
Towards an Open and Extensible Business

Process Simulation Engine

Luciano Garćıa-Bañuelos� and Marlon Dumas

Department of Computer Science

University of Tartu, Estonia

{luciano.garcia,marlon.dumas}@ut.ee

Abstract. This paper outlines the architecture and initial proof-of-

concept implementation of an open and extensible business process model

simulator based on CPN tools. The key component of the simulator is a

transformation from BPMN process models to CPNs. This transforma-

tion is structured as a set of templates that can be extended and modified

by developers in order to incorporate new functionality into the simula-

tor. The paper illustrates how this templating mechanism can be used

to capture different types of tasks and resource allocation policies.

1 Introduction

Business process simulation is a widely used technique for analyzing business
process models with respect to performance metrics such as cycle time, cost and
resource utilization. Many commercial business process modeling tools incor-
porate a simulation component, e.g. TIBCO Business Studio, IBM Websphere
Business Modeler (WBM), ARIS, FileNet and Protos [5]. However, these process
simulators have two architectural limitations:

1. Only models designed with the tools themselves can be simulated.
2. No extensibility mechanism is provided to add new features or change the

pre-built simulation and reporting options.

The first limitation stems from two factors. Firstly, the simulation compo-
nent is generally hidden inside the tool, meaning that it does not expose an
Application Programming Interface (API). Secondly, there is a long-standing
problem of lack of business process model interoperability. The Business Process
Modeling Notation (BPMN) – particularly its upcoming version 2 – attempts to
address this issue by providing a standard business process meta-model with an
interoperable XML serialization. While BPMN does not define any simulation
parameters (e.g. arrival times and branching probabilities), it includes extensi-
bility mechanisms that allow one to add such details.

The second limitation is to a large extent connected to the first one: since
the tools do not offer an explicit interface for their simulation component, it
�

On leave from Autonomous University of Tlaxcala; work funded by the ERDF

through the Estonian Centre of Excellence in Computer Science.

199

is not possible to plug-in additional functionality into it. This limitation has
been raised in recent work [7]. Motivated by simulation requirements found in
supply chain management, the authors introduce an extensibility mechanism into
IBM WBM. The idea is to allow developers to attach scripts to processes and
tasks. Six types of scripts are supported: pre-processing scripts (executed before
a task/process is activated), post-processing scripts, delay scripts (to introduce
waiting times), cost, revenue and duration scripts. However, this mechanism is
limited – it does not allow one to extend the execution semantics that drives the
simulation engine. For example, one cannot apply such extensibility mechanism
in order to simulate advanced resource allocation patterns [10] nor to capture
control-flow connectors beyond those offered by the modeling tool.

In this paper, we outline the architecture and current implementation status
of OXProS - an Open and Extensible Process Simulator for BPMN. OXProS
provides a RESTful service interface allowing third-party applications to submit
BPMN process models for simulation. Simulation parameters are incorporated
into the process model using BPMN’s extensibility mechanism. OXProS uses
CPN Tools as its underlying execution environment. In other words, BPMN
models are translated into CPNs for simulation purposes. This translation is
based on a templating mechanism that enables developers to extend OXProS by
adding new templates or modifying existing ones.

In the rest of the paper we present the architecture of OXProS and its
template-based extensibility mechanism. We present the current implementa-
tion status of OXProS and a roadmap for future work.

2 Architecture

Figure 1 depicts the architecture of OXProS. In this figure, the yellow boxes
represent OXProS components, the light-blue boxes represent CPN Tools and
associated components, and the white boxes correspond to third-party software.

At the architectural level, OXProS is structured as a set of XML over HTTP
Web services, designed according to the principles of RESTful service archi-
tectures [3]. A simulation is treated as a resource that can be created/started
through a POST operation. Subsequently, the status of the simulation and its
output can be retrieved using GET operations. As a shortcut, it is possible to
create a simulation model and retrieve its results through a single POST oper-
ation.

OXProS accepts either BPMN process models (enhanced with simulation
attributes) or CPN models. If a BPMN model is submitted, it is transformed
into a CPN model and passed on to the CPN simulation service. At present, there
is no standard serialization of BPMN. It is expected that the upcoming BPMN
2.0 standard will have its own XML serialization format. In the meantime, the
BPMN simulation service assumes that the input models are serialized using the
XML Process Definition Language (XPDL) version 2.1 [1].

The services provided by OXProS are implemented using Java Servlets. The
CPN simulation servlet is built on top of Access/CPN [13] – a tool that enables

200

programmatic access to the CPN Tools Simulator. Since Access/CPN is imple-
mented as a set of OSGi bundles/components, its implementation relies on the
HTTP Service provided by Equinox – the Eclipse OSGi implementation1.

!"#$%&'()*+,(

"-.(/012(,%*%,

345$1%67/+'-)

"-.(/0%&.(2(&.(&'

345$1%67/+'-)

!"#859

:";

:<7%&-=$2/+'*-)6

9>"

:
<
7
%&
-
=
$

?
@
@
4
$1
(
)A

345$1%67/+'%-&$1()A/('

!%67/+'-)$

2)-=B

345$6-.(/$

6+&+C(6(&'

!"#$%&"'()*+,-./0+12)

*345.30

4)-"345#%D)+)B
$E)B=$:.%'-)

F4"5!%6$

G(.%'-)$(='HI
F4"5J345

!"#$6&"'(

7)*+,8)9/0/ K4L#$*%/(

GM%'N$1%6H$.+'+I

345$*%/(!%67/+'%-&$

/-C$*%/($

G"K"#I

:;;3**%<"$)

=4101;1.

Fig. 1. OXProS architecture

When the CPN simulation servlet receives a simulation model, it invokes Ac-
cess/CPN to check the submitted CPN and starts the simulation on the back-
ground simulator daemon. Upon completion of the simulation, an MXML log
file is generated from the simulation output. The produced MXML log file can
be analyzed off-line using the ProM framework2 (e.g. to extract key performance
indicators). In order to generate MXML log files, we make use of the ProM CPN
Library [6].

In the current prototype, BPMN processes are modeled with the Oryx Edi-
tor3. We extended the Oryx front-end to allow users to add simulation param-
eters into a BPMN process model. This Oryx extension is called BPMNSim.
Moreover, we extended the Oryx back-end with a module that generates CPNs
from Oryx’s internal representation of process models. In the future, it is ex-
pected that Oryx will support generation of standard BPMN models so that
these models can be submitted to the BPMN simulation servlet.

3 Template-based Generation of CPNs

The key component of OxProS is the transformation from extended BPMN
models to CPNs. This transformation is designed using a templating approach.
To illustrate the transformation, we consider the simplified “teleclaims” process
of an insurance company, presented in Figure 2. This process handles insurance
claims made by phone. The process is supported by staff in a call center and in
a claims handling department.

In the basic form, a BPMN process diagram consists of events (circles), ac-
tivities (rounded rectangles) and gateways (diamonds). Events denote the start,
1

http://www.eclipse.org/equinox/server
2

http://www.processmining.org
3

http://oryx-editor.org

201

!"#$%&
'()*+,-.'*(&
-/-'0-1'0'.2

3#4'5.#+&
$0-',

6#.#+,'(#&
0'%#0'"**7
*)&$0-',

855#55&
$0-',

9"*(#
$-00

:('.'-0';#&
<-2,#(.

87/'$#&$0-',-(.&
*(&

+#',1=+5#,#(.

!0*5#&$0-',

(*.&#(*=4"&'()*+,-.'*(

(
*
(
&0
'-
1
0#

$
0-
',
&+
#
>#
$
.#
7

!"""#$%%&'(#
)*+%+

,"#+%)-./+

01"#+%)-./+

1"#+%)-./+

22"#+%)-./+

34"#+%)-./+

31"#+%)-./+

,"#+%)-./+

1"5

4"5

305

405

3"5

!"5

Fig. 2. Insurance claim handling process (adapted from [12])

the end of a process case or something that happens during the process execu-

tion. In the running example, we used a “message start event” to specify that

a case starts with the reception of a “Phone call”. Activities denote work that

must be done, for example, an agent in the call center executes the task “Check

information availability”. Gateways are routing constructs. The two basic types

of gateways are AND gateways (marked with a “+” symbol) and XOR gateways

(“X” symbol). A gateway is either to be a split gateway if it has multiple outgo-

ing flows or a join gateway if it has multiple incoming flows. An XOR-split is a

decision point, meaning that one outgoing path is taken according to the result

of the evaluation of a logical condition. For instance, in the running example,

10% of cases are rejected due to insufficient information. A XOR-join is a merg-

ing point. An AND-split starts two or more parallel threads. For instance, tasks

“Advice claimant on reimbursement” and “Initialize payment” are executed in

parallel. Finally an AND-join synchronizes parallel threads.

In order to simulate a BPMN process model, a number of simulation param-

eters need to be specified. These include: (i) the arrival rate of new cases and

its associated distribution (e.g. exponential); (ii) the branching probabilities for

each arc (flow) leaving an XOR-split, and a number of performance attributes

attached to activities/events, such as time, cost and revenue. These attributes

are generally represented using a mean value and a probability distribution (e.g.

normal). A simulation model includes a number of resource pools denoting sets

of resources. Each activity may be associated to a resource pool and at runtime,

one resource from the pool is selected to perform the activity based on a resource

allocation policy.

!"#$%&'())
*"%'+&,$-#./(0,#$&

(1(,)(2,),03
45 64),0747

48

49
!"#$%:'()) *"%'+&,$-#./(0,#$&(1(,)(2,),03 64),07

*;6< *;6<

*;6<

*;6<

Fig. 3. Mapping of the root process

Given a BPMN model

extended with simulation at-

tributes, we generate a hi-

erarchical CPN, with two top-

level pages: one for the con-

trol flow perspective and the other for resource perspective. Figure 3 presents

a partial view of the CPN model for the control-flow of the insurance claim

process.

202

from
Phone_call

Check_information_availability
start

info

p6

info

to
Split1

info

Out

CASEIn

Check_information_availability
complete

info

CASE

CASE

allocated
In

RES

released

e
@+execTimeCIA()

RES

e

Out

Check_information_availability
enable

p5

info

info

CASE

enabled
Out

CASE

info

(a) Task

!"#$

%&#'()*+&!#"$,-.#&*/0,.1,213

451.-6

.&5'-7.&!#58

#'-5'-7.&!#95,-)8

,:-.#&

13-;0,1;5;<;=.>:"3-37?9@@8;.&

;;.!;5A@?;-)3&;7.&!#59;?8

;;31>3;7.&!#59;68

3&=

.&!#5

5B

7.&!#95,-)8

451.-6;5,-)? 451.-6;5,-)6

7.&!#95,-)87.&!#95,-)8

C5,-)<6DC5,-)<?D

-#

E3(.>-3"*:1,.$

-#

F#"*G#.&

.&!# .&!#

+&

H'- H'-

I/4%

I/4%F+JK

I/4% I/4%

(b) XOR (split) gateway

Fig. 4. Default mapping of tasks and XOR-split gateways

In order to make the mapping as modular as possible, every element in a
process model is mapped to an individual page. For example, Figure 4(a) presents
the page with the mapping of task “Check information availability” from the
running example. It contains two places to synchronize the start and completion
of the task, to model the control flow perspective. Additionally, the page includes
three other places to handle the assignment of the task to a staff member for
execution. A simulation would occur as follows. First, the task gets enabled
and waits until a staff member takes it. The timing annotation on transition
“Check information availability start” generates a random simulation time that
is associated to the execution of the task. When the task is completed, the
resource is released.

Let us now consider the case of data-based XOR split gateways. The corre-
sponding CPN must handle the selection of a path according to a probability
distribution. Figure 4(b) presents the page for the first XOR gateway in the run-
ning example. The transition “Split1” generates a random value between 0 and
99. For every path, there is a guarded transition which is activated according to
the value of the variable “path”. Thus, the transition “Split1” sets “path” to 0
in 90% of the cases and it sets “path” to 1 in the remaining 10% of the cases.

In addition to the XOR decision gateway discussed above (called data-driven
decision gateway), BPMN features a so-called event-driven XOR decision gate-
way. The data-based and the event-based XOR gateways are similar in that they
pass the flow of control along one of their outgoing paths only – thus, they rep-
resent a ”choice”. However, whilst in a data-based XOR gateway the choice is
performed by the system based on boolean conditions, in the case of an event-
based XOR gateway, the choice is made by the environment. Specifically, an

203

!"#$%&'()%"#

!(#!*++()%"#

)%'*,"-)

(a) BPMN

!"#$%&'(

')*+

,-.!

('/0#+1(23)20&&3('+) 2+)*'4/3('+)

564+1)78)+4/3&89:;<;=#:;<;>>564+1)78)+4/3&89:;<;=#:;<;>>569?;

')*+

')*+

(b) Mapping with independent events

!"#$%&'()*+

,-./0123

/456'7")5

'()*8

9:;%<#=!#%;>(7!?@8A8&5@8A8++

9:;%<#=!#%;>(7!?@8A8&5@8A8++

9:?B8

/456'7")
/456'7")5

!);(#6+

"#$%'

"#'<)!"#$%'+

%<)'<)!"#$%&'()*+

(C)"%#

7D)5E(75'5F5="6C;D)D!8&GG+5"#

55"$5'HG85)*D#5!"#$%'&58+

55D76D5!"#$%'&5I+

D#=

'I

'J

'?

/456'7")5

'()*I

/456'7")5

'()*J

'K

'@

'B

C%#$";>()"%#

C(#CD77()"%#

)">D5%<)

!

!"#$%&'()*+

!"#$%&'()*+

!"#$%&'()*+

!"#$%&'()*+

!"#$%&'()*+

L'()*FIM

L'()*F8M

,-./

,-./

,-./

,-./

"#$%

"#$%

"#$%

"#$%

"#$%

"#$%

"#$%"#$%

"#$%

"#$%

,-./0123

,-./0123

(c) Mapping with dependent events

Fig. 5. The BPMN Event-based XOR gateway

event-based XOR gateway is directly followed by two or more events. When the
gateway is reached, the flow of control stops at that point until one of the events
in question occurs. The first event to occur determines which path is taken. Fig-
ure 5(a) shows a typical scenario involving an event-based XOR gateway. In this
example the process waits for either a confirmation or a cancellation message
from the customer, or a time-out.

Multiple approaches can be adopted to simulate BPMN models with event-
based XOR gateways. One approach is to capture it purely using delays: each
event is annotated with a delay, that may be a fixed duration (in the case of time
events with constant values), or a probability distribution (in the case of mes-
sage events or time events with a dynamically-evaluated duration). Figure 5(b)
illustrates this approach. Here, the delays of the two message events (cancella-
tion and confirmation) follow a normal distribution with identical means and
standard deviations. This mapping works under the assumption that the two
events are independent.

However, in this example one would expect that these two events are not
independent, but rather exclusive: if a confirmation message is received, no can-
cellation message will arrive and vice-versa. Figure 5(c) presents an alternative
mapping that captures this exclusion dependency. In this case, the customer re-

204

!"#$%

"

!"#$%

"&&'(")*

+

+*&*"#*

+*#',+(*#

-./

-./

-./

*

01/.

!"#$2

!"

!"#$2

!##$%!&'"

("

('#'!)'"

-./ -./

'"

01/.

(a) Role-based distribution

!"#$%

"

!"#$%

"&&'(")*

+

+*#',+(*#

-./

-./

-./

*

01/.

!"#$2

!"

!"#$2

!##$%!&'"

("

('#'!)'"

-./ -./

'"

01/.

(b) Chained execution

Fig. 6. Two templates for resource allocation

sponds with a confirmation message in 90% of the cases or with a cancellation

message in 10% of the cases. The ML annotation on the first transition activates

the path to the “time-out” event and to one of the other two paths (the con-

firmation path and the cancellation path). From that point on, there is a race

between the time event and one of the two message events, reflecting the fact

that only one of the two message events may eventually occur.

In order to implement this alternative mapping, one has to extend BPMN

with the ability to express exclusion dependencies between events that are con-

nected to a common event-based gateway. In the current BPMN standard, when

two events are attached to an event-based gateway, it might be that either event

may occur or that both events may occur (even though the second one to occur

may be discarded). In the above example, the case where both messages are

eventually received by the process is excluded. In other words, the events are

not in a “race” but rather in an exclusion relation. While this exclusion relation

between message events is not relevant for execution purposes, it is relevant for

(stochastic) simulation since it means that their occurrence should be drawn

from a common probability distribution. In OXProS, we rely on a non-standard

extension of event-based decision gateways to capture this exclusion dependency.

In OXProS, CPN simulation models are generated using templates. A tem-

plate takes as input a BPMN element of a given type, and produces a CPN

page. Multiple templates can exist for a given type of BPMN element. Since

each BPMN construct is mapped to a separate page, the mapping of a type of

element (e.g. task, event-based XOR gateway) can be replaced by a different

mapping without affecting other elements, so long as the inputs/output places

of the page generated by the new mapping are compatible with those of the

previous mapping.

Templates are also used for capturing resource management. For example,

Figure 6 shows two templates for resource allocation. The first one – Figure 6(a)

– corresponds to the “Role-based distribution” workflow resource pattern [10].4

The idea behind this pattern is that at runtime the execution engine routes the

4 For readability reasons, we omitted some details on the colored Petri nets in Figure 6.

205

task to the worklist of the resources that can perform a given task, e.g. staff
members with a particular profile/role. Eventually, one of those resources will
remove the workitem from worklist and perform it. This can be simulated with
an ML code attached to the transition “allocate”, and a timing annotation can
be used to record the waiting time. When the task is completed, the resource is
sent back to the resource pool by transition “release”. Existing business process
simulation tools generally implement this approach. However, there exist other
resource allocation patterns. As an example, consider the CPN shown in Figure
6(b) that captures the so-called “Chained execution” pattern. In this case, the
two subsequent tasks are assigned to the same resource. Both of these templates
are provided in OXProS, and developers may introduce additional alternative
templates. When a BPMN model is submitted to OXProS for simulation, the
request may refer to a simulation profile that determines which template should
be used for which BPMN construct. If no profile is specified, the default profile
is used.

4 Related work

Many commercial business process modeling tools incorporate a simulation com-
ponent, e.g. TIBCO Business Studio, IBM Websphere Business Modeler, ARIS,
FileNet and Protos, among others. Jansen-Vullers and Netjes [5] survey a num-
ber of process simulation tools and evaluate their suitability with respect to a
number of requirements. They conclude that no tool covers all the requirements,
and that CPN tools is a suitable option in terms of expressiveness but that it
may be too complex for use by business analysts.

A translation of Protos simulation models to CPN models is presented in [4].
This translation is rather straightforward because Protos models have many
commonalities with Petri nets. The authors also describe an extension of their
translation to handle configurable process models. A configurable process model
provides an integrated view of multiple process model variants. The tool pre-
sented in [4] is geared towards comparing the performance of multiple process
model variants captured in a given configurable process model.

Rozinat et al. [8] present an approach to mining simulation models from
event logs. The idea is to automatically generate a process model, represented
as a CPN, which will behave in a similar way as the process model that gen-
erated the original event log. Depending on the richness of the event log, the
resulting CPN may cover not only the control-flow perspective, but also the
data perspective (e.g. data attributes and branching conditions), the organiza-
tional perspective (e.g. roles, resources) and the performance perspective (e.g.
distribution of execution times). The authors follow the approach of mapping
each activity in the process to a separate sub-page, an idea which is also followed
in OXProS.

CPN tools has been used for generating synthetic logs to be used in the design
and testing of Process Mining algorithms [6]. In contrast to real-life data, the
log generated by simulation is free of noise and will include the perspectives that

206

are important for tuning a given mining algorithm. In [6], the authors outline a

set of ML functions to extend CPN tools in order to generate logs in the MXML

format. This is the format used by several process mining tools. OXProS follows

the idea of representing the simulation output in MXML and reuses the library

of MXML generation functions defined in [6].

In [11], the authors argue that current approaches to model resource alloca-

tion for process simulation are not realistic. For instance, scenarios where the

same resource is assigned to multiple processes (and thus needs to split its time

between them) are not supported by existing tools. Also, existing tools fail to

take into account that people work in batches and that they divide their time into

discrete intervals (“chunks”) that they allocate to different types of tasks. They

present a novel approach to capturing simulation models in which each resource

is captured as a separate CPN page. The CPN page of a resource captures the

resource’s lifecycle. Therefore, each resource (or each resource class) may have a

different lifecycle. While this approach leads to more realistic resource models,

one has to note that implementing such an approach requires significant input

from the modeler, since the modeler has to provide additional information for

each resource (class) and this information may not be available in some cases.

In line with the above body of research, we adopt CPNs as a basis for business

process model simulation. Unlike this body of work however, we adopt BPMN

as the notation for modeling business processes, since it is a widely-adopted

standard that strikes a tradeoff between ease-of-use for business analysts and

expressiveness. While some of the previous work can be easily adapted to sup-

port the simulation of BPMN models, BPMN brings in certain specificities that

warrant further study. Specifically, BPMN has a rich set of event types and

events can be used in different settings (e.g. event-based gateways, error events).

We have shown in this paper that there are multiple possible approaches for

simulating process models with event-based gateways and message events. Each

of these approaches strikes a different tradeoff between the amount of input data

required for simulation and the precision with which the simulation reproduces

the real-world phenomenon. The multiplicity of possible approaches justifies the

need for an extensible architecture which is one of the driving requirements of

OXProS.

5 Outlook

The current implementation of OXProS supports a restricted subset of BPMN

– XOR/AND gateways, tasks, plain events and start message events. Ongoing

work aims at extending the coverage of BPMN by adding templates incremen-

tally. The majority of these templates will be designed on the basis of the BPMN

to plain Petri nets transformation outlined in [2].

In order to validate the suitability of the template-based extensibility mecha-

nisms, we then plan to simulate process models from the logistics domain, where

resources (e.g. trucks) have capacity and speed constraints that cannot be cap-

tured using commercial business process simulation tools.

207

The current OXProS architecture is only able to generate MXML simulation

logs and leaves it up to the user to analyze these raw logs. In future, we plan to

incorporate analytics services into the OXProS architecture in order to compute

key performance indicators from the simulation logs. Another avenue for future

work is to allow OXProS to take as input not only process models with simulation

attributes, but also process execution logs, in order to simulate process models

based on real past executions and starting from a given state [9].

References

1. Workflow Management Coallition. Process Definition Interface – XML Process
Definition Language, October 2008.

2. R. Dijkman, M. Dumas, and C. Ouyang. Formal Semantics and Analysis of BPMN
Process Models. Information and Software Technology, 50(12):1281–1294, 2008.

3. Roy Thomas Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, Irvine, 2000.

4. F. Gottschalk, W. M. P. van der Aalst, M. H. Jansen-Vullers, and H. M. W.
Verbeek. Protos2CPN: using colored Petri nets for configuring and testing busi-
ness processes. International Journal on Software Tools for Technology Transfer,
10(1):95–110, December 2007.

5. M.H. Jansen-Vullers and M. Netjes. Business Process Simulation – A tool survey.
In Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN
Tools, 2006.

6. A. K. Alves De Medeiros and C. W. Günther. Using CPN Tools to Create Test
Logs for Mining Algorithms. In Proceedings of the Sixth Workshop and Tutorial
on Practical Use of Coloured Petri Nets and the CPN Tools, pages 177–190, 2005.

7. C. Ren, W. Wang, J. Dong, H. Ding, B. Shao, and Q. Wang. Towards a Flexible
Business Process Modeling and Simulation Environment. In WSC ’08: Proceedings
of the 40th Winter Simulation Conference, pages 1694–1701, 2008.

8. A. Rozinat, R. S. Mans, M. Song, and W. M. P. van der Aalst. Discovering
Colored Petri Nets from Event Logs. International Journal on Software Tools for
Technology Transfer, 10(1):57–74, December 2007.

9. A. Rozinat, M.T. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede, and C.J.
Fidge. Workflow Simulation for Operational Decision Support. Data & Knowledge
Engineering, 68(9):834–850, 2009.

10. N. Russell, W.M. P. van der Aalst, A.H. M. ter Hofstede, and D. Edmond. Work-
flow Resource Patterns: Identification, Representation and Tool Support. In 17th
International Conference on Advanced Information Systems Engineering (CAiSE),
Porto, Portugal, June 13-17, 2005, pages 216–232. Springer, 2005.

11. W.M.P. van der Aalst, J. Nakatumba, A. Rozinat, and N. Russell. Business Process
Simulation: How to get it right? Technical Report BPM-08-07, BPMcenter.org,
2008.

12. W.M.P. van der Aalst, M. Rosemann, and M. Dumas. Deadline-based Escalation
in Process-Aware Information Systems. Decision Support Systems, 43(2):492–511,
2007.

13. Michael Westergaard and Lars Kristensen. The Access/CPN Framework: A Tool
for Interacting with the CPN Tools Simulator. Applications and Theory of Petri
Nets, pages 313–322, 2009.

208

