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Abstract

Cryptographic protocols are protocols which use cryptographic techniques to
achieve certain tasks while preventing malicious parties to attack the protocols. The
design and analysis of cryptographic protocols are difficult to achieve because of the
increasingly attacking capabilities and the complex requirement of the applications.
Therefore, attacks in many cryptographic protocols have been found later after they
have been designed and even implemented. In this paper, we propose a new Coloured
Petri Net methodology for the security analysis of cryptographic protocols. Our
approach offers a simple but effective way to analyze multiple sessions of protocol
execution. To demonstrate the practical uses of our approach, we apply our method to
analyze Micali’s contract signing protocol and TMN authenticated key exchanged
protocol. Surprisingly we found many new attacks in those protocols.

1. Introduction

Cryptographic protocols are protocols which use cryptographic techniques to achieve
certain tasks while preventing malicious parties to attack the protocols. There are many applications
of cryptographic protocols, for example, authenticated key exchange protocols, web security
protocols, e-payment protocols, e-banking protocols, e-voting protocols, etc.

The design and analysis of cryptographic protocols are difficult to achieve because of the
increasingly attacking capabilities and the complex requirement of the applications. Therefore,
attacks in many cryptographic protocols have been found later after they have been designed [1, 2, 3]
and even implemented eg. [4, 5]. Note that in this paper we focus on only message replay attacks [6].

A lot of works on Petri nets [7] have been applied to analyze cryptographic protocols in [8-
15]. They can be classified into two kinds. The first kind [8-14] offers a modeling and analysis
method to find attacks. The second kind [15] provides a theoretical semantics for cryptographic
protocols which can be used to prove properties of protocols, rather than to find attacks. We focus on
the former kind due to its practical use. All the works in the first kind offer an analysis of a single
session of protocol execution only.

In this paper, we propose a new Coloured Petri Net (CPN) methodology for the security
analysis of cryptographic protocols. We adopt the CPN approach [16,17] due to the intuitive way to
model cryptographic protocols by using the graph representation. Our approach offers a simple but
effective way to analyze multiple sessions of protocol execution. Our new CPN methodology is
based on our group’s previous works [18-21]. We argue that our new CPN methodology improves on
all existing CPN and Petri Net methods [8-14] for security protocols on several issues. In particular,
our CPN method is the first CPN method which offers a security analysis methodology of multiple
concurrent sessions of protocol execution. Furthermore, it offers a systematic method to analyze
attacks in protocols. Also, it can detect more attacks with a better efficiency than all existing CPN
methods for security protocols.

In essence, our new methodology offers four important concepts. Firstly, we use
decomposition and multi-session scheduling techniques to analyze multiple sessions of protocol
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execution. The decomposition allows us to construct a state space of one specific instance of multiple
sessions of protocol execution at a time to reduce the size of the output state space. In general, such a
specific instance means a setting or a configuration which specifies all required information for the
execution of each concurrent session, for example, the parties who are involved in the protocol, all
secrets, all nounces and all attackers in a session. The multi-session scheduling allows us to build a
state space which contains only one alternating execution of multiple sessions of protocol run,
instead of all possible alternating executions. As a result of these two techniques, the state space
obtained is small and fast for analysis.

Secondly, we characterize attack states in the computed state space by using the concept of
vulnerability events. Vulnerability events are events which may lead to a compromise of protocols,
and such events are protocol dependent. The concept of vulnerability events provides a general
method to characterize attack states intuitively and comprehensively. Thirdly, we develop an efficient
method to extract attack traces without the need for any further computation on the state space. An
attack trace describes how an attacker carries out their attacks successfully step by step. In other CPN
works for security protocols, such an attack trace is computed by extracting a path from an initial
state to an attack state. Fourthly, we propose a way to classify systematically a huge amount of found
attack traces by using attack patterns. In general, an attack pattern describes the core of an attack, and
it contains a minimal attack trace which leads to the attack. To the best of our knowledge, our four
concepts are novel for the CPN methodology for analyzing cryptographic protocols.

To demonstrate the practical uses of our approach, we apply our methodology to two case
studies which are Micali’s contract signing protocol [22] and TMN authenticated key exchange
protocol [23]. Surprisingly, we found many attacks in the two protocols. For Micali’s contract
signing protocol, we found new attacks in a single session of protocol execution in [19]. In [20], we
also found many new multi-session attacks in both the original Micali’s protocol and a modified
version of Micali’s protocol. For TMN authenticated key exchange protocol, in [21] we found six
new attacks in the single session of protocol execution and two new attacks in multiple sessions of
protocol execution. In fact, new attacks that we found in TMN protocol are quite surprisingly since
TMN have been analyzed quite extensively [24-27].

In section 2, we provide the background on Micali’s ECS1 and TMN protocol. In section 3,
we compare our new CPN method with existing related works. In section 4, we present our new CPN
methodology and apply it to two case studies which are Micali’s ECS1 and TMN protocol.

2. Background

We use the following notations throughout the paper. S—R : M means that user S sends
message M to user R. SIGy(M) represents party X’s signature on a message M and we assume that M
is always retrievable from S/Gy(M). The encryption of a message M with party X’s public key is
denoted by ENCx(M). Also, H(C) stands for the hash of message C, and Ex(M) means symmetric
encryption on message M by key K.

2.1. Micali’s ECS1 Protocol [22]

Micali proposed an efficient optimistic fair exchange protocol for contract signing. The
protocol aims to ensure that two exchanging parties get each other commitment on an agreed contract
or neither of them does. There are three kinds of parties in the protocol : Alice as an initiator of the
protocol, Bob as an responder of the protocol and a third trusted party who resolves a dispute
between Alice and Bob during the exchange.

We denote Alice, Bob and a trusted party by A, B and TTP, respectively. It is assumed that
both Alice and Bob have already agreed on a plaintext contract C before the exchange. Alice is
committed to contract C as an initiator if Bob has both SIGA(C,Z) and M where Z=ENCr1p(A,B,M)
and M is random. On the other hand, Bob is committed to C as a responder if Alice has both
SIGg(C,Z) and SIGg(Z). However, there is no need for Alice to verify Z to prove Bob’s commitment.

The following is the detail of the protocol.

Al: 1) A>B: SIG4A(C,Z)

B1:2) B—A: SIGg(C,Z2), SIGp(Z2)

A2: If Bob’s signatures in step 2 are both valid, then

3) A-B: M
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B2: If Bob receives valid M such that Z=ENCrp(A,B,M)
then the exchange is completed
else Bob requests TTP to resolve a dispute by the following step
4) B-TTP: A, B, Z, SIGp(C,Z), SIGg(Z)
TTP1: If Bob’s signatures in step 4 are both valid and Z=ENCrrp(A,B,M) then
5a) TTP—A: SIGg(C,Z), SIGg(Z)
5b) TTP->B: M
Note that the request to TTP at step 4) contains identities of initiator and responder which
have the dispute. Also, to resolve the dispute, TTP sends required information to related parties.
In [28], Bao et al. analyzed ECS1 manually and found three message replay attacks in
ECS1. It can be argued that many of these attacks are caused by an ambiguity at how TTP should
resolve a dispute. Then, Bao et al. modify ECS1 to solve the ambiguity problem in the original
ECS1, and they found one attack in the modified version. In other words, Bao showed that a simple
modification on TTP’s behavior to resolve a dispute is not adequate. The modified ECS1 is similar to
the original ECS1 except that in step TTP1, there is no check on Z=ENCrrp(A,B,M) and messages in
steps 5a) and 5b) are also sent to identities A and B which are in step 4 and are obtained from the
decryption of Z. In other words, in the modified ECS1, TTP resolves the dispute even when Z is not
correct, ie. Z#Errp(A, B, M).
In [29], Zhang and Liu applied a model checking technique to analyze the security of ECSI.
They found three new attacks. We will discuss about their new attacks and the comparison with our
new attacks in section 3.2.

2.2. TMN authenticated key exchange protocol [23]
TMN is a cryptographic key exchange protocol for mobile communication system. TMN

allows user A to exchange a session key with user B by the help of server J. The user A is called an
initiator, but the user B is called a responder. The detail of TMN is described as follows.

1 A - 1: (B, ENC(Ky)), A
2) J5>B:A

3) B = J: (A, ENC(Ky)), B
4) J >A: B, EKaj(Kab)

Where K, is an exchanged session key and K,; is A’s secret which is used to transport the
session key at the last step. Note that the session key is created by user B. In [23], it is suggested that
the Vernam cipher (or one-time pad) and RSA public key algorithm are used as the underlying
symmetric encryption Ex(M) and the public key encryption, respectively.

TMN has been analyzed extensively by many formal method approaches [24-27], and many
attacks were found. But it was analyzed manually also in [23] by Simmon. Simmon found an attack
to TMN by using the homomorphic property of the underlying public key cryptographic algorithm.
An attacker can learn an exchanged session key easily, and the server cannot detect any message
replay. The attack involves two concurrent sessions of protocol execution. We will discuss about the
analysis of TMN by formal methods in section 3.2.

3. Related works
3.1. Petri Nets for Cryptographic Protocols

A lot of works on Petri nets [7] have been applied to analyze cryptographic protocols in [8-
15]. They can be classified into two kinds. The first kind [8-14] offers a modeling and analysis
method to find attacks. The second kind [15] provides a theoretical semantics for cryptographic
protocols which can be used to prove properties of protocols, rather than to find attacks. We focus on
the former kind due to its practical use.

All the works in the first kind [8-14] offer an analysis of a single session of protocol
execution only. Moreover, the works in [8-11] employ some extended Petri nets to analyze security
protocols but those Petri nets are less expressive than CPN. In [12], CPN is applied to analyze a
denial of service attack on cryptographic protocols in a single session of protocol execution. The
work [12] analyzes protocols by using the simulation technique but our work analyzes protocols by
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using the state space computation. Furthermore, while their work analyzes the denial of service
attack, we analyze attacks on the confidentiality, the authentication, key exchange, fair exchange
properties. So the kinds of attacks are different.

There are two works [13, 14] which are closest to ours. They apply CPN to analyze
cryptographic protocols on similar kinds of attacks to ours. However, both works do not really
provide an analysis of multiple concurrent sessions of protocol execution, but just two sequential
sessions of protocol execution. Even though [13] offers an analysis of two sequential sessions of
protocol execution, it has to analyze one session at a time. In other words, the analysis of two
sequential sessions is non-compositional. In particular, after an execution of the first session is
finished, the second session is then executed separately with information obtained from the first
session. So, it is considered as a single session analysis strictly. However, the work [14] offers a
compositional analysis of two sequential sessions of protocol execution according to the detected
attack reported in the work. The analysis is compositional in that two sequential sessions can be
analyzed at a time. Since it is a sequential composition of two sessions, then the work is essentially
a single session analysis. Moreover, the attacker cannot initiate a new session with any user. So, only
attacks where a legitimate user is a session initiator can be detected, and these are very limited. More
importantly, a methodology to deal with a huge amount of alternating executions between multiple
sessions has not been addressed at all in both works. But the work [14] deals with the alternating
executions between a user and an attacker, since their attacker model can be executed independently
of the execution of protocol steps. Such alternating executions occur in a single session only.

It is important to note that the analysis of multiple concurrent sessions of protocol execution
is important since many crucial attacks, for example the man-in-middle attack [30] and parallel-
session attack [31] are carried out in the multiple concurrent sessions where protocol runs are
alternated in a non-sequential manner between multiple sessions.

Recently in [18-21], our group has developed a new CPN method to analyze cryptographic
protocols. Our new CPN method improves on all existing CPN and Petri Net methods for security
protocols on several issues. In particular, our CPN method is the first CPN method which offers an
analysis methodology of multiple concurrent sessions of protocol execution. Furthermore, it offers a
systematic method to analyze attacks in protocols. In particular, our method offers decomposition
and multi-session scheduling for the computation of state spaces, an intuitive approach to
characterize attack states, an efficient way to extract attack traces and a systematic way to classify a
large amount of attack traces. In addition, our method can detect more attacks with a better
efficiency. In particular, our attacker model allows session initiation, receiver impersonation and
message dropping capabilities all of which are missing in [14]. As a result, more kinds of attacks can
be analyzed. Also, our method is more efficient due to more restricted underlying models of users
and attackers. In particular, in the user model there is a strict message validation for every received
message, and each type of cryptographic messages, eg. public-key ciphertext and symmetric-key
ciphertext, is defined individually instead of mixing them into one type Also, our attack model
generates messages by taking both the message validation and the individual types of cryptographic
messages into account. As a result, a state space generated is smaller than [14] since invalid messages
and inappropriate cryptographic messages are eliminated.

3.2. Other formal methods for analyzing Cryptographic protocols

There are a huge amount of formal methods for analyzing cryptographic protocols. A survey
and discussion on the comparison between them can be found in [2,3]. Here we discuss only formal
methods which are applied to analyze contract signing protocols, ECS1 and TMN protocols.

There are at least three main works which analyze general contract-signing protocols. In
[32], Chadha, Kanovich, and Scedrov proposed an inductive proof method to analyze a variant of
contract-signing protocol proposed by Garay, Jakobsson and MacKenzie. Their method aims to
prove fairness and abuse-free properties of the protocol, rather than to find attacks. In addition, their
method is manual. In [33], Shamatikov and Mitchell applied a model checking system called Murg to
analyze two contract signing protocols. A protocol is modeled as an automata by using a
programming language. Their method is automatic and some new attacks on the protocols are
discovered. In [34], Gurgens and Rudolph analyzed a number of fair exchange non-repudiation
protocols using asynchronous product automata (APA) and the simple homomorphism verification
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tool (SHVT). Similar to Murg, a protocol is modeled as an automata but by using a text-based
description on states and state transitions. Their method is automatic and some new attacks are found.

In [29], Zhang and Liu applied a model checking technique to analyze ECS1. They found
one new single-session attack in Micali’s ECS1 and two new multi-session attacks in Bao et. al. ’s
modified version of ECS1 [28]. Independently, we found two new single-session attacks in Micali’s
ECS1 in [19], and found two new multi-session attacks in Micali’s ECS1 and five new multi-session
attacks in Bao’s modified version of ECS1 in [20]. In fact, at the writing time of our works in [19,
20], we were unaware of Zhang and Liu’s work. However, after we look into the details, we found
that one of our single session attacks is a variant form of Zhang and Liu’s attack, and two of our
multi-session attacks are variant forms of Zhang and Liu’s attack. Therefore, to summarize the new
attacks found by our CPN method we found one new single-session attack of Micali’s ECS1, two
new multi-session attacks in Micali’s ECS1 and three new attacks of Bao’s modified version of
ECSI.

There are seven formal method approaches which are applied to analyze TMN protocol. In
[24], three formal method approaches, namely NRL, Interrogator and Inatest, to analyze
cryptographic protocols are compared, and the TMN protocol is chosen as a case study. All of them
take the state exploration approach to analyze protocols. Both NRL and Interrogator detect an attack
in a single session of protocol execution. However, Inatest can only reproduce Simmon’s attack [23]
which is an attack in multiple sessions. In [25], Murg, a general model checker, is applied to analyze
the TMN protocol. Murg can reproduce Simmon’s attack, and it detects a new multiple session
attack which allows an attacker to learn an exchanged session key between two legitimate parties.
However, both legitimate parties do not commit on the session key after the completion of the
protocol. In [26], Lowe and Roscoe applied Communicating Sequential Processes (CSP) and its
model checker FDR to analyze the TMN protocol. Not only all previously known attacks to the TMN
protocol can be reproduced, but also two new attacks have been found. The first new attack occurs in
a single session of protocol execution, and an attacker can impersonate user A and learn the
exchanged session key created by user B. The second attack which occurs in multiple sessions is that
both A and B commit on the same session key after the completion of the protocol, but the key is
known by the attacker. In [14], Al-Azzoni et. al. applied CPN to analyze the TMN protocol. Their
CPN method can only detect a variant form of the attack found by Murg [25]. Note that the attack
occurs in two sequential sessions of protocol run. In [27], Zhang and Liu employed a model checking
technique to analyze the TMN protocol. They found some variant forms of Lowe and Roscoe’s
attacks [12] in both a single session and multiple sessions. Even though TMN protocol has been
analyzed very extensively, surprisingly we found new attacks in the protocol by using our CPN
methodology.

In summary, we argue that the CPN methodology offers an advantage over those formal
methods discussed previously in that it provides a simpler and more intuitive way to model a protocol
by using the graph representation.

4. Our Model
4.1. Our New Methodology

Our new CPN method here is based on the CPN approaches that we have developed earlier
in [18-21]. There are five steps. The detail of our methodology is shown as follows.

First, we build a CPN model to represent message exchange by all user parties and to
represent attacker behavior. Each user party is modeled according to the protocol. In general, an
attacker in our model can eavesdrop, modify and drop messages during the transmission. Also, the
attacker can send new messages. We will discuss about assumptions of the protocol and the abilities
of the attacker in details later.

Second, an automata or a state space of the protocol with attackers is generated by using the
state space tool in CPN Tools [17]. In general, the state space represents all possible behaviors of
every party, including attacker, in the protocol. Instead of generating the state space of all possible
instances of multiple concurrent sessions of protocol execution at once, we generate a state space of
one specific instance of multiple concurrent sessions at a time to reduce the size of the output state
space. We call this a decomposition technique. In general, such a specific instance means a setting or
a configuration which specifies all minimally required information for the protocol execution, for
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example, the identities of initiator and responder, the role of attackers, all secrets and all nounces in
each concurrent session, and a schedule of the execution of the multiple concurrent sessions. The
schedule ensures that the output state space contains one alternating execution of multiple concurrent
sessions of protocol run only, instead of all possible alternating executions. Exploring all possible
alternating executions within a state space is expensive and causes a huge state space. Usually there
are many possible configurations. As a result of the decomposition and the multi-session scheduling
techniques, the state space obtained is small and fast for analysis.

Third, we create a query function in CPNML language, which is based on ML functional
programming language, to search for attack states in the state space. Attack states are characterized
by vulnerability events. Vulnerability events are events which may lead to a compromise of
protocols, and such events are protocol dependent. In ECS1, there is one vulnerability event where
one party, who is either initiator or responder, gets another party commitment, but the latter does not
get the former commitment. In other words, this event describes exactly an unfair state. In TMN
protocol, there are two main vulnerability events. Firstly, the attacker learns a secret key, for
example, the exchanged session key. Secondly, a session key which may be a fake key is committed
by a user. Based on these two vulnerability events, several combined vulnerability events are created
in order to characterize many meaningful attack states in TMN protocol. The concept of vulnerability
events provides a general method to characterize attack states intuitively and comprehensively. Also,
queries can be built easily to detect such combined vulnerability events.

Fourth, after attack states are discovered from the state space, we extract attack traces.
Conceptually, an attack trace describes how an attacker carries out an attack successfully step by
step. Given an attack state in a state space, a path from the initial state to the attack state contains a
sequence of actions by all parties, including attackers, which leads to the attack. So, this sequence
contains an attack trace. But the sequence contains superfluous and redundant information about an
attack trace since it contains all CPN transitions in an execution which lead to an attack state, and
many of those transitions are redundant or irrelevant to the essence of the attack. Our method offers
an efficient new approach to extract attack traces from an output state space without the need for any
further computation. In our CPN model, as the protocol execution proceeds, an attack trace which is
a record of all exchanged messages between parties so far is embedded into an output state. More
specifically, the attack trace is stored in a global fusion place when a message is sent from one user to
another. Thus, when an attack state is found, the attack trace can be extracted from the state
immediately and efficiently.

Fifth, after attack traces are obtained, we classify them into each group. In general, there can
be a huge amount of attack states and traces found in a state space. For example, in ECS1 we found
7,000 attack states (and traces) in a configuration. Thus, to ease the analysis of a large amount of
attack traces, we develop an attack classification by using attack patterns. In general, an attack
pattern describes the core of an attack, and it contains a list of minimal protocol messages that are the
cause of each attack. Attack traces that produce the same attack pattern are classified into the same
group of attacks. In general, it requires human intervention to create each attack pattern from an
attack trace.

In the next two sections, we apply our CPN method to analyze two case studies. To illustrate
the effectiveness of our method, we focus our analysis on TMN. Our CPN framework for ECSI1 is
similar to the framework for TMN.

4.2. Our CPN Analysis for TMN Protocol

In this section, we discuss the analysis of TMN by using our new methodology. In section
4.2.1, we provide definitions and more concrete concepts of our methodology. In section 4.2.2, we
briefly show some of our CPN graph model. We explain our queries and our attack classification
technique in sections 4.2.3 and 4.2.5, respectively. Also, new attacks and the performance of our
method are discussed in sections 4.2.6 and 4.2.7, respectively.

4.2.1. Our CPN framework for TMN
In this section, we discuss the assumptions of our protocol analysis. We also describe

vulnerability events of TMN. Finally, we provide a definition of a configuration of the protocol
execution.
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Definition 1 : The assumptions of the protocol execution

The following are the assumptions of the execution of the TMN protocol.

1. There are three users who are an initiator, a responder and a server. And all the users follow the
protocol specification strictly and honestly.

2. There is one attacker whose abilities are defined below.

3. The underlying encryption is perfect in that nothing can be inferred from a ciphertext without the
knowledge of the correct key. Also, we consider a general public key encryption scheme, rather
than any specific scheme.

4. We consider the execution of two concurrent sessions of the protocol where such execution can
be performed in either a sequential or a non-sequential but alternating style.

5. Both initiator and responder involve in the protocol execution as if there is one session of
execution only, but the server may involve in more than one session.

The assumptions 1) and 2) mean that those parties are all that are involved in the protocol
execution. An initiator means a user who initiates a new protocol session, and a responder means a
user who responds to an existing session with an initiator to perform the key exchange.

The first part of assumption 3) is also known as Dolev and Yao’s assumption [35]. As stated
in the second part of assumption 3), in this paper we consider a general public key encryption scheme
rather than RSA scheme. This assumption is sufficient to illustrate the effectiveness of our new CPN
approach to analyze TMN.

In assumption 4), we mean that in addition to a sequential execution of two sessions, the
protocol execution can alternate between the two concurrent sessions. Thus, the result of the
execution is a non-sequential or interleaving manner. We will discuss about the execution of two
concurrent sessions of the protocol more specifically later.

In assumption 5), we mean that both initiator and responder think that they involve in only
one session of the protocol execution, and their goals are to exchange a session key between them.
However, the server may involve in more than one session of the execution. In fact, this assumption
is reasonable since a server just responds to any request and it maintains a state only during a request
at step 1 and a respond at step 4. After the step 4 occurs, the state is destroyed to minimize the
resource.

Definition 2 : The attacker abilities

The attacker in our model is capable of the following:

1. The attacker can eavesdrop, modify and drop messages during the transmission between users.

2. The attacker can send a message to a user.

3. The attacker can either initiate a new session with users or take part in an existing session with
users.

4. The attacker can impersonate any user.

5. The attacker can perform any cryptographic computation by using known keys, known messages
and known ciphertexts with a limited but reasonable power, eg. encryption and decryption.

6. The attacker has its own storage with a finite and reasonable amount.

7. The attacker does not attack himself.

8. There is at most one attacker who performs the attack in 1) on a protocol step in a session at a
time.

Note that 2) means the ability to send any message to any user where the message and the
user may or may not be according to the protocol specification. Thus, it is different from 3).

The assumption 4) means that the attacker can impersonate an initiator A, a responder B or a
server J. If the impersonated user is a responder or a server, then the attacker must be able to
intercept an input message and then to send a fake respond message at a next step. But if the
impersonated user is an initiator, the attacker must be able to initiate a new session, and to generate
fake responds.

In 5), the attacker also has the ability to perform any computation in addition to the
cryptographic one.

In 7), any message that is sent to an attacker who may impersonate a user will not be
modified by anyone during the transmission. Note that if there is any modification, then the attacker
is attacked. In 8), any message that is sent from an attacker will be delivered to the intended receiver
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intact. If there is anyone else who modifies the sent message further, then the message is modified by
two attackers.

Definition 3 : The basic goals of the attacker

There are two basic goals of the attacker for TMN

1. The attacker aims to disclose a secret key which is a session key or A’s secret.
2. The attacker aims to impersonate a user which is an initiator or a responder

These are two basic and general goals of the attacker for TMN. We focus on the first goal,
but still consider the second goal, since the first goal incurs a worse damage than the second one. In
addition, the attacker has more aims to compromise the protocol by achieving the combined
vulnerability events which will be discussed later. Those events can be considered as concrete and
advanced goals of the attacker.

Attack states are characterized by vulnerability events. For the TMN protocol, there are two
basic events, and five combined events.

Definition 4 : The first basic vulnerability events

The attacker learns a secret key. There are two cases.

1. The attacker learns the exchanged session key K. (K K.p)
2. The attacker learns A’s secret K. (K_K)

Definition S : The second basic vulnerability events
There are three cases for a session key which is committed by users.

1. Both A and B commit on K. (AB_K.)

2. A commits on K or K,,;. (A_K, A_K)
where K; is attacker’s secret key.

3. B commits on K. (B_Ku)

Note that 1) does not look like a vulnerability event on its own, but when it is combined
with another vulnerability event, it becomes a vulnerability event clearly. We will discuss about this
later. Also, it is not possible to fool user B to commit to other key than K, since B is the creator of
the session key K, and then the key is fixed for the communication with A. Based on the two basic
events, the following combined and interesting vulnerability events can be created.

Definition 6 : The combined and interesting vulnerability events.

There are five combined vulnerability events.

1. The attacker learns K,;, and both A and B commit on K. [Kan] [Kan] [Kas]

2. The attacker learns K, and K,;, and both A and B commit on K. [Kan Kol [Kan] [Kan]

3. The attacker learns K, and A is fooled to commit on K; but B commits on K. [K.:/[Ki][Kan]

4. The attacker learns K, and K,;, and A is fooled to commit on K; but B commits on K.
[Kab’Kaj][[(l][Kah]

5. The attacker learns K, and K,;, and A is fooled to commit on K; but B commits on K.
[Kabr Kll_}][Kll_}][Kab]

We use the notation /KB,/[KB,][KB;] to describe each combined vulnerability event where
KB; stands for keys that are known by the attacker, and KB, and KB; stands for and keys that are
committed by users A and B, respectively, at the completion of the protocol.

Clearly, in the event 1 the attacker will then learn all later communication between A and B,
because the attacker obtains the session key which are exchanged and agreed by both A and B. We
do not find any attack instance in this event.

The event 2 is similar to the event 1 but the attacker in the event 2 learns an additional key
which is A’s secret. Lowe and Roscoe’s multi-session attack [26] is in the category of this event. In
this event, we found 10 attack patterns, and many of them are interesting variant forms of Lowe and
Roscoe’s attack. For example, in some variant attacks, server J cannot detect the replay attack
occurred in the two sessions. Its detail will be discussed later.

In event 3, the attacker learns the session key, and fools A to commit to a fake key which is
the attacker’s secret K;. The event 4 is similar to the event 3, but the attacker learns A’s secret key in
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addition the session key. In event 5, the attacker learns the session key and A’s secret key, and fools
A to commit to a fake key which is A’s secret key K,;. The result of the events 3, 4 and 5 can be seen
as a kind of the man-in-the-middle attacks. In events 3 and 4, the attacker can impersonate B to A by
using key K;, while the attacker can impersonate A to B by using key K,,. In the event 5, the attacker
can impersonate B to A by using key K, while the attacker can impersonate A to B by using key K.
We found 10 attack patterns in the events 4 and 5, but do not find any attack instance in the event 3.
It is the attacks in the events 4 and 5 that are novel.

Note that there are other two combined vulnerability events which are [K,;//K;/[K,] and
[Kq] [Kq] [Ka]. However, both events are not interesting since the attacker does not learn the session
key K,,. Moreover, they are just variant forms of single session attacks. So, we do not consider them
here.

Definition 7 : The computation of the five combined vulnerability events

The following shows how to compute the five combined vulnerability events.
[Kan] [Kav] [Kan] = (K_Kap M AB_Ka)

[Kat Kojf [Kan] [Kan] = (K_Kapy N A_K; N B_Kap)

[Kan] [Ki] [Kan] = (K_Kip NK_Kyy N AB_Kyp)

[Kan Kai] [Ki] [Kap] =(K_Kupy NK_Kyy "A_K; NB_Kyp)

[Kat Kij [Kei] [Kar] =(K_KapNV K_Kyg M A_Koj N B_Kap)

SR W~

Each combined vulnerability event can be computed by applying the intersection on the
relevant basic vulnerability events.

In the following, we provide the definition of a configuration for a state space computation
of our CPN framework to analyze the TMN protocol.

Definition 8 : A configuration of our CPN framework for TMN
A configuration of our CPN framework consists of ((S;, S, ...,S,), Sch, Tr) and S; = (s,LR,T,K,N) for
1<i<n where
1. S;is a session information which consists of
1.1. s1is a session identity
1.2. [is an initiator identity
1.3. R is aresponder identity
1.4. Tis a server identity
1.5. K s keys for each party (including attacker) which consists of
a) Pair of public and private keys
b) Shared key with a specific party
1.6. N is nounces used by each party
2. Sch is a multi-session schedule which contains a list of session identities to be executed in that
order
3. Tris an attack trace which consists of a vulnerability event and a list of protocol traces which
leads to the vulnerability event

In the configuration, each S; and Sch are input parameters to the CPN state space
computation while 77 is the desired output from the state space computation.

For example, the 1* session information S, which is (1,4,8,J,(K,K,K3,K,), ) means that A,
B and J are identities for initiator, responder and server, respectively, and K;, K,, K; and K, are keys
for A, B, J and In respectively. Also, “ ” means that there is no information about the nounces. Let
K= (iKY, Ko = (LKA, Ks = ({(PK,SK))),) and K, = (L {(K,_)}). K; means that A has
no public and private keys, but has one shared key K,; which can be used with anyone. K, means that
B has no public and private keys, but has one shared key K, which is intended to share with A. K;
means that J has a public key PK; and a private key SK, but J has no share key. K, means that the
attacker has no public and private keys, but has one shared key K; which can be used with anyone.

Let Schbe [1,1,1,1,2,2,2,2]. In this schedule, “1” and “2” mean a complete execution of one
protocol step in the first and second session, respectively. In the execution, both message sending and
receiving in the step are performed. This means that a sender has sent a message, and a receiver has
received the message. So the schedule is just the sequential execution of the first session and then the
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second session. Consider another schedule [7,2,2,1,1,2,2,1]. This schedule is a non-sequential but
concurrent execution which corresponds to the man-in-the-middle attack [30]. The man-in-the-
middle attack means that the attacker situates in the middle between two sessions, and replays
messages between them. The figure 1 illustrates the flow of messages for the man-in-the-middle
attack in TMN where the first session is between A and /n, and the second session is between /n and
B. Thus, the schedule means an alternating execution between two sessions in that the first protocol
step of the 1 session is executed first, and then two protocol steps of the 2™ session are executed,
and so on.

Let Tr be ([KuKyl, [Ki, [Ka/. LTr) and LTr be [(1,1,4,J, ((B{K,}PK-J),A)),
(1,1,In,J,((X2,{K;})PK-J),X1)), ... ]. The attack trace Tr consists of a vulnerability event (/K. K,/ [Ki]
[Kaus]), and a list LTr of protocol traces which leads to the attack for the vulnerability event. As for a
simple example, the list L7 of protocol traces is only partial and contains two steps only. The first
protocol trace (1,1,4,J, (B,{K,;}PK-J),A)) means that in the first session and at the first protocol step,
user 4 sends message (B,{K,/PK-J),4 to server J. The second protocol trace (1,1,In,J,(X2, ({K;}PK-
J),X1)) means that in the first session and at the first protocol step, the attacker /n intercepts the
message sent in the first trace, and modifies it to (X2,{K;}PK-J), X1 which is delivered to J.

(AIn) (In,B)
) — )
) —————————— 1
3) > 3)
4) < - 4)

Figure 1: The flow of messages for the man-in-the-middle attack

To analyze the attacks in TMN, we consider only the schedule //,2,2,1,1,2,2,1] which is
clearly the execution of non-sequential but alternating sessions of the protocol. It suffices to consider
only this schedule to illustrate the effectiveness of our CPN method. Other schedules can be
considered too as different input parameters.

We consider four kinds of two concurrent sessions which are as follows.

(],A,B,J, (K[,KZ,K3,K4),_) & (2,1}’[,1}’!,,], (K],KZ,K3,K4),_)

(I,A,[I’I,J,(K],Kg,Kg,K4),_)& (Z,IH,B,J, (K],Kz,Kj,K4),_)

(I,In,B,J, (K],KQ,K3,K4),_)& (2,A,In,J,(K1,K2,K3,K4),_)

(1,[}1,]}’1,.], (K],KZ,K3,K4),_)& (2,A,B,J, (K],KZ,K3,K4),_)

where K, K», K3 and K4 are discussed previously.

In session (1,4,B,J,(K;,K;,K3K,), ), the attacker behaves as an external observer on the
communication amongst A, B and J. In session (1,4,In,J,(K;,K5, K3 K,), ), the attacker impersonates a
responder to user A and server J. In session (7,In,InJ,(K;, K, K;K,), ), the attacker impersonates
both A and B to server J. Thus, there are three explicit roles of our attacker : an external observer and
impersonators for initiator and responder. The role of server impersonation is implicitly enabled, but
it is disabled in the session where both A and B are impersonated.

These four concurrent sessions are all possible sessions regarding to the goal of the user
impersonation attack.

AN~

4.2.2. Our CPN graph model

Our CPN graph model for TMN extends the CPN graph model in [14] on many issues to
provide the new methodology discussed in section 4.1. The CPN graph model consists of four levels:
top, entity, sub-entity and control. The top level shows the interaction between all parties including
the attacker. The entity level shows the detail of the overall behaviour of each party according to the
protocol, and the sub-entity level shows the detail of a specific behaviour of a party. The control
level controls the execution of the model according to an input schedule.
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Figure 2 shows the top level. There are 4 entities in our model which are A, B, J and
attacker /n. All messages that are exchanged between all users (A, B and J) pass through the attacker
In. Figure 3 shows the control level. The input schedule /1,2,2,1,1,2,2,1] is given at the Sche place.
The place s-place keeps session states where a session state consists of (sid, sp, sf) where sid means
the session identity, sp means the counter of protocol steps and s means states. There are three states
which are 0 (ready), 1 (executing) and 2 (inactive or finished). For example, state (1,1,1) means that
the session 1 is during the execution at the first protocol step. Initially, we have two session states:
(1,0,2) and (2,0,2). Transition T1 activates the execution of a session at a time according to the
schedule, and also increments the counter of protocol steps to be executed. As a result of the
activation, the protocol step at the counter is executed.

Figure 4 shows the entity level for A. Transitions T1 and T3 are for creating the message
sent at the first step of the protocol, whereas transitions T4 and TS5 are for processing the message
received at the last step. The place Conf stores a session configuration which consists of fss, ak and
bk tokens where fss(sid, i1, i2, i3, i4) means that in session identity sid, il and i2 are identities of the
actual initiator and actual responder, respectively, and i3 and i4 are identities that i/ and i2 use,
respectively, in the message. Token ak(id,k) means that k is a shared key between A and id, and
bk(id k) describes a shared key k between B and id similarly. The place trace stores an attack trace
when A sends a message to J. Transition T1 is enabled if session state is (i/,7,0) and A is the actual
initiator in session /. After the session i/ is executed, its session state becomes (i/,1,1). Transition
T4 is to validate a received message, and T5 is to decrypt the received ciphertext. After the step 4 is
terminated, its session state becomes (i/,4,2).

4.2.3. Queries

After a state space is computed for each configuration, we search for attack states in the
state space. As discussed previously, attack states are characterized by vulnerability events. It is
straightforward to construct queries to detect the combined vulnerability events. However, our
method is that queries are applied to only terminal states or nodes in the state space in order to verify
if certain conditions are met. The terminal states are states which do not have any further possible
computation, and they mean states at the completion of the protocol execution. Note that while we
consider terminal states, Al-Azzoni et. al. in [14] consider all states which are unnecessary and
inefficient.

The following shows a query for the first basic vulnerability event.

val LeafNodes=ListDeadMarkings(),

fun SecrecyViolationl (k:K) :

Node list

= PredNodes (LeafNodes,
fnn => (cf(cK(k), Mark.SymDec'P3 1 n) > 0),
NoLimit);

The SecrecyViolationl(K,;) produces a set of all terminal nodes in the state space where the
key K, is present at the attacker’s database which is represented by the place number P3.
The following shows a query for the second case of the second basic vulnerability events.

fun SecrecyViolation2(k:K) :

Node list

= PredNodes (LeafNodes,
finn => (cf(k, Mark.EntityA'P20 1 n) > 0),
NoLimit),

The SecrecyViolation2(K,;) produces a set of all terminal nodes in the state space where the
key K, is present at A’s database after the completion of the protocol. Note that A’s database is
represented by the place number P20.

So, a query to detect the combined vulnerability events can be created by applying the
intersection on the queries with appropriate keys. For example, the combined event 1 is obtained by
the intersection on the queries SecrecyViolationl(K,,) and SecrecyViolation2(K,,). Note that we do
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not need to query for B’s commitment on a session key since B always commits on key K, due to
the protocol specification.

4.2.4. Obtaining attack traces

After the attack states are found by using the queries, we extract attack traces which
describe how the attacker carries out those attacks successfully step by step. Our method to extract
attack traces is very efficient. Since such an attack trace is recorded into a global fusion place while
the protocol execution proceeds step by step. Thus, an attack trace can be obtained from the global
fusion place in an attack state immediately. Note that in other CPN approaches for security protocols,
an expensive computation is required to find a path from an initial state to an attack state, and then to
extract relevant information from the path to create an attack trace.

4.2.5. Attack Classification

Usually, there can be a huge number of attack states found in a state space. In fact, we found
360 different attack states in a state space obtained from in the first configuration as shown in table 1.

After we obtain a large amount of the found attack traces, we analyze them manually first.
We found that many of the attack traces share a similar pattern. In general, ciphertexts that are sent in
all messages are essential to the attacks, but the identities of initiator and responder in the messages
that are modified by the attacker are not important. However, the identities of initiator and responder
in the messages that are sent from A in step 1, sent to B in step 2 and sent to A in step 4 are
important. These identities are used by J for the key exchange function and by A and B for input
validation. If we ignore unimportant parts of protocol messages in protocol traces, then we obtain a
trace pattern. By considering trace patterns, the number of attacks is decreased tremendously as
shown in table 1. Indeed, the process to find trace patterns is manual and protocol-dependent.

Then, we construct an attack pattern from similar attack traces. An attack pattern consists of
a vulnerability event and a trace pattern for the event. The vulnerability event is the result of the
attack, and the trace pattern is a list of minimal protocol traces which lead to the attack. An attack
pattern is a general form of many attacks of the same kind. We argue that the attack pattern is more
suitable for the protocol analysis than a detailed attack trace.

We develop an automated attack classification method to classify a huge amount of attack
traces found by using attack patterns. First, given a current set of attack traces to be classified, we
create a new attack pattern by taking the first attack trace in the set, and add the new pattern into a
current set of known patterns. Then, by using a current set of known attack patterns, we filter out the
known attack patterns from a current set of attack traces to be classified. And the process repeats
again until there is no output set of attack traces to be classified.

4.2.6. New Attacks

The table 1 shows the number of attacks states (and attack traces) and attack patterns found
in each configuration. In table 1, (4,B) (In,In) means the first configuration of two concurrent session
where A and B are in the first session, and /n(4) and In(B) are in the second session. Also, 7r and Pat
means the number of attack traces and attack patterns, respectively. Note that our method does not
find attack states for the events 1 and 3. Also, all attack traces found from the second, third and
fourth configurations are just some variant forms of those attack traces from the first configuration.
Therefore, in the following we discuss only the attacks from the first configuration.

. Event 2 Event 4 Event 5
Configurations
Tr Pat | Tr Pat | Tr Pat
1. (A,B) (In,In) 360 | 10 360 | 10 360 | 10
2. (A,In) (In,B) 144 | 4 144 | 4 144 | 4
3. (In,B) (A,In) 72 2 72 2 72 2
4. (A,B) (In,In) 36 1 36 1 0 0

Table 1: Number of Attack Traces and Patterns
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By using our new CPN method, we found two new attacks of the TMN protocol for multiple
sessions of protocol execution. The first and the second new attack is in the category of the combined
vulnerability event 4 and 5, respectively. Also, we found many interesting variant forms of Lowe and
Roscoe’s attack.

The first new attack is the combined vulnerability event 4 where the attacker learns the
session key and A’s secret, and fools A to commit to a fake key which is the attacker’s secret K;. The
event 4 represented by /K., K,/ [Ki][Ka/ leads to a kind of the man-in-the-middle attacks in that the
attacker uses K; to learn the communication from A and use K, to create a fake communication to B.
As a result, the attacker learns the communication between A and B, but both A and B think that they
communicate to each other. In the event 4, we found 10 attack patterns. Each attack pattern
represents a group of similar attacks with a slight and unimportant difference. Due to the space limit,
we discuss only some attack patterns only. A full detail of the attacks in TMN is described in [21].
The following shows the first attack pattern.

1) A —>In(J): (B, {Ky}PK-J), 4
In(J) - J : (X2, {K;}PK-J), X1
1) In(4) -»J: (X4, {K,}PK-J), X3
2) J—>InB):X3
2) J—>InB):XI
In(B) > B : A
3) B —>J: (Xl {(Ku/PK-J), X2
3°) In(B) »J: (X3, {K,}PK-J), X4
4) J —=In(4) : X4, Exi(Ky)
4) J —=>In(A) : X2, Exi(K.)
In(4) - A4 : B, Ex,(K)
where K is attacker’s secret keys.

X1, X2, X3 and X4 stand for arbitrary identities that the attacker creates and uses in the
messages during the attack. In step 1), the message that A sends to J is modified by the attacker. The
original message is indicated by A — In(J), but the modified message by the attacker is indicated by
In(J) - J. Also, the messages at steps 2) and 4) are modified by the attacker.

In this attack pattern, the first message at the first session is modified to {K;!PK-J, but it is
replayed at the third step in the second session. Therefore, the attacker learns both K, and K, and
the attacker sends Ex,;(K;) at the fourth step in the first session.

The goal of the first attack is to learn keys K,; and K, before the message at the last step is
sent to A. And at the last step, Ex,;(K;) is sent instead to fool A to commit to K;. The attack can be
understood by considering the keys that are encrypted by J’s public keys at steps 1 and 3 in both
sessions. Based on those keys, the message at step 4 contains the key at step 3 which is encrypted by
key at step 1. And if the key at step 1 is known, then so is the key at step 3.

In the first session, K; and K, are used in steps 1 and 3, respectively, and in the second
session, K; and K,; are used in steps 1 and 3, respectively. These can be represented by the notation
(<K, K>, <K, K,>) where (P;,P,) means that P, and P, are information for the first and second
sessions, respectively. Thus, the ciphertexts obtained at the step 4 in the first and second sessions are
Ei(Ka) and Exi(K,), respectively. So, the attacker obtains the target keys easily.

The second attack pattern which can be represented by (<K, K,>,<K;,K,,>) is similar to the
first attack pattern. The difference is on steps 3), 4), 3°) and 4”). The different steps in the second
attack pattern are shown as follows.

3) B —>In(J): (X, {Ku,}PK-J), X2
In(J) »J : (X1, {K,}PK-J), X2
3’) In(B) »J: (X3, {K.}PK-J), X4
4) J —>In(4) : X4, Exi(K.)
4) J —>In(4) : X2, Exi(K,)
In(4) > A : B, Ex,(K)
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The third attack pattern which can be represented by (<K, K>, <K, K;>) is shown as
follows.

1) A —In(J): (B, {K}PK-J), A
In(J) —J : (X2, {K,}PK-J), X1
1) In(4) —J : (X4, {K,;}PK-J), X3
2) J—>In(B): X3
2) J—>In(B):XI
In(B) »B: A4
3) B —J:(XI, {Ku}PK-J), X2
3) In(B) —J : (X3, {K,}PK-J), X4
4°) J —>In(4) : X4, Exy(K)
4) J —>In(d) : X2, Exi(Ku)
In(4) > A : B, Exy(K)

The seven remaining attack patterns are (<K,K.,>, <K, Kup>), (<K,K;> <K, Kip>),
(<Kaj:Ki>: <Ki:Kab>): (<Kaj Kab>r <KirKah>)r (<Kaj:Kab>y <KirKaj>)’ (<Kaj Kab>: <Kaj K>) and
(<K K>, <K, Kp™>).

The second new attack is the combined vulnerability event 5 represented by
[Kan Koi] [Kojf [Kan]. The event 5 leads to the similar kind of the man-in-the-middle attacks to the
event 4, but here the attacker uses K,; to learn the communication from A. As a result, the attacker
learns the communication between A and B, but both A and B think that they communicate to each
other. In the event 5, we found 10 attack patterns. These attack patterns are similar to those patterns
for the event 4 except that the last step of the first session is change to the following.

4 J >In(d) :X2,...
In(4) A : B, EKaj(qu)

Conceptually, the difference between the first new attack and the second new attack is that
in the former, Ex,(K,) is sent to A in the last step, but in the latter, Ex,;(K,;) is sent to A in the last
step. So, user A is fooled to commit on his own secret.

Finally, we also found many interesting variant forms of Lowe and Roscoe’s attack where
the server J cannot detect the replay attack in the two concurrent sessions. Note that in [29], Zhang
and Liu detected only one variant form of this kind, and so they can detect less number of attacks
than our approach. Due to space limit, the details of these variants are omitted here.

4.2.7. Performance
The table 2 shows the computation time and the size of a state space from each

configuration. In our experiment, the computation of the state space is executed on a PC with Intel
Core2 Duo 2.33 Ghz with 2 GB of RAM.

Configurations Nodes Arcs Time (sec.)
1. (A,B) (In,In) 104,346 109,476 976
2. (A,In) (In,B) 73,806 77,568 523
3. (In,B) (A,In) 51,212 52,639 282
4. (A,B) (In,In) 34,160 35,095 120

Table 2. Size and Time of the generated state spaces

At most, it takes 16 minutes to compute a state space to analyze the attack.

4.2.8. Discussion
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We verify the completeness of our method by hands and found that the attack patterns
discovered for the events 4 and 5 are complete with respect to the assumptions stated in section 4.2.1.
Our argument is as follows. Consider the attack patterns in event 4 only. Let P be (<{K,K,/},
(K Kip Kif >, <{K,Kg}, {Ku Ky K;}>) which uses a similar notation to the attack pattern
representation. P means that in the first session, only the ciphertexts of X; and K,; and the ciphertexts
of K, K, and K; can be sent or replayed at step 1 and at step 3, respectively, and similarly in the
second session. Clearly, these are true. And it is easy to verify that all of our attack patterns are just
all enumerations from P which lead to the attacks. Note that each enumeration is constructed by
selecting each possible key to produce a ciphertext in each session.

Exploring all possible alternating executions within a state space is expensive and causes a
huge state space. In our experiment, it takes more than 6 days to compute such a state space.
Moreover, some alternating executions may be unnecessary but redundant. For example, schedule
[2,2,2,1,1,1,2,1] is similar to schedule /2,2,2,2,1,1,1,1] regarding to attacks found since in the
former, the information obtained from the three steps in session 1 is not useful for any replay attack
on session 2. Note that step 4 contains a shared-key ciphertext, but steps 1 and 3 contain public-key
ciphertexts. Similarly, schedules /1,1,2,2,1,2,1,2] is similar to /1,2,1,2,1,2,1,2] since step 2 in session
1 contains only plaintext which is already known by an attacker, and thus no information at step 2 in
session 1 is useful for any replay attack on session 2.

4.3. Our CPN Analysis for Micali’s ECS1 Protocol

In this section, we discuss the analysis of ECS1 by using our CPN method. In fact, our CPN
framework for the analysis of ECS1 is similar to the framework for TMN discussed previously. So,
we discuss only the difference between them. Also, some new attacks on ECS1 will be discussed in
section 4.3.2.

4.3.1. Our CPN framework for Micali’s ECS1 Protocol

The assumptions of the protocol execution for ECS1 are similar to those assumptions in
definition 1 except for assumption 5. For ECS1, the same initiator and responder may participate in
more than one session.

We assume two kinds of attackers which are 7 and Ar. The attacker [ is exactly the same as
the attacker /n discussed in section 4.2.1. However, 4Ar is a different kind of attackers, and it is
considered as a conspired user with attacker /. In fact, Ar is a participating user in the system who has
all the abilities discussed in definition 2, except for the assumption 1. An attacker who has the ability
in the assumption 1 can behave as an external observer who tries to manipulate messages between
users in a session. Note that the external observer is not a user in the session. But, Ar is a malicious
user who participates in a session and conspires with an attacker by sharing some information. These
two attackers collaborate to cheat a user. Note that one attack found by Bao et. al. [28] involves these
two kinds of attackers.

Attack states in ECS1 are characterized by vulnerability events. There is one vulnerability
event in ECS1 protocol which is unfair states. An unfair state means that one party, who is either
initiator or responder, gets another party commitment, but the latter does not get the former
commitment. In fact, there are two kinds of unfair states where the initiator has an advantage and the
responder has an advantage, respectively.

Definition 9 : The vulnerability events in ECS1
There are two unfair states.
1) The initiator has the responder’s commitment, but the responder does not have the initiator’s

commitment. (AgainAdv)
2) The responder has the initiator’s commitment, but the initiator does not have the responder’s
commitment. (BgainAdv)

First, we compute two basic vulnerability events where the responder has initiator’s
commitment (4Commit) and the initiator has responder’s commitment (BCommif). Then, fair states
(BothCommit) are computed by (4Commit » BCommit). Finally, the two main vulnerability events
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can be computed by AgainAdv = (BCommit — BothCommit) and BgainAdv = (ACommit —
BothCommit).

The queries to compute 4Commit and BCommit are straightforward. For example, to obtain
ACommit, we write a query to find a set of all terminal nodes in the state space where initiator’s
commitment, which are SIGA(C,Z) and M, are present at responder’s database. Also other queries
can be created easily.

4.3.2. New attacks

We found one new single-session attack of Micali’s ECS1, two new multi-session attacks in
Micali’s ECS1 and three new attacks of Bao’s modified version of ECS1. Due to the space limit, we
discuss only some new attacks in multiple sessions.

In the following, (1), (2), (3), ... describe protocol steps in the first session but (1°), (2°),
(3), ... describe steps in the second session.

We describe two new attacks in the original ECS1 protocol. In the first attack, a malicious
responder gains an advantage over a well-behaved initiator if random M is reused in the two sessions.
In the second attack, an initiator gains an advantage over a well-behaved responder if the same
contract is signed in the two sessions.

In the first attack, a well-behaved initiator A communicates with the same malicious
responder / in two sessions. The same random M is used in both sessions but different contracts are
used in the two sessions. The attacker (/) simply ignores to participate in one session. Since the
random M from another session can be used to construct the same Z, attacker / has enough
information to show that A has committed to / in both sessions. The attack is shown as follows.

1) A—>I1:8IG,(Cl,ZI1) where ZI=ENCrrp(A,I,mal)
1) A —>1:8IG4(C2Z1) where Z2=ENCrrp(4,I,ma2)
2’) I —>A : Nothing

2) I —>A:SIG(C1,Z1), SIG(Z])

3) A—>1:mal

Note that step 2°) means that I does not send any message to A, and thus the second session
is aborted.

In the second attack, a well-behaved initiator communicates with a malicious responder / in
one session but communicates with a well-behaved responder B in another session. The same
contract is used in the two sessions. The malicious responder / replays A’s signature for session with
1 to the session with B. Due to the duplicate contract, A has B’s commitment. However, B does not
have A’s commitment since A’s signature is replayed, and thus Z is not correct. Note that TTP
cannot resolve the dispute due to the incorrect Z. The attack is shown as follows.

1) A —>1:8IGC1,Z1) where ZI=ENCrrp(A,I,mal)

1) A > 1I(B) : SIG4(C1,Z22) where Z2=ENCrrp(A,B,ma2)
I(A)—- B : SIG«(C1,Z1)

2’) B—>A:SIGp(Cl,Z1), SIGy(Z1)

2) I —>A: Nothing

3) A —>B:ma2

4’) B —>TTP : A, B, SIGy(C1,Z1), SIGp(Z1)

Sa’) TTP— A : Error

5b°) TTP — B : Error

Since 7 does not send any message at step 2) in the first session, the session is ignored. In
steps 5a’) and 5b’), an error occurs due to the incorrect Z. Thus, no message is sent from TTP
according to Micali’s ECS1 protocol.

We discuss one new attack in Bao’s modified ECS1 protocol only. In the attack, a well-
behaved initiator communicates with malicious responder / in one session, but the malicious
responder conspires with Ar in another session. As a result of the attack, a malicious responder gets a
well-behaved initiator’s commitment, but the initiator obtains Ar’s commitment instead. After /
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receives A’s signature in step 1, / forward A’s signature to Ar and Ar requests TTP to resolve a
dispute by replaying 4r’s signature. Thus, A will obtain 47’s commitment instead, but / will obtain
A’s commitment. / gets A’s commitment because TTP is fooled to issue random M to / by the help of
Ar. The attack is shown as follows.

1) A—>1:81G4Cl1,Z1) where Z1 = ENCrrp(A,I,mal)
In the second session, I sends SIG4(C1,Z1) to Ar secretly.
2) I —>A: Nothing

4’) Ar > TTP : A, Ar, SIG4(C1,Z1), SIG4(Z1)

5) TTP - A : SIG4(C1,Z1), SIG 4(Z1)

6’) TTP — Ar : mal

In the second session, Ar sends mal to I secretly.

4.3.3. Performance

The table 3 shows some examples of configurations and their computation results. Each row
of the table shows a simplified form of a configuration of a session. For example, (4,1,c/,mal) means
that in the session A4 and [ are initiator and responder, respectively, and ¢/ is a contract and mal is the
random M. Note that “ ” means any value. Also, “All States” means the number of all states in a
state space and “Attack states” means the number of attack states found in the state space. “Times”
means the amount of times in seconds that are used to generate each state space.

Configurations of two sessions All Times Attack
States (in seconds) States
(Ar,], ,mil)&(1,B,cl,mil) 146,318 3,163 1,900
(Ar,], ,mil)&(A,B,cl,mal) 78,594 1,806 2,048
(LAr, ,mil)&(A,lcl,mal) 91,538 2,093 330
(LAr, ,mil)&(1,B,cl,mil) 339,918 13,200 2,952
(LAr, ,mil)&(1,B,cl,mi2) 647,918 34,370 7,032
(LAr, ,mil)&(A,B,cl,ml) 51,434 1,188 1,104
(ALcl,mal)&(A,Lc2,mal) 2,021 25 28
(A,Lcl,mal)&(A,lc2,ma2) 5,689 77 0
(A,Lcl,mal)&(1,B,cl,mil) 7,004 85 108

Table 3: Some results of the state space
Note that at some configuration, it requires 9 hours to compute the state space.
4.4. Discussion

Even though our CPN method offers many advantages, there is some disadvantage also. The
size of each state in the computed state space is large since an attack trace is embedded into each
state. As a future work, we aim to improve our method to overcome this disadvantage. Also, we aim
to apply our new method to analyze other kinds of cryptographic protocols and to analyze other kinds
of attacks.

5. Conclusion

In this paper, we propose a new CPN methodology for the security analysis of cryptographic
protocols. Our approach offers a simple but effective way to analyze multiple sessions of protocol
execution. We argue that our new CPN methodology improves on all existing CPN and Petri net
methods for security protocols on several issues. In particular, our CPN method is the first CPN
method which offers a security analysis methodology of multiple concurrent sessions of protocol
execution. Furthermore, it offers a systematic method to analyze attacks in protocols. In particular,
our method offers the decomposition and multi-session scheduling for the computation of state
spaces, the intuitive approach to characterize attack states, the efficient way to extract attack traces
and the systematic way to classify a large amount of attack traces. Also, it can detect more attacks
with a better efficiency than all existing CPN methods for security protocols.
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To demonstrate the practical uses of our approach, we apply our methodology to two case
studies which are Micali’s contract signing protocol ECS1 and TMN authenticated key exchange
protocol. Surprisingly, we found many attacks in the two protocols. For ECS1, we found two new
attacks in multiple sessions of protocol execution of the original ECS1, and three new attacks in
Bao’s modified ECS1. For TMN protocol, we found two new attacks in multiple sessions of protocol
execution. In fact, the new attacks that we found in TMN protocol are quite surprisingly since TMN
have been analyzed quite extensively.
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