
CPN’09 - 1

Advanced
State Space Methods

CPN’09 - 2

Overview
1. G.E. Gallasch, J. Billington, S. Vanit-Anunchai, and L.M. Kristensen. Checking Safety Properties

On-the-fly with the Sweep-Line Method. International Journal on Software Tools for Technology
Transfer, Vol 9, No. 3-4, pp. 371-392. Springer-Verlag, 2007.

2. M. Westergaard, L.M. Kristensen, G.S. Brodal and L. Arge. The ComBack Method - Extending Hash
Compaction with Backtracking. In Proc. of 28th International Conference on Application and
Theory of Petri Nets and Other Models of Concurrency, Vol. 4546 of Springer Lectures Notes in
Computer Science, pp. 445-464. Springer-Verlag, 2007.

3. S. Evangelista, M. Westergaard, and L.M. Kristensen. The ComBack Method Revisited: Caching
Strategies and Extension with Delayed Duplicate Detection. ToPNoC, 2009. To appear.

4. S. Evangelista, M. Westergaard, and L.M. Kristensen. The ComBack Method Revisited: Caching
Strategies and Extension with Delayed Duplicate Detection. In CPN'2008, 2008.

5. S. Evangelista. Dynamic Delayed Duplicate Detection for External Memory Breadth-First Search.
In Proc. of SPIN’2008 Workshop on Model Checking of Software. LNCS. Springer-Verlag, 2008.

6. S. Evangelista and L.M. Kristensen. Search-Order Independent State Caching. In CPN'2009, 2009.
7. S. Evangelista and C. Pajault. Solving the Ignoring Problem for Partial Order Reduction.

Submitted to STTT.
8. M. Westergaard, S. Evangelista, and L.M. Kristensen. ASAP: An Extensible Platform for State

Space Analysis. In ATPN'2009, volume 5606 of LNCS, pages 303-312. Springer, 2009.
9. S. Evangelista and L.M. Kristensen. Dynamic State Space Partitioning for External Memory Model

Checking. In FMICS'2009, volume 5825 of LNCS, pages 70-85. Springer, 2009.

Presenter
Presentation Notes
Concerning 1, there will be a presentation of a position paper which deals with an extension of the work.

Sami will be presenting paper 6 shortly.

CPN’09 - 3

The ComBack Method -
Extending Hash Compaction
with Backtracking

Presenter
Presentation Notes
So this presentation is concerned with the Comback method.

Now, the overall topic of this presentation is explicit state space exploration…

CPN’09 - 5

The Hash Compaction Method
[Wolper&Leroy’93, Stern&Dill’95]

Relies on a hash function H for memory efficient
representation of visited (explored) states:

Only the compressed state descriptor is stored
in the state table of visited states.

H : S {0,1}w

01100011000110001110000111000101

Compressed state descriptor

(4-8 bytes)

Full state descriptor

(100-1000 bytes)

s

Presenter
Presentation Notes
So let me start with introducing the hash compaction method.

The basic idea of hash compaction is to use a hash function for obtained a memory efficient representation of each visited state.

So the idea is to map the full state descriptor of the system – which for high-level net is typically 100-1000 bytes into a compressed state descriptor which is typically going to be 4-8 bytes.

So in that way we can hope to represent many more state in memory since the idea is to store only the compressed state descriptors in the state table of visited states.

CPN’09 - 6

s1

Example: Hash Compaction
Cannot guarantee full state space coverage due
to hash collisions:

b

s6

s4
s3

s2

s5

b
a

a

ab

b
h1h3

h3
h4

h2

h3

State table: h1 h2 h3

s1
b

s6

s4

s2

b

a

a

h4

Compressed state
descriptor

Presenter
Presentation Notes
So here is a small concrete example that illustrates how the has compaction method works and which also illustrates how hash compaction may not explore the complete state space. Later this example will also be used illustrate how the ComBack method operates.

So let consider this example and assume that the states are mapped into these hash values (or compressed state descriptors h_1 to h_4).

[GÅ IGENNEM EKSEMPLET]

So altogether it means that we will only explore a partial state space, and the problem is that two states, s3 and s6 are mapped to the same hash value (compressed state descriptor), i.e., we have a hash collisions and they will, therefore, be considered the same state.

By using multiple hash functions it is possible to make the likelihood of not exploring the small, but there will still be a non-zero probability of not exploring the full state space.

CPN’09 - 7

Reconstruction of full state descriptors to resolve
hash collisions during state space exploration.

Reconstruction is achieved by augmenting the
hash compaction method:

A state number is assigned to each visited state.

The state table stores for each compressed state descriptor a
collision list of state numbers.

A backedge table stores a backedge for each state number of a
visited state.

The Comback Method

to detect (potential) hash collisions

to reconstruct full state descriptors

Presenter
Presentation Notes
So the basic idea of the ComBack method is to reconstruct the full state descriptors when we discover a state for which we have already stored its compressed state descriptor in the state table.

This means that we can determine whether or not it is actually is a state that we have visited before.

The reconstruction of full descriptors is achieved by augmenting the hash compaction is three ways.

[Gå igennem de tre punkter – derefter hvad de bruges til jf. de to blå punkter]

So overall this means that we store some additional information compared to the hash compaction method. So we are obviously going to use more memory that ordinary hash compaction.

CPN’09 - 8

Example: The ComBack Method

s1
b

s6

s4
s3

s2

s5

b
a

a

ab

b
h1h3

h3
h4

h2

h3

State table Backedge table

h1

h2

h4

1

2

4 6

(1,a)

1

3

4

5

6

2

(1,b)

(2,a)

(4,a)

(4,b)

1

2 h3 3

3 5

State
Reconstruction

(1,b)

4

5

6

(1,b)

(1,a)(2,a)

(1,a)(4,a) (2,a)

3

3

4

5

S6 ≠ S3

S6 ≠ S5

S3 ≠ S5

S4 = S4

Compressed state
descriptor

collision lists backedges

Presenter
Presentation Notes
So let us reconsider the small example from before – and I will now illustrate how the ComBack method works on that small example.

As before we have the states mapped into the following compressed state descriptors.

We start with the initial state s_1 and in the state table for compressed state descriptor h_1 we have stored the number of the initial state which is one. In the backedge table we do not have any backedge stored for state number 1 since this is the state for which we have the full state descriptor available.

Point out that here we are assuming that transitions are deterministic.

CPN’09 - 9

Collision list

Backedge table

?
=

Transition relation

CPN’09 - 10

Main Theorem
ComBack algorithm terminates after having
processed all reachable states exactly one.

The elements in the state table and the
backedge table can be represented using:

Number of state reconstructions bounded by:

Overhead compared to hash
compaction

Presenter
Presentation Notes
The main theorem of the paper is that the ComBack algorithm..

The elements in the backedge table can be stored used this number of bits, so for each reachable state we used the size of the compressed state descriptors + three integers to represent state numbers + an integer to represent the number of a transition.

We also have a conservative bound on the number of reconstruction which states that the number of reconstructioon are bounded by the sum of the indegress of the reachable states times the length of the longest collision list.

CPN’09 - 11

Implementation
Prototype implemented on the ASCoVeCo State
Space Analysis Platform (ASAP):

State table with collision lists implemented using a hash table.
Backedge table implemented as a dynamic array.
Compressed state descriptors and state numbers: 31 bit UI.
Breadth-first (BFS) and depth-first search (DFS) implemented.
Variant of ComBack method with caching implemented.

Performance of ComBack method compared to:
Standard full state space exploration (BFS and DFS).
Hash compaction method (BFS and DFS).

Presenter
Presentation Notes
AsCoVeCo State Space Exploration Platform
Advanced State Space Analysis Platform
Aarhus State Space Analysis Platform

CPN’09 - 12

Summary of Experimental Results

Model Method Nodes Arcs %Time %Space %Time %Space

DB ComBack 196,832 1,181,001 37 10 39 26
HashComp 196,798 1,180,790 18 3 21 21
Standard 196,832 1,181,001 100 100 106 100

SW ComBack 215,196 1,242,386 178 42 258 48
HashComp 214,569 1,238,803 92 12 103 23
Standard 215,196 1,242,386 100 100 111 100

TS ComBack 107,648 1,017,490 383 85 198 30
HashComp 107,647 1,017,474 93 75 96 24
Standard 107,648 1,017,490 100 100 106 73

ERDP ComBack 207,003 1,199,703 180 34 353 42
HashComp 206,921 1,199,200 93 6 100 21
Standard 207,003 1,199,703 100 100 115 101

ERDP ComBack 4,277,126 31,021,101 - - - -
HashComp 4,270,926 30,975,030 - - - -

DFS BFS
ComBack performance relative to
standard DF full state space exploration

Presenter
Presentation Notes
BFS dyrere pga. Større front og dyrere per tilstand at håndtere end depth-first.

DP 100% space (hele state space på stakken)

DB meget store tilstande, full langsom pga. Grænse for memory noget -> GC

Hvordan kan HashCompact være langsommere.
Fjern DP, tilføj to indgang for ERDP med anden cache størrelse

BFS delen relativt til BFS full.

CPN’09 - 13

Conclusions

ComBack method for alleviating state explosion:
Extension of the hash compaction to guarantee full coverage.
Search-order independent and transparent state
reconstruction.

Practical experiments:
Uses more time and space than hash compaction, less
memory than standard full state space exploration.
ComBack method suited for late phases of the verification
process.

CPN’09 - 14

Dynamic State Space
Partitioning for External
Memory Model Checking

CPN’09 - 15

State Space Partitioning
The state explosion problem can be addressed
by dividing the state space into partitions:

Distributed model checking:
State space exploration is conducted
using a set of machines / processes.
Each process is responsible for
exploring the states of a partition.

External-memory model checking:
One partition is loaded into memory at
a time.
The remaining partitions are stored in
external memory (disk).

Requires a partition function mapping from the
set of states to partitions.

Presenter
Presentation Notes
Tilføj en optegnelse af partitions på figuren.

CPN’09 - 16

External-Memory Algorithm
Uses a queue Q of unprocessed states, a set of
visited states V, and a file F for each partition:

Presenter
Presentation Notes
In particular a queue may run empty causing another partition to be investigated - and after a while the original partition becomes active again.

A distributed algorithm can be formulated in a similar manner.

Maybe add a reference to the PART algorithm here? – so that it is clear later what it is.

CPN’09 - 17

Partitioning Functions
Desirable properties:

Limit the number of cross transitions to reduce disk access and
network communication.
Even distribution of states into partitions to ensure that all
processes receives a comparable workload.

Main contributions of this work:
1. A dynamic partitioning scheme based on partition refinement

and compositional partition functions.
2. A set static and dynamic heuristics for implementing partition

refinement in the context of external memory model checking.
3. An implementation and experimental evaluation of the

dynamic partitioning scheme and the associated heuristics.

Presenter
Presentation Notes
Challenge: the set of reachable states is not a priori known.

The challenge point could perhaps be made clearer – the set of reachable states is much smaller than the universe of all possible states.

CPN’09 - 18

Dynamic Partitioning
Assumes that the system states can be
represented as a vector of state components:

S = (C1,C2 , … , Cn)

A partition is split into sub-
partitions (refined) when it
exceeds the available memory.

The refinement is realised by
taking into account an
additional state component.

A partition is determined from a subset of the
state components:

Presenter
Presentation Notes
Only occurrence of events that change dependent state components cause cross transitions

Those state components that are not taking into account for a particular partition will not results in cross transitions.

Note: the split could also be into more than a two subpartitions

CPN’09 - 19

Partitioning Diagrams
A compositional partition function can be
represented as a partitioning diagram:

Branching nodes
(branching functions)

Single root node

Terminal nodes
(state partitions)

The partition of a state is determined by applying
the branching functions starting from the root.

State s

g(s) g(s)=f

h(s) h(s)=a

i(s) i(s)=0 p1

Presenter
Presentation Notes
A partitioning diagram is a directed acyclic graph having a single root node.

Animer et løb igennem diagrammet.

CPN’09 - 20

Example: Partition Refinement
A state vector with three state components
(b ,c ,i): {t,f} {t,f} {0,1,2,3}

Presenter
Presentation Notes
The possible values for b,c,t should be gradually added – the diagram showing refinement should be gradually made visible.

Maybe add a specification of which components the different partitions are dependent on

CPN’09 - 21

Heuristics
The refinement step requires the selection of
state component to be used for the refinement.

Static Analysis (SA):
Count for each state component, the number of events in the
analysed system that modifies it.
Among candidate components, select the component with the
lowest count (to reduce cross transitions).

Static Sample (SS):
Explore a sample of the state space and count the number of
times a state component is modified (randomized search).
Among candidate components, select the component with the
lowest count (to reduce cross transitions).

Presenter
Presentation Notes
Static heuristics are based on an offline analysis on either the model under analysis or a sample of the state space. Maybe offline should be a better term to use

Randomized search to get a representative sample – pure depth-first or breadth-first cannot be expected to give a representative picture.

CPN’09 - 22

Dynamic Heuristics
Dynamic Randomized (DR):

Picks a random state component not yet considered.
Serve as a baseline for the other dynamic heuristics.

Dynamic Event Execution (DE):
Count during state space exploration the number of times a
component has been modified (select lowest count).

Dynamic Distribution (DD):
Select the component that gives the lowest standard deviation
in sub-partition sizes.

Dynamic Distribution and Event Execution (DDE):
Combines heuristics DE and DD:

Presenter
Presentation Notes
DE is the dynamic equivalent of the static Sample Analysis heuristics

CPN’09 - 23

Experimental Context
Implementation in the ASAP model checking
platform:

The PART external memory algorithm [Bao, Jones (TACAS’05)]:
uses a global hash function on the state vector.
A static partitioning scheme [Lerda, Sisto (SPIN’99)]: The
partitions are determined from a single state component.
A dynamic partitioning scheme [Lerda, Visser (SPIN’01)]:
partitions consists of classes that can be reassigned.

Experiments conducted on models from the BEEM
benchmark database [Pelánek (SPIN’07)].

Presenter
Presentation Notes
How does the class concept work in the dynamic case? – SPIN’01?

CPN’09 - 24

Experimental Results (1)

Performance is relative to the PART algorithm
with a global hash code (Static + GHC).

Measures the number of cross transitions (CT)
and disk accesses (IO):

SPIN’99 SPIN’01PART

Presenter
Presentation Notes
Den første slide er blot et spørgsmål om at kunne læse søjlerne.

Overskriften bør følge med på de næste dele av tabellen.

Best values for each model is indicated in bold

CPN’09 - 25

Experimental Results (2)
Summary across 35 model instances:

Main observations:
1. Compositional dynamic refinement generally outperforms the

earlier approaches (GHC and LHC).
2. DR generally worse than all other heuristics – and always

worse than SS and DE which performed comparable.
3. A general correlation between disk accesses and cross

transitions: except in cases with uneven partition distribution.

Presenter
Presentation Notes
The reason for being able to outperform earlier approaches A GHC cannot exploit locality. A LHC cannot give an even distribution. So a Dynamic approach is needed.

The first part of the table shows that a local hash code is generally preferable.

Ad 1: The first observation stress the importance in the choice of candidate component – a fully randomized choice does not try to learn from the model structure.’

Ad 2: shows that an initial sample of the state space in general provides good information about the system behaviour.

Ad 3: because partitioning splits also give rise to disk accesses. Also, a large number of cross transition linking partitions is not generally problematic – only the first one may trigger a partition swap. Hence, it is only the situation where a partitions has cross transititons to many other transititions that should try to be avoided.

DDE reduces IO by trying to reduce the number of partitions splits – which is also reflected in the average.

CPN’09 - 26

Partition Overflow
Dynamic partitioning can avoid overflow when a
some partition cannot be represented in memory.
Ratio of overflowing states* with related
approaches [SPIN’99, SPIN’01]:

*Partition size limit is 1% of the total state space.

Presenter
Presentation Notes
Only the LHC case is considered and this is the only meaningful one in terms of performance

In practice, when there are overflow, i.e., a non-zero entry the earlier algorithms do not work .

They will stop exploration without having explored the entire state space.

CPN’09 - 27

Conclusions and Future Work

A dynamic partitioning scheme applicable for
external memory and distributed model checking.
The heuristics have been evaluated in the context
of external memory model checking.
Improves cross transitions and disk access
performance compared to earlier related work.
The scheme can ensure an upper bound on size
of any partition loaded into memory.
Heuristics are still be investigated in the context
of distributed model checking.

Presenter
Presentation Notes
Ad distributed model checking: the question is network communication vs. partitions swaps and whether the same heuristics are applicable.

	Slide Number 1
	Overview
	The ComBack Method - Extending Hash Compaction with Backtracking
	The Hash Compaction Method [Wolper&Leroy’93, Stern&Dill’95]
	Example: Hash Compaction
	The Comback Method
	Example: The ComBack Method
	Slide Number 9
	Main Theorem
	Implementation
	Summary of Experimental Results
	Conclusions
	Dynamic State Space Partitioning for External Memory Model Checking
	State Space Partitioning
	External-Memory Algorithm
	Partitioning Functions
	Dynamic Partitioning
	Partitioning Diagrams
	Example: Partition Refinement
	Heuristics
	Dynamic Heuristics
	Experimental Context
	Experimental Results (1)
	Slide Number 25
	Partition Overflow
	Conclusions and Future Work

