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V := { s0 }
W := { s0 }
while W ≠ ∅ do
Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true
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Example:
On-line vs. Off-line
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Off-line Safety Checker

V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
for all t, s‘
     such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

for all v ∈ V do
if ¬I(v) then

return false
return true

This is off-line analysis; we first generate the state space and then we analyze it.



On-line Safety Checker
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

This is on-line 

analysis; we analyze 

the state space while 

we generate it.



On-line Off-line

Finds errors faster

Uses less memory

Supported by ASAP

Can check additional properties 
subsequently

Can (easier) provide error traces

Can check more properties

Supported by Design/CPN, CPN 
Tools, and ASAP

On-line vs. Off-line



Demo:
On-line vs. Off-line (08)

Show safety checker and time spent 
checking property (maybe crank up size)

Change to off-line

Note that top-level has not changed

Show time spent checking property



Example:
Standard Report



The Standard Report
CPN Tools (and DESIGN/CPN) creates a 
standard report with a set of standard 
properties

It is possible to remove properties from 
the report

It is not possible to add new properties to 
the report



The Standard Report
in ASAP

Is very much work in progress!

Contains the same properties as the 
standard report in CPN Tools

Is based on JoSEL



Demo:
Standard Report (09)

Switch to standard report workspace

Go thru the standard report JoSEL 
specification



Example:
Hash-compaction



State Space Methods

Store states compactly

Delete states during exploration

Store only some states

Use external memory



State Space Methods

Store states compactly

Delete states during exploration

Store only some states

Use external memory



Hash-compaction
A problem of the standard method is that 
we use 1000 bytes per state, and 4 GB / 
1000 = 4 • 106 states

What if we only use, say, 4 bytes per state; 
then we can store 4 GB / 4 = 109 states

This is the rationale behind hash-
compaction



Observation
For a hash function h (any function, really) we have

s = s’ ⇒ h(s) = h(s’)

We use the terminology

s: full state descriptor (1000 bytes)

h(s): compressed state descriptor (4 bytes)

We do not have that h(s) = h(s’) ⇒ s = s’, but good 

hash functions ensure that this is mostly true

If h(s) = h(s’) but s ≠ s’ we say we have a hash 
collision



Hash-compaction
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

We replace full state 

descriptors by 

compressed state 

descriptors in V
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Hash-compaction
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

We replace full state 

descriptors by 

compressed state 

descriptors in V

{ h(s0) }

h(s’) ∉ V
{ h(s’) }

As long as we 
encounter no hash 

collisions, this 
algorithm works 
identically to the 

previous
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Notes on Hash-compaction

We find most but not all states

Improve coverage by using larger hash values 

Improve coverage using more than one hash 
function

SHA-1 uses 160 bits (20 bytes) per state and 
has no known collisions

Uses around as much time as the standard 
algorithm and space is still O(# nodes) but with 
a smaller factor



Demo:
Hash-compaction (10)

Replace storage in standard method

We can but should not compute error 
traces

Replace storage in sweep-line method – 
easy to combine methods



Numbers
Model Nodes NodesHC Mem MemHC % /st /stHC

DP22

DB10

SW7,4

TS5

ERDP2

ERDP3

39604 39603 23.6 20.8 88 625 550

196832 196798 174.0 4.9 3 927 26

215196 214569 43.0 5.2 12 210 25

107648 107647 61.2 45.7 75 596 445

207003 206921 87.4 5.1 6 443 26

4277126 4270926 - 113.5 - - 28



Example:
Bit-state Hashing



Bit-state Hashing
Hash-compaction uses a hash function to 
compress state descriptor and stores the 
compressed vectors

Bit-state hashing instead uses a hash 
function to compute an index in an array 
and sets a bit if a corresponding state has 
been seen

We need an array of size 2|h(s)|/8 bytes, 
e.g., 232/8 = 500 Mb to get same coverage 
as hash compaction



Hash-compaction
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

We replace full state 

descriptors with bit-

array access.



Hash-compaction
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

We replace full state 

descriptors with bit-

array access.

new bool[2|h(s)|]; V[h(s0)] := true

¬V[h(s’)]
V[h(s’)] := true



Hash-compaction
V := { s0 }
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if s’ ∉ V then
V := V ∪ { s’ }
W := W ∪ { s’ }

return true

We replace full state 

descriptors with bit-

array access.

new bool[2|h(s)|]; V[h(s0)] := true

¬V[h(s’)]
V[h(s’)] := true

This works exactly 
like hash-compaction 
with the same hash 

function.



Bit-state Hashing vs. 
Hash-compaction

Both allow us to increase the size of the 
compressed state descriptor to get better 
coverage, but for bit-state hashing each extra 
bit doubles memory usage

Hash-compaction uses memory proportional to 
the size of the number of nodes, bit-state 
hashing uses a constant amount of memory

Hash-compaction uses memory proportional to 
the number of hash functions we use, bit-state 
hashing uses a constant amount of memory



Bit-state Hashing vs. 
Hash-compaction

Both allow us to increase the size of the 
compressed state descriptor to get better 
coverage, but for bit-state hashing each extra 
bit doubles memory usage

Hash-compaction uses memory proportional to 
the size of the number of nodes, bit-state 
hashing uses a constant amount of memory

Hash-compaction uses memory proportional to 
the number of hash functions we use, bit-state 
hashing uses a constant amount of memory



More Hash Functions

Using 2 hash functions require that we 
have 2 collisions instead of just one

But we may have a new kind of collisions, 
h1(s1) = h2(s2)

Using more hash functions improves 
coverage to a certain point where the bit-
array gets “filled up”, so collisions become 
more common



Hash-compaction
V := new bool[2|h(s)|]; V[h(s0)] := true
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if ¬V[h(s’)] then
V[h(s’)] := true
W := W ∪ { s’ }

return true

We simply set and 
read bits for both 



Hash-compaction
V := new bool[2|h(s)|]; V[h(s0)] := true
W := { s0 }
while W ≠ ∅ do

Select an s ∈ W
W := W ∖ { s }
if ¬I(s) then

return false
for all t, s’ such that s →t s’ do

if ¬V[h(s’)] then
V[h(s’)] := true
W := W ∪ { s’ }

return true

We simply set and 
read bits for both 

; V[h2(s0)] := true

or ¬V[h2(s’)]
; V[h2(s’)] := true



Double Hashing
Calculating hash functions is actually pretty 
expensive, so the time complexity grows with 
the number of hash functions

Simply using hn(s) = n • h1(s) does not work!

It turns out that using hn(s) = n • h(s) + h’(s) 
does work; this is called double hashing

Triple hashing works better but takes more time

Experiments show that using 15-20 hash 
functions works well



Demo:
Bit-state Hashing (11)

Replace storage on standard example

Try replacing storage on sweep-line 
example

JoSEL catches (most) illegal combinations 
on construction



Bit-state Hashing and 
the Sweep-line Method

We can combine the hash-compaction 
method with the sweep-line method

We cannot combine the double hashing 
method with the sweep-line method

The sweep-line method deletes states

We may have hn(s) = hm(s’) with s ≠ s’

Thus, removing s may accidentally 
remove s’ as well



Bit-state Hashing and 
the Sweep-line Method

The bit-state hashing/double hashing 
methods use a constant amount of memory 
regardless of number of states stored

Can we win anything by removing entries 
using the sweep-line?

We can reduce the probability of collisions



Numbers
Model Nodes NodesDH Mem MemDH % /st /stDH

DP22

DB10

SW7,4

TS5

ERDP2

ERDP3

39604 39604 23.6 32.0 135 625 846

196832 196832 174.0 12.3 7 927 66

215196 215196 43.0 12.3 28 210 60

107648 107648 61.2 55.4 90 596 540

207003 207003 87.4 12.3 14 443 62

4277126 4277125 - 12.1 - - 3



More Numbers
Model Nodes MemHC MemDH /stateHC /stateDH

DP22

DB10

SW7,4

TS5

ERDP2

ERDP3

39604 20.8 32.0 550 846

196832 4.9 12.3 26 66

215196 5.2 12.3 25 60

107648 45.7 55.4 445 540

207003 5.1 12.3 26 62

4277126 113.5 12.1 28 3


