mathlib: LEAN'S MATHEMATICAL LIBRARY

EUTYPES 2018, AARHUS

(classical) mathematical library for Lean

(classical) mathematical library for Lean classical – linear algebra, number theory, analysis, ...

(classical) mathematical library for Lean
 classical – linear algebra, number theory, analysis, ...
 classical – using choice and LEM

 (classical) mathematical library for Lean classical – linear algebra, number theory, analysis, ... classical – using choice and LEM

 Formerly distributed with Lean itself Leo wanted more flexibility (classical) mathematical library for Lean classical – linear algebra, number theory, analysis, ... classical – using choice and LEM

- Formerly distributed with Lean itself Leo wanted more flexibility
- Some (current) topics: Analysis, Linear Algebra, Set Theory, Number Theory, ...

 (classical) mathematical library for Lean classical – linear algebra, number theory, analysis, ... classical – using choice and LEM

- Formerly distributed with Lean itself Leo wanted more flexibility
- Some (current) topics: Analysis, Linear Algebra, Set Theory, Number Theory, ...
- Goal: be comparable to Coq's mathematical components, Isabelle's HOL-Analysis

Currently \sim 92.000 LOC (from \sim 54.000 in Jan 2018)

- Currently \sim 92.000 LOC (from \sim 54.000 in Jan 2018)
- Currently maintained by Mario Carneiro and me

- Currently \sim 92.000 LOC (from \sim 54.000 in Jan 2018)
- Currently maintained by Mario Carneiro and me
- Some Contributors:

- Currently \sim 92.000 LOC (from \sim 54.000 in Jan 2018)
- Currently maintained by Mario Carneiro and me
- Some Contributors:

Projects:

- Currently \sim 92.000 LOC (from \sim 54.000 in Jan 2018)
- Currently maintained by Mario Carneiro and me
- Some Contributors:

Projects:

Xena Project by Kevin Buzzard – teaching Lean to math students

- \blacksquare Currently \sim 92.000 LOC (from \sim 54.000 in Jan 2018)
- Currently maintained by Mario Carneiro and me
- Some Contributors:

Projects:

Xena Project by Kevin Buzzard – teaching Lean to math students **Lean Forward** by Jasmin C. Blanchette – number theory Lean is (mostly) CIC

Lean is (mostly) CIC

 Proof irrelevance is a definitional equality (incompatible with HoTT)

- Lean is (mostly) CIC
- Proof irrelevance is a definitional equality (incompatible with HoTT)
- Quotient types (built-in)

- Lean is (mostly) CIC
- Proof irrelevance is a definitional equality (incompatible with HoTT)
- Quotient types (built-in)
- Non-cummulative universes

- Lean is (mostly) CIC
- Proof irrelevance is a definitional equality (incompatible with HoTT)
- Quotient types (built-in)
- Non-cummulative universes
- **axiom choice** : $\Pi(\alpha : \text{Sort}_u)$, nonempty $\alpha \rightarrow \alpha$

- Lean is (mostly) CIC
- Proof irrelevance is a definitional equality (incompatible with HoTT)
- Quotient types (built-in)
- Non-cummulative universes
- **axiom choice** : $\Pi(\alpha : \text{Sort}_u)$, nonempty $\alpha \rightarrow \alpha$
- noncomputable: constant uses axioms, after Prop erasure (many things are computable)

mathlib

Constructions

- Tactics
- Theories

filter, topology, uniformity, submodule, measurable

filter, topology, uniformity, submodule, measurable

Galois insertion relates them to another complete lattice, e.g. set α :

 $\begin{array}{rll} \mbox{generate} & : & \mbox{set} \ \alpha \to \mathcal{F} \ \alpha \\ \mbox{forget} & : & \mathcal{F} \ \alpha \to \mbox{set} \ \alpha \end{array}$

generate $s \le x \leftrightarrow s \subseteq \text{forget } x$ generate \circ forget = id

filter, topology, uniformity, submodule, measurable

Galois insertion relates them to another complete lattice, e.g. set α :

 $\begin{array}{rll} \mbox{generate} & : & \mbox{set} \ \alpha \to \mathcal{F} \ \alpha \\ \mbox{forget} & : & \mathcal{F} \ \alpha \to \mbox{set} \ \alpha \end{array}$

generate $s \le x \leftrightarrow s \subseteq \text{forget } x$ generate \circ forget = id

Complete lattices structure is lifted along these insertion:

complete_lattice ($\mathcal{F} \alpha$)

filter, topology, uniformity, submodule, measurable

Galois insertion relates them to another complete lattice, e.g. set α :

 $\begin{array}{rll} \mbox{generate} & : & \mbox{set} \ \alpha \to \mathcal{F} \ \alpha \\ \mbox{forget} & : & \mathcal{F} \ \alpha \to \mbox{set} \ \alpha \end{array}$

generate $s \le x \leftrightarrow s \subseteq \text{forget } x$ generate \circ forget = id

Complete lattices structure is lifted along these insertion:

complete_lattice ($\mathcal{F} \alpha$)

No category theory yet!

COMPLETE LATTICES WITH (CO)FUNCTORS

These structures are co- and contravariant functors:

$$\begin{array}{l} \mathsf{map} : (\alpha \to \beta) \to (\mathcal{F} \; \alpha \to \mathcal{F} \; \beta) \\ \mathsf{comap} : (\alpha \to \beta) \to (\mathcal{F} \; \beta \to \mathcal{F} \; \alpha) \end{array}$$

Also known as push-forward and pull-back.

COMPLETE LATTICES WITH (CO)FUNCTORS

These structures are co- and contravariant functors:

$$\begin{array}{l} \mathsf{map} : (\alpha \to \beta) \to (\mathcal{F} \; \alpha \to \mathcal{F} \; \beta) \\ \mathsf{comap} : (\alpha \to \beta) \to (\mathcal{F} \; \beta \to \mathcal{F} \; \alpha) \end{array}$$

Also known as push-forward and pull-back.

They form a Galois connection:

 $map f x \leq y \longleftrightarrow x \leq comap f y \\ f \in Hom(x, y) := x \leq comap f y$

COMPLETE LATTICES WITH (CO)FUNCTORS

These structures are co- and contravariant functors:

$$\begin{array}{l} \mathsf{map} : (\alpha \to \beta) \to (\mathcal{F} \; \alpha \to \mathcal{F} \; \beta) \\ \mathsf{comap} : (\alpha \to \beta) \to (\mathcal{F} \; \beta \to \mathcal{F} \; \alpha) \end{array}$$

Also known as push-forward and pull-back.

They form a Galois connection:

 $map f x \le y \longleftrightarrow x \le comap f y \\ f \in Hom(x,y) := x \le comap f y$

Easy constructions:

prod $t_1 t_2 := \operatorname{comap} \pi_1 t_1 \sqcup \operatorname{comap} \pi_2 t_2$ subtype $t s := \operatorname{comap} (\operatorname{subtype.val} s) t$

- Ext. nonnneg. reals: $\mathbb{R}_{\geq 0} \uplus \infty$, extended nats $\overline{\mathbb{N}} = \mathbb{N} \uplus \infty$
- Multisets with infinity (e.g. sets of factors, ∞ to represent o)
- with_top $\alpha := \operatorname{option} \alpha$
- Instances:
 - ▶ partial_order $\alpha \rightarrow \text{partial}_order$ (with_top α)
 - ► conditionally_complete_lattice_bot $\alpha \rightarrow$ complete_lattice (with_top α)
 - ▶ add_monoid $\alpha \rightarrow \text{add}_monoid$ (with_top α)
 - canonically_ordered_comm_semiring α → canonically_ordered_comm_semiring (with_top α)

ring, abel (Mario Carneiro) Decides ring / group equalities.

linarith (Robert Y. Lewis)

Decides linear problems (based Fourier-Motzkin elimination)

tidy (Scott Morrison)

Apply a list of tactics (suggests a replacement)

- Basic (computable) data
- Type class hierarchies:

Orders orders, lattices Algebraic (commutative) groups, rings, fields Spaces measurable, topological, uniform, metric

- Cardinals & ordinals
- Analysis: topology, measure Theory, ...
- Linear algebra
- Group / ring / field theory
- Number theory

Numbers: \mathbb{N} , \mathbb{Z} (as datatype, not quotient), \mathbb{Q} , fin : $\mathbb{N} \to \mathsf{Type}$

Numbers: \mathbb{N} , \mathbb{Z} (as datatype, not quotient), \mathbb{Q} , fin : $\mathbb{N} \to \mathsf{Type}$ set $\alpha := \alpha \to \mathsf{Prop}$ Numbers: N, Z (as datatype, not quotient), Q, fin : N → Type
set $\alpha := \alpha \rightarrow Prop$ list α

- **Numbers:** \mathbb{N} , \mathbb{Z} (as datatype, not quotient), \mathbb{Q} , fin : $\mathbb{N} \to \mathsf{Type}$
- **set** $\alpha := \alpha \rightarrow \operatorname{Prop}$
- $\blacksquare \operatorname{list} \alpha$
- $\blacksquare \texttt{ multiset } \alpha := \texttt{list } \alpha /_{\texttt{perm}}$

- **Numbers:** \mathbb{N} , \mathbb{Z} (as datatype, not quotient), \mathbb{Q} , fin : $\mathbb{N} \to \mathsf{Type}$
- **set** $\alpha := \alpha \rightarrow \operatorname{Prop}$
- list α
- multiset $\alpha := \text{list } \alpha /_{\text{perm}}$
- finset $\alpha := \{m : \text{multiset } \alpha \mid \text{nodup } m\}$

- **Numbers:** \mathbb{N} , \mathbb{Z} (as datatype, not quotient), \mathbb{Q} , fin : $\mathbb{N} \to \mathsf{Type}$
- **set** $\alpha := \alpha \rightarrow \operatorname{Prop}$
- list α
- **multiset** $\alpha := \text{list } \alpha /_{\text{perm}}$
- finset $\alpha := \{m : \text{multiset } \alpha \mid \text{nodup } m\}$
- Big operators for list, multiset and finset

 $\begin{array}{ll} \texttt{structure} \ \alpha \simeq \beta := (f: \alpha \rightarrow \beta) \ (g: \beta \rightarrow \alpha) \ (f_g: f \circ g = id) \ (g_f: g \circ f = id) \\ \texttt{cardinal}_u & : \ \texttt{Type}_{u+1} \ := \ \texttt{Type}_u/_{\simeq} \\ \texttt{ordinal}_u & : \ \texttt{Type}_{u+1} \ := \ \texttt{Well_order}_u/_{\simeq_{ord}} \end{array}$

Well-ordered, semiring, etc...

 $\begin{array}{ll} \texttt{structure} \ \alpha \simeq \beta := (f : \alpha \to \beta) \ (g : \beta \to \alpha) \ (f_g : f \circ g = id) \ (g_f : g \circ f = id) \\ \texttt{cardinal}_u & : \ \texttt{Type}_{u+1} \ := \ \texttt{Type}_u/_{\simeq} \\ \texttt{ordinal}_u & : \ \texttt{Type}_{u+1} \ := \ \texttt{Well_order}_u/_{\simeq_{ord}} \end{array}$

Well-ordered, semiring, etc...

Semiring structure of cardinal from \simeq constructions

 $\begin{array}{ll} \texttt{structure} \ \alpha \simeq \beta := (f : \alpha \to \beta) \ (g : \beta \to \alpha) \ (f_g : f \circ g = id) \ (g_f : g \circ f = id) \\ \texttt{cardinal}_u & : \ \texttt{Type}_{u+1} \ := \ \texttt{Type}_u/_{\simeq} \\ \texttt{ordinal}_u & : \ \texttt{Type}_{u+1} \ := \ \texttt{Well_order}_u/_{\simeq_{ord}} \end{array}$

- Well-ordered, semiring, etc...
- \blacksquare Semiring structure of cardinal from \simeq constructions

• $\kappa + \kappa = \kappa = \kappa * \kappa$ (for $\kappa \ge \omega$)

 $\begin{array}{ll} \texttt{structure} \ \alpha \simeq \beta := (f : \alpha \to \beta) \ (g : \beta \to \alpha) \ (f_g : f \circ g = id) \ (g_f : g \circ f = id) \\ \texttt{cardinal}_u & : \ \texttt{Type}_{u+1} \ := \ \texttt{Type}_u/_{\simeq} \\ \texttt{ordinal}_u & : \ \texttt{Type}_{u+1} \ := \ \texttt{Well_order}_u/_{\simeq_{ord}} \end{array}$

- Well-ordered, semiring, etc...
- \blacksquare Semiring structure of cardinal from \simeq constructions
- $\kappa + \kappa = \kappa = \kappa * \kappa$ (for $\kappa \ge \omega$)
- Existence of inaccessible cardinals (i.e. in the next universe)

 $\begin{array}{ll} \texttt{structure} \ \alpha \simeq \beta := (f : \alpha \to \beta) \ (g : \beta \to \alpha) \ (f_g : f \circ g = id) \ (g_f : g \circ f = id) \\ \texttt{cardinal}_u & : \ \texttt{Type}_{u+1} \ := \ \texttt{Type}_u/_{\simeq} \\ \texttt{ordinal}_u & : \ \texttt{Type}_{u+1} \ := \ \texttt{Well_order}_u/_{\simeq_{ord}} \end{array}$

- Well-ordered, semiring, etc...
- \blacksquare Semiring structure of cardinal from \simeq constructions
- $\kappa + \kappa = \kappa = \kappa * \kappa$ (for $\kappa \ge \omega$)
- Existence of inaccessible cardinals (i.e. in the next universe)
- Application: Dimension of subspaces

NUMBER THEORY

p-adic numbers \mathbb{Q}_p by Rob Y. Lewis

 \blacksquare Cauchy construction of $\mathbb Q$ "in the other direction"

 $n.d_0d_1d_2d_3\cdots \mathbb{R}$ $\cdots d_4d_3d_2d_1d_0 p-adic number, d_n < p$

Interesting result: Hensel's lemma

Quadratic Reciprocity by Chris Hughes (\sim 1300 lines patch)

theorem quadratic_reciprocity (hp : prime p) (hq : prime q) (hp1 : p % 2 = 1) (hq1 : q % 2 = 1) (hpq : $p \neq q$) : legendre p q hq * legendre q p hp = (-1) ^ (p/2 * q/2)

Filter generalizes limits (derived from Isabelle/HOL)

Filter generalizes limits (derived from Isabelle/HOL) **Topology** nhds filter, open & closed & compact sets, interior, closure

Filter generalizes limits (derived from Isabelle/HOL)
Topology nhds filter, open & closed & compact sets, interior, closure
Uniformity complete, totally bounded, completion
 compact ↔ complete & totally bounded
Metric instance of uniformities
 Norm only rudimentary (no deriviatives yet...)

(Outer) Measures

```
structure outer_measure (\alpha : Type*) := (\mu : set \alpha \rightarrow ennreal) ...
```

```
structure measure (\alpha) [measurable_space \alpha]
extends outer_measure \alpha := ...
```

- Outer measures provide natural totalization of measures
- Carathéodory's extension theorem
- Lebesgue Measure
- Completion measurable space

```
def pmf (\alpha) := { f : \alpha \rightarrow nnreal // is_sum f 1 }
```

```
def pure (a : \alpha) : pmf \alpha := \langle \lambda a', if a' = a then 1 else 0, is_sum_ite _ _>
```

```
def bind (p : pmf \alpha) (f : \alpha \rightarrow \text{pmf }\beta) : pmf \beta := \langle \lambda b, (\sum a, p a * f a b), \ldots \rangle
```

prove rules of the Giry monad
generality of \$\sum helps!

Definition (Infinite sum)

$$\sum_{i:\iota} f i = \lim_{s \to at_top} \sum_{i \in s} f i$$

Assuming: $f: \iota \rightarrow \alpha$, [topological_add_monoid α]

- **at_top** : filter (finset ι) finite sets approaching univ : set ι
- \blacksquare $\mathbb R,$ normed vector spaces, ennreal, $\mathbb Q, \mathbb N, \mathbb Z, ...$

$$\sum_{b} \sum_{c} f(b,c) = \sum_{(b,c)} f(b,c) - \alpha \text{ regular}$$

$$\sum_{n:\mathbb{N}} f n = \lim_{i \to \infty} \sum_{n=0}^{i} f n$$

Definition (Module)

class module (α : out Type u) (β : Type v) [out ring α] := ...

Constructions: Subspace, Linear maps, Quotient, Product, Tensor Product **Dimension:** dim $(\alpha \ \beta)$ [field α] [vector_space $\alpha \ \beta$] : cardinal Laws:

$$\frac{dom(f)}{ker(f)} \simeq_{\ell} im(f) \qquad \frac{s}{s \cap t} \simeq_{\ell} \frac{s \oplus t}{t}$$
$$R \oplus M \simeq_{\ell} M \qquad M \oplus N \simeq_{\ell} N \oplus M \qquad M \oplus (N \oplus L) \simeq_{\ell} (M \oplus N) \oplus L$$

Discussion

Type class mechanism looks for module β

- **Type class mechanism looks for module** β
- Only one canoncial module per type

- **Type class mechanism looks for module** β
- Only one canoncial module per type
- **Idea:** Usually α is fixed per theory anyway

- **Type class mechanism looks for module** β
- Only one canoncial module per type
- Idea: usually α is fixed per theory anyway
- **Problem:** (multivariate) polynomials, Z-modules, N-semimodules, ...

PROBLEMS WITH TYPE CLASSES

PROBLEMS WITH TYPE CLASSES

PROBLEMS WITH TYPE CLASSES

Currently a automated copy from group to add_group instead: [is_group(*)(/)(□⁻¹)1] and [is_group(+)(-)(-□)0]

Mixin type classes replace comm_monoid,...by [is_commutative (*)] class functor (M : Type_u \rightarrow Type_v) := (map : $\forall (\alpha \ \beta : Type_u), (\alpha \rightarrow \beta) \rightarrow M \ \alpha \rightarrow M \ \beta)$ (map_comp : $\forall (\alpha \ \beta \ \gamma : Type_u) f g h, map f \circ map g = map (f \circ g))$ (map_id : $\forall \alpha, map id = id$)

If we only work with functor (topology α) our library is too limited, e.g. topology.map allows mapping between different universes.

```
topology.map {\alpha : Type u} {\beta : Type v} :
(\alpha \rightarrow \beta) \rightarrow (topology \alpha \rightarrow topology \beta)
```

- PR: Trigonometric functions
- PR: Sylow's theorem
- Integral & Derivatives
- Category Theory
- Lean 4

24

A (classical) mathematical library for Lean https://github.com/leanprover/mathlib