
mathlib:
Lean’s mathematical library

Johannes Hölzl

EUTYPES 2018, Aarhus



Introduction — what is mathlib

(classical) mathematical library for Lean

classical – linear algebra, number theory, analysis, ...
classical – using choice and LEM
Formerly distributed with Lean itself
Leo wanted more �exibility
Some (current) topics:
Analysis, Linear Algebra, Set Theory, Number Theory, . . .
Goal: be comparable to
Coq’s mathematical components,
Isabelle’s HOL-Analysis

1 24



Introduction — what is mathlib

(classical) mathematical library for Lean
classical – linear algebra, number theory, analysis, ...

classical – using choice and LEM
Formerly distributed with Lean itself
Leo wanted more �exibility
Some (current) topics:
Analysis, Linear Algebra, Set Theory, Number Theory, . . .
Goal: be comparable to
Coq’s mathematical components,
Isabelle’s HOL-Analysis

1 24



Introduction — what is mathlib

(classical) mathematical library for Lean
classical – linear algebra, number theory, analysis, ...
classical – using choice and LEM

Formerly distributed with Lean itself
Leo wanted more �exibility
Some (current) topics:
Analysis, Linear Algebra, Set Theory, Number Theory, . . .
Goal: be comparable to
Coq’s mathematical components,
Isabelle’s HOL-Analysis

1 24



Introduction — what is mathlib

(classical) mathematical library for Lean
classical – linear algebra, number theory, analysis, ...
classical – using choice and LEM
Formerly distributed with Lean itself
Leo wanted more �exibility

Some (current) topics:
Analysis, Linear Algebra, Set Theory, Number Theory, . . .
Goal: be comparable to
Coq’s mathematical components,
Isabelle’s HOL-Analysis

1 24



Introduction — what is mathlib

(classical) mathematical library for Lean
classical – linear algebra, number theory, analysis, ...
classical – using choice and LEM
Formerly distributed with Lean itself
Leo wanted more �exibility
Some (current) topics:
Analysis, Linear Algebra, Set Theory, Number Theory, . . .

Goal: be comparable to
Coq’s mathematical components,
Isabelle’s HOL-Analysis

1 24



Introduction — what is mathlib

(classical) mathematical library for Lean
classical – linear algebra, number theory, analysis, ...
classical – using choice and LEM
Formerly distributed with Lean itself
Leo wanted more �exibility
Some (current) topics:
Analysis, Linear Algebra, Set Theory, Number Theory, . . .
Goal: be comparable to
Coq’s mathematical components,
Isabelle’s HOL-Analysis

1 24



Maintenance

Currently ∼ 92.000 LOC (from ∼ 54.000 in Jan 2018)

Currently maintained by Mario Carneiro and me
Some Contributors:
Chris Hughes, Gabriel Ebner, Jeremy Avigad, Johann Commelin, Johannes Hölzl,
Keely Hoek, Kenny Lau, Kevin Buzzard, Mario Carneiro, Minchao Wu, Patrick
Massot, Reid Barton, Robert Y. Lewis, Scott Morrison, Sean Leather, Sebastian

Ullrich, Sebastien Gouezel, Simon Hudon, ...
Projects:

Xena Project by Kevin Buzzard – teaching Lean to math students
Lean Forward by Jasmin C. Blanchette – number theory

2 24



Maintenance

Currently ∼ 92.000 LOC (from ∼ 54.000 in Jan 2018)
Currently maintained by Mario Carneiro and me

Some Contributors:
Chris Hughes, Gabriel Ebner, Jeremy Avigad, Johann Commelin, Johannes Hölzl,
Keely Hoek, Kenny Lau, Kevin Buzzard, Mario Carneiro, Minchao Wu, Patrick
Massot, Reid Barton, Robert Y. Lewis, Scott Morrison, Sean Leather, Sebastian

Ullrich, Sebastien Gouezel, Simon Hudon, ...
Projects:

Xena Project by Kevin Buzzard – teaching Lean to math students
Lean Forward by Jasmin C. Blanchette – number theory

2 24



Maintenance

Currently ∼ 92.000 LOC (from ∼ 54.000 in Jan 2018)
Currently maintained by Mario Carneiro and me
Some Contributors:
Chris Hughes, Gabriel Ebner, Jeremy Avigad, Johann Commelin, Johannes Hölzl,
Keely Hoek, Kenny Lau, Kevin Buzzard, Mario Carneiro, Minchao Wu, Patrick
Massot, Reid Barton, Robert Y. Lewis, Scott Morrison, Sean Leather, Sebastian

Ullrich, Sebastien Gouezel, Simon Hudon, ...

Projects:

Xena Project by Kevin Buzzard – teaching Lean to math students
Lean Forward by Jasmin C. Blanchette – number theory

2 24



Maintenance

Currently ∼ 92.000 LOC (from ∼ 54.000 in Jan 2018)
Currently maintained by Mario Carneiro and me
Some Contributors:
Chris Hughes, Gabriel Ebner, Jeremy Avigad, Johann Commelin, Johannes Hölzl,
Keely Hoek, Kenny Lau, Kevin Buzzard, Mario Carneiro, Minchao Wu, Patrick
Massot, Reid Barton, Robert Y. Lewis, Scott Morrison, Sean Leather, Sebastian

Ullrich, Sebastien Gouezel, Simon Hudon, ...
Projects:

Xena Project by Kevin Buzzard – teaching Lean to math students
Lean Forward by Jasmin C. Blanchette – number theory

2 24



Maintenance

Currently ∼ 92.000 LOC (from ∼ 54.000 in Jan 2018)
Currently maintained by Mario Carneiro and me
Some Contributors:
Chris Hughes, Gabriel Ebner, Jeremy Avigad, Johann Commelin, Johannes Hölzl,
Keely Hoek, Kenny Lau, Kevin Buzzard, Mario Carneiro, Minchao Wu, Patrick
Massot, Reid Barton, Robert Y. Lewis, Scott Morrison, Sean Leather, Sebastian

Ullrich, Sebastien Gouezel, Simon Hudon, ...
Projects:
Xena Project by Kevin Buzzard – teaching Lean to math students

Lean Forward by Jasmin C. Blanchette – number theory

2 24



Maintenance

Currently ∼ 92.000 LOC (from ∼ 54.000 in Jan 2018)
Currently maintained by Mario Carneiro and me
Some Contributors:
Chris Hughes, Gabriel Ebner, Jeremy Avigad, Johann Commelin, Johannes Hölzl,
Keely Hoek, Kenny Lau, Kevin Buzzard, Mario Carneiro, Minchao Wu, Patrick
Massot, Reid Barton, Robert Y. Lewis, Scott Morrison, Sean Leather, Sebastian

Ullrich, Sebastien Gouezel, Simon Hudon, ...
Projects:
Xena Project by Kevin Buzzard – teaching Lean to math students
Lean Forward by Jasmin C. Blanchette – number theory

2 24



Logic

Lean is (mostly) CIC

Proof irrelevance is a de�nitional equality
(incompatible with HoTT)
Quotient types (built-in)
Non-cummulative universes
axiom choice : Π(α : Sortu),nonempty α→ α

noncomputable: constant uses axioms, after Prop erasure
(many things are computable)

3 24



Logic

Lean is (mostly) CIC
Proof irrelevance is a de�nitional equality
(incompatible with HoTT)

Quotient types (built-in)
Non-cummulative universes
axiom choice : Π(α : Sortu),nonempty α→ α

noncomputable: constant uses axioms, after Prop erasure
(many things are computable)

3 24



Logic

Lean is (mostly) CIC
Proof irrelevance is a de�nitional equality
(incompatible with HoTT)
Quotient types (built-in)

Non-cummulative universes
axiom choice : Π(α : Sortu),nonempty α→ α

noncomputable: constant uses axioms, after Prop erasure
(many things are computable)

3 24



Logic

Lean is (mostly) CIC
Proof irrelevance is a de�nitional equality
(incompatible with HoTT)
Quotient types (built-in)
Non-cummulative universes

axiom choice : Π(α : Sortu),nonempty α→ α

noncomputable: constant uses axioms, after Prop erasure
(many things are computable)

3 24



Logic

Lean is (mostly) CIC
Proof irrelevance is a de�nitional equality
(incompatible with HoTT)
Quotient types (built-in)
Non-cummulative universes
axiom choice : Π(α : Sortu),nonempty α→ α

noncomputable: constant uses axioms, after Prop erasure
(many things are computable)

3 24



Logic

Lean is (mostly) CIC
Proof irrelevance is a de�nitional equality
(incompatible with HoTT)
Quotient types (built-in)
Non-cummulative universes
axiom choice : Π(α : Sortu),nonempty α→ α

noncomputable: constant uses axioms, after Prop erasure
(many things are computable)

3 24



mathlib

4 24



Constructions
Tactics
Theories

5 24



Structures as Complete Lattices

There are many set like structures:

filter, topology, uniformity, submodule, measurable

Galois insertion relates them to another complete lattice, e.g. set α:

generate : set α→ F α
forget : F α→ set α

generate s ≤ x←→ s ⊆ forget x
generate ◦ forget = id

Complete lattices structure is lifted along these insertion:

complete_lattice (F α)

No category theory yet!

6 24



Structures as Complete Lattices

There are many set like structures:

filter, topology, uniformity, submodule, measurable

Galois insertion relates them to another complete lattice, e.g. set α:

generate : set α→ F α
forget : F α→ set α

generate s ≤ x←→ s ⊆ forget x
generate ◦ forget = id

Complete lattices structure is lifted along these insertion:

complete_lattice (F α)

No category theory yet!

6 24



Structures as Complete Lattices

There are many set like structures:

filter, topology, uniformity, submodule, measurable

Galois insertion relates them to another complete lattice, e.g. set α:

generate : set α→ F α
forget : F α→ set α

generate s ≤ x←→ s ⊆ forget x
generate ◦ forget = id

Complete lattices structure is lifted along these insertion:

complete_lattice (F α)

No category theory yet!

6 24



Structures as Complete Lattices

There are many set like structures:

filter, topology, uniformity, submodule, measurable

Galois insertion relates them to another complete lattice, e.g. set α:

generate : set α→ F α
forget : F α→ set α

generate s ≤ x←→ s ⊆ forget x
generate ◦ forget = id

Complete lattices structure is lifted along these insertion:

complete_lattice (F α)

No category theory yet!
6 24



Complete Lattices with (co)functors

These structures are co- and contravariant functors:

map : (α→ β)→ (F α→ F β)
comap : (α→ β)→ (F β → F α)

Also known as push-forward and pull-back.

They form a Galois connection:

map f x ≤ y ←→ x ≤ comap f y

f ∈ Hom(x, y) := x ≤ comap f y
Easy constructions:

prod t1 t2 := comap π1 t1 t comap π2 t2
subtype t s := comap (subtype.val s) t

7 24



Complete Lattices with (co)functors

These structures are co- and contravariant functors:

map : (α→ β)→ (F α→ F β)
comap : (α→ β)→ (F β → F α)

Also known as push-forward and pull-back.
They form a Galois connection:

map f x ≤ y ←→ x ≤ comap f y

f ∈ Hom(x, y) := x ≤ comap f y

Easy constructions:

prod t1 t2 := comap π1 t1 t comap π2 t2
subtype t s := comap (subtype.val s) t

7 24



Complete Lattices with (co)functors

These structures are co- and contravariant functors:

map : (α→ β)→ (F α→ F β)
comap : (α→ β)→ (F β → F α)

Also known as push-forward and pull-back.
They form a Galois connection:

map f x ≤ y ←→ x ≤ comap f y

f ∈ Hom(x, y) := x ≤ comap f y
Easy constructions:

prod t1 t2 := comap π1 t1 t comap π2 t2
subtype t s := comap (subtype.val s) t

7 24



Constructions – Adjoin >, ⊥ or 0

Ext. nonnneg. reals: R≥0 ]∞, extended nats N = N ]∞
Multisets with in�nity (e.g. sets of factors,∞ to represent 0)
with_top α := option α
Instances:
I partial_order α→ partial_order (with_top α)
I conditionally_complete_lattice_bot α→

complete_lattice (with_top α)
I add_monoid α→ add_monoid (with_top α)
I canonically_ordered_comm_semiring α→

canonically_ordered_comm_semiring (with_top α)

8 24



Tactics

ring, abel (Mario Carneiro)
Decides ring / group equalities.

linarith (Robert Y. Lewis)
Decides linear problems (based Fourier-Motzkin elimination)

tidy (Scott Morrison)
Apply a list of tactics (suggests a replacement)

9 24



mathlib

Basic (computable) data
Type class hierarchies:

Orders orders, lattices
Algebraic (commutative) groups, rings, �elds
Spaces measurable, topological, uniform, metric

Cardinals & ordinals
Analysis: topology, measure Theory, . . .
Linear algebra
Group / ring / �eld theory
Number theory

10 24



Basic (computable) data

Numbers: N, Z (as datatype, not quotient), Q, fin : N→ Type

set α := α→ Prop
list α
multiset α := list α/perm
finset α := {m : multiset α | nodup m}
Big operators for list, multiset and finset

11 24



Basic (computable) data

Numbers: N, Z (as datatype, not quotient), Q, fin : N→ Type
set α := α→ Prop

list α
multiset α := list α/perm
finset α := {m : multiset α | nodup m}
Big operators for list, multiset and finset

11 24



Basic (computable) data

Numbers: N, Z (as datatype, not quotient), Q, fin : N→ Type
set α := α→ Prop
list α

multiset α := list α/perm
finset α := {m : multiset α | nodup m}
Big operators for list, multiset and finset

11 24



Basic (computable) data

Numbers: N, Z (as datatype, not quotient), Q, fin : N→ Type
set α := α→ Prop
list α
multiset α := list α/perm

finset α := {m : multiset α | nodup m}
Big operators for list, multiset and finset

11 24



Basic (computable) data

Numbers: N, Z (as datatype, not quotient), Q, fin : N→ Type
set α := α→ Prop
list α
multiset α := list α/perm
finset α := {m : multiset α | nodup m}

Big operators for list, multiset and finset

11 24



Basic (computable) data

Numbers: N, Z (as datatype, not quotient), Q, fin : N→ Type
set α := α→ Prop
list α
multiset α := list α/perm
finset α := {m : multiset α | nodup m}
Big operators for list, multiset and finset

11 24



Cardinals and Ordinals

De�nition (Equivalence, Cardinals and Ordinals)
structure α ' β := (f : α→ β) (g : β → α) (f_g : f ◦ g = id) (g_f : g ◦ f = id)
cardinalu : Typeu+1 := Typeu/'
ordinalu : Typeu+1 := Well_orderu/'ord

Well-ordered, semiring, etc...

Semiring structure of cardinal from ' constructions
κ+ κ = κ = κ ∗ κ (for κ ≥ ω)
Existence of inaccessible cardinals (i.e. in the next universe)
Application: Dimension of subspaces

12 24



Cardinals and Ordinals

De�nition (Equivalence, Cardinals and Ordinals)
structure α ' β := (f : α→ β) (g : β → α) (f_g : f ◦ g = id) (g_f : g ◦ f = id)
cardinalu : Typeu+1 := Typeu/'
ordinalu : Typeu+1 := Well_orderu/'ord

Well-ordered, semiring, etc...
Semiring structure of cardinal from ' constructions

κ+ κ = κ = κ ∗ κ (for κ ≥ ω)
Existence of inaccessible cardinals (i.e. in the next universe)
Application: Dimension of subspaces

12 24



Cardinals and Ordinals

De�nition (Equivalence, Cardinals and Ordinals)
structure α ' β := (f : α→ β) (g : β → α) (f_g : f ◦ g = id) (g_f : g ◦ f = id)
cardinalu : Typeu+1 := Typeu/'
ordinalu : Typeu+1 := Well_orderu/'ord

Well-ordered, semiring, etc...
Semiring structure of cardinal from ' constructions
κ+ κ = κ = κ ∗ κ (for κ ≥ ω)

Existence of inaccessible cardinals (i.e. in the next universe)
Application: Dimension of subspaces

12 24



Cardinals and Ordinals

De�nition (Equivalence, Cardinals and Ordinals)
structure α ' β := (f : α→ β) (g : β → α) (f_g : f ◦ g = id) (g_f : g ◦ f = id)
cardinalu : Typeu+1 := Typeu/'
ordinalu : Typeu+1 := Well_orderu/'ord

Well-ordered, semiring, etc...
Semiring structure of cardinal from ' constructions
κ+ κ = κ = κ ∗ κ (for κ ≥ ω)
Existence of inaccessible cardinals (i.e. in the next universe)

Application: Dimension of subspaces

12 24



Cardinals and Ordinals

De�nition (Equivalence, Cardinals and Ordinals)
structure α ' β := (f : α→ β) (g : β → α) (f_g : f ◦ g = id) (g_f : g ◦ f = id)
cardinalu : Typeu+1 := Typeu/'
ordinalu : Typeu+1 := Well_orderu/'ord

Well-ordered, semiring, etc...
Semiring structure of cardinal from ' constructions
κ+ κ = κ = κ ∗ κ (for κ ≥ ω)
Existence of inaccessible cardinals (i.e. in the next universe)
Application: Dimension of subspaces

12 24



Number Theory

p-adic numbers Qp by Rob Y. Lewis

Cauchy construction of Q "in the other direction"

n.d0d1d2d3 · · · R
· · ·d4d3d2d1d0 p-adic number, dn < p

Interesting result: Hensel’s lemma

Quadratic Reciprocity by Chris Hughes (∼ 1300 lines patch)

theorem quadratic_reciprocity (hp : prime p) (hq : prime q)
(hp1 : p % 2 = 1) (hq1 : q % 2 = 1) (hpq : p 6= q) :
legendre p q hq * legendre q p hp = (-1) ^ (p/2 * q/2)

13 24



Analysis

Filter generalizes limits (derived from Isabelle/HOL)

Topology nhds �lter, open & closed & compact sets, interior, closure
Uniformity complete, totally bounded, completion

compact↔ complete & totally bounded
Metric instance of uniformities
Norm only rudimentary (no deriviatives yet...)

Measure Lebesgue measure etc...

14 24



Analysis

Filter generalizes limits (derived from Isabelle/HOL)
Topology nhds �lter, open & closed & compact sets, interior, closure

Uniformity complete, totally bounded, completion
compact↔ complete & totally bounded

Metric instance of uniformities
Norm only rudimentary (no deriviatives yet...)

Measure Lebesgue measure etc...

14 24



Analysis

Filter generalizes limits (derived from Isabelle/HOL)
Topology nhds �lter, open & closed & compact sets, interior, closure

Uniformity complete, totally bounded, completion
compact↔ complete & totally bounded

Metric instance of uniformities
Norm only rudimentary (no deriviatives yet...)

Measure Lebesgue measure etc...

14 24



Analysis

Filter generalizes limits (derived from Isabelle/HOL)
Topology nhds �lter, open & closed & compact sets, interior, closure

Uniformity complete, totally bounded, completion
compact↔ complete & totally bounded

Metric instance of uniformities

Norm only rudimentary (no deriviatives yet...)
Measure Lebesgue measure etc...

14 24



Analysis

Filter generalizes limits (derived from Isabelle/HOL)
Topology nhds �lter, open & closed & compact sets, interior, closure

Uniformity complete, totally bounded, completion
compact↔ complete & totally bounded

Metric instance of uniformities
Norm only rudimentary (no deriviatives yet...)

Measure Lebesgue measure etc...

14 24



Analysis

Filter generalizes limits (derived from Isabelle/HOL)
Topology nhds �lter, open & closed & compact sets, interior, closure

Uniformity complete, totally bounded, completion
compact↔ complete & totally bounded

Metric instance of uniformities
Norm only rudimentary (no deriviatives yet...)

Measure Lebesgue measure etc...

14 24



Measure Theory

(Outer) Measures

structure outer_measure (α : Type*) :=
(µ : set α → ennreal) ...

structure measure (α) [measurable_space α]
extends outer_measure α := ...

Outer measures provide natural totalization of measures
Carathéodory’s extension theorem
Lebesgue Measure
Completion measurable space

15 24



Probability Theory

def pmf (α) := { f : α → nnreal // is_sum f 1 }

def pure (a : α) : pmf α :=
〈λa’, if a’ = a then 1 else 0, is_sum_ite _ _〉

def bind (p : pmf α) (f : α → pmf β) : pmf β :=
〈λb, (

∑
a, p a * f a b), ...〉

prove rules of the Giry monad
generality of

∑
helps!

16 24



Analysis: Infinite Sum

De�nition (In�nite sum)

∑
i:ι

f i = lim
s→at_top

∑
i∈s

f i

Assuming: f : ι→ α, [topological_add_monoid α]

at_top : filter (finset ι) �nite sets approaching univ : set ι
R, normed vector spaces, ennreal, Q, N, Z, ...∑

b
∑

c f (b, c) =
∑

(b,c) f (b, c) — α regular∑
n:N f n = limi→∞

∑i
n=0 f n

17 24



Linear Algebra

De�nition (Module)

class module (α : out Type u) (β : Type v) [out ring α] := ...

Constructions: Subspace, Linear maps, Quotient, Product, Tensor Product
Dimension: dim (α β) [field α] [vector_space α β] : cardinal

Laws:
dom(f )
ker(f ) '` im(f ) s

s∩t '`
s⊕t
t

R⊕M '` M M⊕ N '` N⊕M M⊕ (N⊕ L) '` (M⊕ N)⊕ L

18 24



Discussion

19 24



Linear Algebra

class module (α : out Type u) (β : Type v) [out ring α] :=
...

Type class mechanism looks for module _ β _
Only one canoncial module per type
Idea: usually α is �xed per theory anyway
Problem: (multivariate) polynomials, Z-modules, N-semimodules, ...

20 24



Linear Algebra

class module (α : out Type u) (β : Type v) [out ring α] :=
...

Type class mechanism looks for module _ β _

Only one canoncial module per type
Idea: usually α is �xed per theory anyway
Problem: (multivariate) polynomials, Z-modules, N-semimodules, ...

20 24



Linear Algebra

class module (α : out Type u) (β : Type v) [out ring α] :=
...

Type class mechanism looks for module _ β _
Only one canoncial module per type

Idea: usually α is �xed per theory anyway
Problem: (multivariate) polynomials, Z-modules, N-semimodules, ...

20 24



Linear Algebra

class module (α : out Type u) (β : Type v) [out ring α] :=
...

Type class mechanism looks for module _ β _
Only one canoncial module per type
Idea: usually α is �xed per theory anyway

Problem: (multivariate) polynomials, Z-modules, N-semimodules, ...

20 24



Linear Algebra

class module (α : out Type u) (β : Type v) [out ring α] :=
...

Type class mechanism looks for module _ β _
Only one canoncial module per type
Idea: usually α is �xed per theory anyway
Problem: (multivariate) polynomials, Z-modules, N-semimodules, ...

20 24



Problems with Type Classes

semigroup

monoid

group

comm_semigroup

comm_monoid

comm_group

add_semigroup

add_monoid

add_group

add_comm_semigroup

add_comm_monoid

add_comm_group

Currently a automated copy from group to add_group
instead: [is_group(∗)(/)(�−1)1] and [is_group(+)(−)(−�)0]

Mixin type classes
replace comm_monoid, . . . by [is_commutative (∗)]

21 24



Problems with Type Classes

semigroup

monoid

group

comm_semigroup

comm_monoid

comm_group

add_semigroup

add_monoid

add_group

add_comm_semigroup

add_comm_monoid

add_comm_group

Currently a automated copy from group to add_group
instead: [is_group(∗)(/)(�−1)1] and [is_group(+)(−)(−�)0]

Mixin type classes
replace comm_monoid, . . . by [is_commutative (∗)]

21 24



Problems with Type Classes

semigroup

monoid

group

comm_semigroup

comm_monoid

comm_group

add_semigroup

add_monoid

add_group

add_comm_semigroup

add_comm_monoid

add_comm_group

Currently a automated copy from group to add_group
instead: [is_group(∗)(/)(�−1)1] and [is_group(+)(−)(−�)0]

Mixin type classes
replace comm_monoid, . . . by [is_commutative (∗)]

21 24



Problems with Type Classes

semigroup

monoid

group

comm_semigroup

comm_monoid

comm_group

add_semigroup

add_monoid

add_group

add_comm_semigroup

add_comm_monoid

add_comm_group

Currently a automated copy from group to add_group
instead: [is_group(∗)(/)(�−1)1] and [is_group(+)(−)(−�)0]

Mixin type classes
replace comm_monoid, . . . by [is_commutative (∗)]

21 24



Problem with Universes

class functor (M : Typeu → Typev) :=
(map : ∀(α β : Typeu), (α→ β)→ M α→ M β)
(map_comp : ∀(α β γ : Typeu) f g h,map f ◦ map g = map (f ◦ g))
(map_id : ∀α,map id = id)

Problematic u

22 24



Problem with Universes

class functor (M : Typeu → Typev) :=
(map : ∀(α β : Typeu), (α→ β)→ M α→ M β)
(map_comp : ∀(α β γ : Typeu) f g h,map f ◦ map g = map (f ◦ g))
(map_id : ∀α,map id = id)

Problematic u

22 24



Problem with Universes

class functor (M : Typeu → Typev) :=
(map : ∀(α β : Typeu), (α→ β)→ M α→ M β)
(map_comp : ∀(α β γ : Typeu) f g h,map f ◦ map g = map (f ◦ g))
(map_id : ∀α,map id = id)

Problematic u

If we only work with functor (topology α) our library is too limited, e.g.
topology.map allows mapping between di�erent universes.

topology.map {α : Type u} {β : Type v} :
(α → β) → (topology α → topology β)

22 24



Future

PR: Trigonometric functions
PR: Sylow’s theorem
Integral & Derivatives
Category Theory
Lean 4

23 24



mathlib

A (classical) mathematical library for Lean

https://github.com/leanprover/mathlib

24 / 24

https://github.com/leanprover/mathlib

