Title: New Advances in Garbling Circuits

Yao’s garbled circuit (GC) construction is a central tool for constant-round secure computation and has several other applications. The GC transformation maps a boolean circuit C into a “garbled circuit” C', and an n-bit input x into a short “garbled input” x', such that C' together with x' reveal $C(x)$ and no additional information about x. Crucially, the mapping from x to x' is simple (e.g., affine) and the length of x' does not depend on the size of the circuit. In applications, the latter property leads to low online complexity, as one can typically compute C' ahead of time.

We present two new garbled circuit constructions extending the scope and improving the efficiency of known constructions.

(1) We reduce the size of the garbled input x' from $n*k$ to $n+k$, where k is the security parameter. This gives rise to a GC with “optimal” asymptotic rate of 1. As an application, we obtain protocols for secure multiparty computation and non-interactive verifiable computation in the preprocessing model which achieve, for the first time, an optimal online communication complexity. Based on a joint work with Yuval Ishai, Eyal Kushilevitz and Brent Waters.

(2) We show how to garble *arithmetic* circuits in which the input x consists of n integers from a bounded (but possibly exponential) range. This is the first extension of the GC technique to the arithmetic setting. Based on a joint work with Yuval Ishai and Eyal Kushilevitz.