceptions can arise
from any of the primitive operations.

5.2 Interval analysis and over�ow

Interval analysis was �rst proposed by Cousot and Cousot [1976] but was
also concurrently being developed under the name of range analysis by Har-
rison [1977]. The approach by Cousot and Cousot [1976] has been to work
with solid foundations in language semantics and thereby extracting α and
γ functions used to translate between values and their abstract counter-
parts. The other branch called range analysis is developed with a more
practical sense in mind. Harrison [1977] develops his range analysis on the
speci�c requirements he faces when trying to implement the analysis in
working compilers. The approach is more ad-hoc and the reasoning subject
as widening, narrowing and termination is more loose than in the case of
Cousot.

Recent work on interval/range analysis comes from the embedded world
[Stephenson et al., 2000] where minimizing the number of bits needed to
represent the values in the program have a physical e�ect of the manufac-
turing of silicon chips. Stephenson et al. [2000] use bi-directional data-range
propagation to both propagate data-range forwards and backwards over a
program's control paths. They present their Bitwise compiler that uses an
extended SSA form as an intermediate language. The extension of the SSA
form is the notion of range-re�nement functions. These functions serve the
purpose of re�ning the ranges much like our approach with the four inter-
vals connected to boolean variables and the creation of facts assigned to
blocks.

In a language like Scheme we do not have an over�ow error on arithmetic
but instead operate with arbitrary precision integers. Fixnums are integers
that �t into a machine word and these are not closed under the normal
integer operations. When a �xnum no longer �ts in a machine word it gets
widened to a bignum where this widening can be considered equivalent to
our notion of raising an over�ow exception. Shivers [1990] proposes the
use of range analysis on integers in Scheme to implement e�cient integer
arithmetic on �xnums. By knowing that an operation on �xnums cannot be
widened to a bignum there is no reason to check for it and a more e�cient
operation can be achieved. This is the same approach we use to eliminate
over�ow checks.

A dynamic language like LISP does not require the speci�cation of types
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at compile time so run-time type checking is required. To know information
about types at run-time tags are added on data items. Steenkiste [1991]
mentions that these tags can constructed in such a way that a single type
check on the result of an arithmetic operation can determine if an over�ow
has happened and if both operands are short integers. By setting the bits
in the tags in this way eliminates the need to check independently for short
integer operands and short integer result. If the result is not of the short
integer type either the operands were not short integers or an over�ow
has happened. Steenkiste [1991] improves the run time of programs with
heavy short integer arithmetic much like we have improved the run time of
programs by eliminating over�ow checks.



Chapter 6

Conclusion

In this thesis we have explored the intermediate output from the indus-
trial strength MLton compiler in a search for places where static analysis
could improve the resulting binaries regarding size and run time. We have
formulated, implemented and measured two di�erent improvements regard-
ing exception handlers. The �rst improvement was based on an arti�cial
example program and we were unsure about the e�ectiveness of the analy-
sis on real-world programs. As it turned out the MLton benchmark suite
contained no places where the analysis could improve the programs.

The next improvement was based on real programs from the benchmark
suite of MLton and several examples were found which guaranteed at least
those hits when running and measuring with the benchmark suite. After
the implementation it turned out that there were many places besides the
few examples that could be caught by the analysis. We were able to trans-
form 22% of all the over�ow handlers on arithmetic in the benchmark suite
resulting in small binaries and reduced run time on a few benchmark that
were arithmetic heavy.

Our initial hypothesis was that the binaries generated by the MLton
compiler contained dead exception handlers that could be detected and re-
moved with traditional static analysis. We studied and found dead code and
formulated analyses that can detect that information. After experiments
we showed that the amount of dead code the analysis could �nd exceeded
our expectations and improved the binaries from MLton overall.

63
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6.1 Further work

The second analysis with the over�ow handlers was the most successful
and will be the basis for this further work section. As we discussed in
the benchmark section the compile time is increased and this might be a
problem while compiling larger programs.

Compile time

The compile time is bounded by the general implementation and the widen-
ing heuristic used. There have been no attempts to speed up the general
implementation by changing data structures or other techniques. This will
be an obvious �rst step. Experiments with di�erent widening techniques
that would measure the number of hits in the benchmark suite and the com-
pile times can help the search for a faster and maybe even better widening
heuristic.

Intraprocedural return values

In our constraints we de�ned a word type variable returned from a function
to be set to the abstract value >. This might be unnecessary imprecise
since we might know some information about the return value. The re-
turned value from a function is always a variable and since we have an
abstract value for all word variables we could join all the possible abstract
values returned from a function into a single abstract value. This returned
abstract value will then be joined on the parameter to the continuation
to the function. Whether this improvement will enable the compiler to
eliminate even more over�ow handlers is unknown.

Vector lengths

Our treatment of vector lengths assumes lengths are in the interval 〈0,MAX 〉.
To improve on this we might track vector lengths as part of the analysis.
Vectors of word values are also used to represent strings in the SSA form in
MLton so by incorporating a sound approximation of string lengths into the
analysis might give an upper bound on the primitive call to Vector_length.
This will further increase the precision of the information in the interval
analysis.



6.1. FURTHER WORK 65

Primitive functions

Another aspect of the analysis is the information obtained from the calls to
primitive functions. We get information from functions such as Vector_length
and Word_neg but there are several primitive functions we have not consid-
ered. A thorough assessment of each primitive function might show that
information can be extracted from more of them.
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