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Summary

This dissertation investigates methods for deformable image registration (DIR)
in radiation therapy. DIR is the process of finding a point to point correspon-
dence map between positions in one medical scan and positions in another scan.
This is a necessary prerequisite for accurately evaluating the accumulated dose
from a number of radiation therapy treatments. Both registration methods
based only on image intensities and methods using mesh based elastic simula-
tion of organs are treated. The intensity based methods investigated are the
viscous-fluid registration method and two methods based on optical flow esti-
mation. Two new elastic models for registration of meshes derived from organ
segmentation are presented:� A model for registration of solid organs like the prostate or liver. The

biomechanical model used for this registration method is based on a non-
linear elastic finite element model and driven by forces derived from a
Euclidean distance field as well as forces working normal to the organ
surface.� A model for registration of the bladder. Here a 2D parameterisation is
created of one of the organ surfaces. Vertices from a surface mesh of
the other organ segmentation are restricted to stay in the 3D positions
described in this parameterisation. After an initial projection into the 2D
space, the positions of vertices are optimised based on relaxing a spring-
mass model and landmark point matching.

Ways of combining intensity based methods with mesh based methods will be
proposed.

Graphics processing units (GPUs) have in recent years been successfully
used for accelerating a variety of computational problems, and the use of GPU
computations plays a key role in reducing the computation time of the presented
methods.
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Resumé

I denne afhandling udforskes metoder til deform billedregistrering til brug i
forbindelse med str̊alebehandling af kræftpatienter. Formålet med billedreg-
istrering er givet to medicinske scanninger at beregne en beskrivelse af, hvilke
positioner i den ene scanning, der svarer til hvilke positioner i den anden scan-
ning. En s̊adan registrering er nødvendig for at kunne give et nøjagtigt estimat
af den samlede fordeling af str̊aledosis, som patienten har modtaget fra en række
str̊alebehandlinger.

Der behandles b̊ade registreringsmetoder, som alene baserer registreringen
p̊a billedintensiteter samt metoder, der simulerer organdeformationer v.h.a.
en elastisk materialemodel. Her repræsenteres organer enten som voluminer
best̊aende af tetraeder eller som overflader best̊aende af trekanter.

De intensitetsbaserede metoder, som undersøges, er viscous-fluid-registre-
ringsmetoden samt to metoder, der baseres p̊a bestemmelse af optical flow.
Herudover præsenteres to nye metoder til elastisk registrering, som baserer sig
p̊a tetraede- eller trekants-repræsentationer af segmenterede organer:� En metode, der egner sig til registrering af fyldte organer s̊asom prostata

eller leveren. Den anvendte biomekaniske model baseres p̊a en ikke-lineær
elastisk elementmetode. Registreringen drives af kræfter, som beregnes
fra Euklidiske afstandsfelter, samt kræfter, der virker i normalretningen
p̊a overfladen.� En metode til registrering af blærer. I denne model skabes en to-dimensio-
nel parametrisering af overfladen fra den ene segmentering. En trekants-
repræsentaton af overfladen p̊a den anden segmentering simuleres som en
elastisk membran. Knuderne i denne bevæges rundt p̊a overfladen af den
første segmentering ved hjælp af parametriseringen. Herved minimeres
den potentielle energi i membranen samtidig med, at prædefinerede punkt-
korrespondancer bringes til at stemme overens.

Der fremlægges ideer til, hvorledes de intensitetsbaserede metoder og metoder,
som baseres p̊a tetraede- eller trekants-repræsentationer, kan bringes til at ar-
bejde sammen.

I de senere år er processorerne p̊a grafikkort med succes blevet anvendt til
at nedsætte beregningstiden p̊a en lang række beregningsproblemer. I denne
afhandling anvendes grafikprocessorer til at reducere kørselstiden for de præsen-
terede registreringsmetoder.
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Chapter 1

Introduction

The subject of this dissertation is methods for deformable image registration
(DIR) in radiotherapy. It focuses on registration methods based purely on image
intensities and methods relying on explicitly simulating elastic behaviour using
a mesh representation of each organ.

The structure of this dissertation

The dissertation is divided into four parts:

1. Part I: The purpose of this introductory part is to introduce the reader
to the problem domain of the dissertation as well as the background tools
used to address the problems faced. First an introduction to image guided
radiotherapy will be given, motivating the need for deformable image reg-
istration. In particular the use cases will be presented which motivate
the registration methods focused on in this dissertation. Following this
the reader will be introduced to existing techniques for deformable reg-
istration. The introductory part will end with a short introduction to
computation based on graphics programming units (GPUs).

2. Part II is about using GPU computation for accelerating image registra-
tion based entirely on image intensities. In particular work on accelerating
the so-called viscous-fluid registration method and two methods based on
optical flow estimation will be presented. The achieved reduction in pro-
cessing time makes it practically feasible to perform a clinical evaluation
of the methods.

3. Part III involves registration of mesh representations of organs. For solid
organs like the prostate or liver a method is presented which uses an elastic
finite element model to ensure a physically plausible registration between
different organ deformations. Furthermore a method will be presented
for registering surfaces of the bladder. This model is based on an elastic
membrane model and a spherical parameterisation of organs.

4. In part IV the dissertation is concluded and a discussion is made about
how to combine the methods presented in parts II and III to allow mesh

3



4 Chapter 1. Introduction

based registration to serve as extra guidance in cases where intensity based
registration does not adequately succeed.

Parts II and III constitute the primary technical contributions of the disser-
tation. The presented registration methods will be validated on a ”proof of
concept” level. A full scale clinical evaluation is important future work.

Besides the work described in this dissertation, the author has been part of
two other research projects. One is concerned with GPU acceleration of a non-
Cartesian fast Fourier transform for use in reconstruction of magnetic resonance
images [130], and the other is on the development of a surgical simulator for ear
surgery [139]. The referenced publications can be found on the accompanying
CDROM.

On this CDROM a number of movies are also found which further illustrate
techniques and registration results presented in chapters 7 and 8. References
to these movies will be made with a red number in curly braces like this: {1}.



Chapter 2

Image guided radiotherapy

Radiation therapy or radiotherapy is an essential part of the treatment of can-
cer diseases, which works by destroying the genetic material of cancer cells with
ionising radiation. The radiation can be administered as external beam radio-
therapy (EBRT) where a planned radiation dose is delivered from an external
device. A technique called intensity modulated radiation therapy (IMRT) in
which the radiation is shielded using a number of moving collimator leaves (see
figure 2.1) can be used for conforming the radiation dose to a particular target
volume. This conformation is based on a CT planning image that has under-

Figure 2.1: Left: A linear accelerator. The gantry rotates around the patient
and delivers the planned 3D dose distribution. Right: Multileaf collimators
work by shifting in and out of the beam during treatment allowing precise
conformation of dose. Both images from http://www.varian.com

gone a (usually manual) segmentation. In this dissertation the word image is
used to denote both 2D images and 3D data sets consisting of a number of 2D
slices. Segmentation is the process of partitioning an image into a number of
parts (organs and tumour volumes). This is done by contouring segments on
the slices of the planning image. During dose planning the target volumes and
organs at risk (OAR) to be spared are specified along with a prescribed dose,
and based on this the planning software calculates the physical trajectory of
the gantry and movement of the collimator leaves in a process called inverse

5



6 Chapter 2. Image guided radiotherapy

dose calculation. A variable number of treatment sessions, called fractions, are
delivered.

Alternatively or supplementary to EBRT a technique called brachytherapy
(BT) can be used in which a small source of radiation is placed inside the
patients body. In so-called intracavitary BT an applicator designed for the par-
ticular cancer site is inserted in naturally occuring body cavities - see figure 2.2.
The brachytherapy applicator has a number of tubes in which the radioactive

Figure 2.2: Photo of a brachytherapy applicator used for treatment of cervical
cancer. The leftmost part is inserted in the cervix and via the tubes seen on
the right a small radioactive source can be inserted.

source can be inserted and pulled out automatically using a machine called an
afterloader . The administered dose is regulated by adjusting the dwell time
during which the source is positioned at different dwell positions in the tubes.
BT planning can be done on MR images which give a better contrast between
different types of soft tissues. BT treatment is characterised by giving a very
localised dose with steep dose gradients (compare the two parts of figure 2.3).

Figure 2.3: Left: Dose plan for a head and neck tumour computed by in-
verse dose calculations based on prescribed dose constraints to the segmented
volumes. Coloured overlay shows the planned dose. The computed fields of
radiation are also shown. Right: Dose plan for brachytherapy of cervical
cancer. The delivered dose is very localised to the vicinity of the applicator.

Radiotherapy can cause severe side-effects, so the radiation dose should
always be conformed to the diseased volume as well as possible. However, organ
and tissue deformations between radiotherapy sessions represent a significant



2.1. Image registration in radiotherapy 7

challenge to this dose conformation. Margins are added to the tumour volume to
ensure that the entire tumour receives sufficient dose in each treatment session.
Currently, huge efforts are put into minimising this margin by applying different
imaging modalities to guide the planning and delivery of radiation (IGRT: image
guided radiotherapy).

Recent technological advances have made it possible to perform CT imaging
in the treatment room in connection with each radiotherapy session using one
of the technologies cone beam computed tomography (CBCT) [136] or CT-on-
rails [7]. The device used in CT-on-rails is a conventional CT scanner which
is located near the accelerator used for EBRT. Without leaving the couch the
patient can be moved back and forth between accelerator and CT scanner. In
CBCT the imaging device is mounted on the accelerator arm. Instead of a
thin slice of radiation as used in a conventional CT scanner, a cone of radia-
tion is sent through the patient. This causes a larger contribution of scattered
radiation which results in more noise. An advantage of CBCT is that the pa-
tient does not need to be moved and is scanned in the frame of reference of
the treatment beam. Besides these two technologies, increased access to mag-
netic resonance imaging (MRI), conventional computed tomography (CT), and
positron emission tomography (PET) scanners has made it possible to perform
repetitive scans during radiotherapy treatment. The repetitive acquisitions pro-
vide valuable information about organ deformation and movement over time as
well as tumour shrinkage, which can potentially be used for ongoing dynamic
dose optimisation of the treatment. To draw full advantage of this, advanced
methods of image analysis are required to handle organ deformations.

2.1 Image registration in radiotherapy

Aligning images rigidly allows some changes in images to be easily detected.
However such an alignment does not model changes from e.g. organ deforma-
tion, patient weight loss, or tumour shrinkage. It is possible to take such changes
into account using deformable image registration (DIR) which is a method for
finding the mapping between points in one image and the corresponding point
in another image. DIR has the perspective of being widely integrated into many
different steps of the radiotherapy process. The tasks of planning, delivery and
evaluation of radiotherapy can all be improved by taking organ deformation
into account. Use of image registration in IGRT can be split in the following
categories:

intra-patient registration is registration of images of a single patient. Uses
can again be divided:

inter-fractional registration is used for matching an image acquired
at one treatment fraction to an image from another fraction or to the
planning image. Possible uses include improving patient positioning,
evaluating organ motion relative to bones, and enabling pointwise
accumulation of dose.
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intra-fractional registration is for matching images acquired during
a single treatment fraction. The use case here is online tracking of
organ movement. An example could be tracking respiratory motion.

inter-patient registration is used for matching images from different pa-
tients. This can be used for generating a model of organ motion across a
population of patients. Another use of inter-patient registration is match-
ing an image to an atlas i.e. an ”average” of images acquired from a num-
ber of patients, thereby allowing information to be transferred from the
atlas to the newly acquired image.

The process of combining information from two images after these have been
registered is called data fusion. A particular use of data transfer between images
is the propagation of contours from the planning image or an atlas to a newly
acquired image [48] [154].

In this dissertation focus us put on intra-patient inter-fractional registration
in connection with cervical cancer and head/neck cancer respectively as pre-
sented in section 2.5. For an introduction to other uses of image registration in
RT we refer to the comprehensive survey paper by Sarrut [120]. In addition to
inter-fractional registration for dose accumulation his survey covers data fusion
in connection with MR spectroscopic imaging and PET acquisition as well as
compensation for breathing deformation and inter-patient registration for atlas
generation. For a broader introduction we refer to the survey by Kessler [66].

2.2 Aligning a series of images to a common refer-

ence system

By registering all 3D acquisitions from a series of treatments to the same ref-
erence data set, a geometrically resolved view (GRV [19]) can be generated
making it possible to calculate the accumulated dose distribution (see below)
and to evaluate tumour growth/regression [83].

2.2.1 Addition of dose distributions

Assume that we have a series of M image acquisitions, each corresponding to
a treatment fraction. Every image i has a dose matrix Di(x) assigned to it.
This dose matrix can originate from either an EBRT or BT dose planning,
and is a description of the distribution of radiation dose given in the fraction
corresponding to image i. Oncologists would like to know the accumulated dose
distribution from multiple radiation treatments. In the accumulation process,
deformation of the organs between fractions must be taken into account. The
role of DIR is to generate the spatial transformations hij , i, j ∈ {1, 2, ...,M}.
The expression hij(x) evaluates to the position in the source image Ii that
corresponds to the position x in the reference image Ij.

We also need to define a reference system R ∈ {1, 2, ...,M}. Given this we
can add the dose distributions in the following way [28]:
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DTotal(x) = DR(x) +

M
∑

i=1,i 6=R

Di(hiR(x)) (2.1)

This means that for each treatment we use the registration method to describe
how the internal organs have been deformed compared to the reference image.
By transforming the dose distribution using the transformation found by regis-
tration, the dose distribution is transferred to the reference system. Since the
dose distributions for all treatments are transferred to the same reference sys-
tem, they can be summed to find the accumulated dose distribution. Note that
this model does not take into account biological effects of dose fractionation -
for a more advanced accumulation model see e.g. [12].

Calculating the dose distribution for each fraction

For a course of EBRT treatments dose planning is typically done only once based
on the planning CT. An assumption is made that the patient morphology will
be the same for all fractions. However, in practise changes will occur due to e.g.
weight loss or tumour shrinkage. Since the tissue at fraction i has undergone
a deformation compared to the planning scan, the dose distribution calculated
during dose planning does not correctly correspond to the image acquired at
this fraction. Therefore it is required to recalculate the dose distribution based
on the same treatment parameters but on the new image1. For EBRT this
recalculation must be done on CT images (or CBCT - see section 2.5.2). The CT
modality measures the attenuation of radiation as the radiation goes through
the body, which is exactly what we wish to compute in the dose calculation.

For BT dose gradients are so steep and localised that we may base the
dose calculation on MR acquisitions (dose delivered is primarily a function of
the distance from the source). In MR-guided brachytherapy an MR image is
acquired in connection with each fraction and used for planning. The treatment
is also here based on an assumption that only minor changes occur in the time
between image acquisition and treatment.

2.3 Adaptive radiotherapy

In adaptive radiotherapy (ART) the idea is to use image feedback from the
first N fractions to reoptimise the treatment plan for the following fractions
[12] [151] [83]. For now it is only realistic to achieve image guided adaptation
off-line (i.e. using image information acquired during a fraction for improving
following fraction), but a full on-line approach is also theoretically possible in
which the treatment plan for a fraction is changed based on information from
the same fraction.

1For some cancer sites recalculation may not be necessary [12]
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2.4 Time requirements

The feasibility of introducing deformable registration into different steps of ra-
diotherapy treatment planning depends on the computation time. Pre-treatment
planning and post-treatment evaluation of radiotherapy are tasks that run over
hours or days, but the registration time should still be kept reasonable low.
A registration time of hours for instance will make a method unsuitable for
clinical use.

When DIR is to be used in connection with the actual delivery the timing
is critical, since the patient will be in the treatment room during the process of
deformable registration. Considering the comfort of the patient, the accuracy
of the treatment, and the patient flow, the registration time should be kept as
low as possible.

2.5 Clinical cases

I will briefly describe two clinical cases that have been the motivation for choice
of registration algorithms to be investigated. One of these is the use of intracav-
itary BT for treatment of cervical cancer. The other clinical case is registration
between the planning CT and CBCT images acquired during head and neck
cancer EBRT treatment fractions. For both cases the need for deformable reg-
istration will be motivated. It is out of scope of this dissertation to do a thor-
ough evaluation of the proposed registration methods for the use cases below.
Instead evaluation will be done on a ”proof of concept”-level, demonstrating
the methods on a few images from the cases.

2.5.1 Cervical cancer treatment - dose estimation

In Aarhus the standard treatment of locally advanced cervical cancer is a com-
bination of EBRT and BT. The BT is based on a modern system of 3D image
guidance using MR images. A 3D MR image is acquired in connection with ev-
ery BT treatment fraction. On each such image, the target volume and organs
at risk are delineated, and the position of the brachytherapy applicator is de-
termined. Subsequently the treatment is planned. Knowing the dwell positions
and dwell times it is possible to compute the delivered dose for each voxel of
the acquired MR image.

We wish to be able to register all the MR images to the same (e.g. the first)
image, which will allow us to estimate the accumulated dose of all fractions. One
use of this information would be to relate delivered doses at different positions to
side effects observed after a treatment course and the rate of survival. Another
use of an improved assessment of dose (especially to highly mobile organs like
the sigmoid or the bladder) would be to use the accumulated dose for improved
dose optimisation. Having determined a low accumulated dose to an OAR, it
might be possible to increase the dose delivered to the diseased tissue. On the
other hand if a high accumulated dose to an OAR is observed, it is important
to spare this tissue if possible. Figure 2.4 shows an example where the sigmoid
colon has undergone large deformations between fractions.
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Figure 2.4: MR images acquired in connection with 1.st (top left) and 3.rd
(top right) BT fractions. Below are 3D reconstructions of organ delineations
in the respective images. The rectum is shown in brown and the sigmoid
colon is coloured according to the radiation received. Positioning of the BT
applicator is also shown. Arrows in the top right image highlight that the
sigmoid has moved in between the rectum and the uterus very near applicator.
From [134].

As an example of what extra information a reliable registration can give
we can consider the so called D0.1cc for an OAR. This number describes the
minimum dose given to the 0.1 cm3 of most irradiated volume, and gives an
impression of ”hot spot” radiation to the organ. If computed on multiple images
independently, worst case calculations assume that the hot spots occur at the
same positions and thus the D0.1cc values should be added. However, given a
reliable registration of images we can get a more accurate impression of hot
spot radiation. If the highly radiated spots occur at different positions, higher
doses may be allowable in future fractions.

2.5.2 Head and neck cancer treatment

In connection with EBRT of head and neck cancer patients in Aarhus, CBCT
images are routinely acquired. These CBCT images contain artifacts and devi-
ations from the Hounsfield Units (the quantity measured in the CT modality)
of common scanners due to differences in scattered radiation - see figure 2.5.
There is some controversy about the effect on dose calculations of the differ-
ences in Hounsfield units. Ding et al. report that the discrepancies in Hounsfield
units do not give rise to major errors in dose calculations [38]. However, Yang
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et al. find that dose calculation performed on CBCT images is not acceptable
in the face of organ motion during acquisition [153]. Although this latter study
is not on head and neck images, we would like to apply their approach of using
DIR for mapping Hounsfield units from conventional CT images to CBCT im-
ages, which will make it possible to quantify the impact of using CBCT instead
of CT for estimating dose distribution. It would be very useful to be able to
do automated registration of CT and CBCT images. Besides elimination of
image artifacts from the CBCT acquisitions it will enable tracking of accumu-
lated dose to organs at risk (which can deviate from the planned doses due to
tumour shrinkage/weight loss). Finally such a registration will also allow auto
segmentation of structures of interest by contour propagation from the planning
image.

Figure 2.5: Images for comparison of conventional CT versus CBCT on im-
ages from a head and neck cancer patient. Top: axial, coronal and sagittal
views of CBCT images. Bottom: axial, coronal and sagittal views of con-
ventional CT images



Chapter 3

An introduction to image registration

The problem of registering medical images has been the subject of a huge num-
ber of previous research projects. These have resulted in a variety of different
registration algorithms. In medical image processing in general there are three
typical uses for 3D registration methods:� Tracking of deformable objects in a series of medical scans (e.g. CT or

MRI).� Matching of images from different patients (inter-patient registration).� Multi-modal registration which means matching images of the same pa-
tient acquired by different imaging technologies.

The registration problems treated in this dissertation are mainly belonging
to the first of these uses1. This means that our task is to find a mapping
between two images of the same patient acquired at different times describing
the trajectory of each physical point.

Deformable registration is an ill-posed problem because there is generally
no unique solution to a registration problem. Usually image registration is
formulated as an optimisation problem. Following [22] image registration can
be defined as finding the functions h and g in the following mapping between
two 3D images I1 and I2:

I2(x, y, z) = g(I1(h(x, y, z))) (3.1)

where I1 is called the source image and I2 is called the reference image. The
images I1 and I2 can be thought of as R3 → R mappings from 3D coordinates
to image intensities.

The function g is called an intensity mapping function that accounts for a
difference in image intensities of the same object in I1 and I2. In other words
it is used to describe so-called photometric differences. Difference in intensities
is addressed in work on multimodal registration (see section 3.1) and in work
using a more explicit model for intensity differences [108] [32].

1However, registration of cone beam CT and conventional CT may also be considered a
multimodal registration problem.

13
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The function h is used to describe geometric differences. It is a spatial
3D transformation that describes the mapping between the spatial coordinates
(x, y, z) in the reference image and coordinates (x′, y′, z′) in the source image
so that (x′, y′, z′) = h(x, y, z). These transformations take different forms de-
pending on the registration method used.

Registration methods can be based on information derived from image in-
tensities or from landmark information (such as contours or points) placed on
the images. Also hybrid models are possible using a combination of intensities
and landmarks.

3.1 Similarity measures

Before we can evaluate the quality of a registration result or even perform the
registration we need to define what we mean by a pair of images being ”more
identical” after registration. It is usually not the case that images are perfectly
matched as described by equation 3.1. Instead a similarity measure is defined,
and the optimal registration is the one that features a transformation which
minimises this measure. In the following I will introduce a number of the most
popular similarity metrics.

3.1.1 Sum of squared differences

Perhaps the most widely used similarity metric is the sum of squared differences
(SSD) measure defined as:

DSSD[IS , IR;h] =

∫∫∫

Ω
|IS(h(x)) − IR(x)|

2dV (3.2)

The notation DSSD[IS , IR;h] should be understood as ”the SSD measure of
similarity between the transformed source image IS and the reference image
IR given the transformation h”. The advantages with this metric is that it is
simple and intuitive. Also it is fast to compute (it is O(n)). The main problem
is that it requires images to be matched to be of the same modality (e.g. both
must be MRI images acquired using the same protocol).

3.1.2 Cross Correlation

Another well known similarity metric is the normalized cross correlation (NCC)
metric which can be written as:

DNCC [IS , IR;h] =

∫∫∫

Ω IS(h(x))IR(x)dV
√

∫∫∫

Ω I2S(h(x))dV
∫∫∫

Ω I2R(x)dV
(3.3)

This metric has the advantage that it has a reduced dependence on linear scaling
of image intensities. This means that two images can be registered even though
one is brighter than the other.
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3.1.3 Mutual Information

For multimodal registration the most commonly used similarity metric the mu-
tual information (MI) metric. It was proposed independently by Viola and
Wells [143] and Maes et al. [86]. The metric is based on information theory and
is thus a statistical measure of the correspondence between images.

The most intuitive way of expressing the MI measure between two images
I1 and I2 is

DMI [I1, I2] = H(I2)−H(I2|I1) (3.4)

where the Shannon entropy H is defined as:

H(I) =
∑

i

[

p(i) log2
1

p(i)

]

(3.5)

where i runs over all intensity levels. The second part of (3.4) is the entropy
involving the conditional probability that a pixel has intensity i2 in I2 given
the information that the corresponding pixel in I1 has intensity i1.

The MI metric can also be written as

DMI [I1, I2] =
∑

i1,i2

[

p(i1, i2) log2
p(i1, i2)

p(i1)p(i2)

]

(3.6)

which is easier to compute. Here p(i1, i2) is the probability of intensites being
i1 in I1 and i2 in I2 at corresponding pixel positions.

3.1.4 Similarity measures based on normalised gradient fields

In [50] Haber and Modersitzki proposed basing a similarity measure suited for
multimodal registration on normalised gradient fields. The idea is to consider
two images as similar if intensity changes occur at the same position in both
images. The image gradients are normalised and regularised which in 3D can
be described as follows:

nε(I,x) =
∇I(x)

||∇I(x)||ε
, where ||x||ε =

√

x21 + x22 + x23 + ε2 (3.7)

Here ε is a parameter thresholding the scale of intensity changes that we are
interested in. An automatic choice for ε can be computed based on image
intensity gradients [50]. Based on the regularised normalised gradient field two
similarity measures can be formulated:

DNGFc[I1, I2] =
1

2

∫

Ω
dc(I1, I2,x)dx, dc(I1, I2,x) = ||nε(I2,x) × nε(I1,x)||

2(3.8)

DNGFd[I1, I2] = −
1

2

∫

Ω
dd(I1, I2,x)dx, dd(I1, I2,x) = 〈nε(I2,x), nε(I1,x)〉

2(3.9)

The cross product in (3.8) means that this measure is related to the square
of the sine of the angle between normalised gradient vectors which we wish to
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minimise. The inner product in (3.9) is related to the cosine of the angle, so
here we wish to maximise the square of the cosine.

3.2 Transformation functions

Methods for medical image registration can be divided into those using para-
metric transformation functions and those using non-parametric ones. The
parametric methods are characterised by featuring a transformation function
that is described by a quite limited number of parameters. In contrast to
this non-parametric methods typically feature a transformation function that
is based on a vector per voxel describing the displacement of the point repre-
sented by this voxel. This is converted to a continuous function by interpolation.
In the following subsections we will look at some examples of commonly used
transformation functions.

3.2.1 Parametric transformation functions

A registration method based on a parametric transformation function is usually
formulated as a minimisation problem in which an optimal set of parameters
must explicitly be found that minimises the chosen similarity measure.

Often landmark information (also called features) is used in connection with
parametric transformation functions. Typically we wish to construct a smooth
mapping based on a collection of N point landmarks pi. These are to be
matched by the transformation to another collection of reference landmarks qi,
where the points pi and qi are corresponding points.

Global transformation

In registration problems where the volumes to be registered are translated
and/or rotated with respect to each other, a rigid function suffices. A sim-
ple use would be the minimisation of the squared Euclidean distances between
two paired sets of points subject to a rigid transformation function. A little
more generality is obtained when using affine transformations, which have the
property of preserving parallel lines and can describe e.g. shear and scaling.
Global transformation functions can also be based on high order polynomials
or Fourier series.

The matching of point features in source and reference images can be done
manually by a medical expert based on fiducial markers placed before image
acquisition or image features extracted from images after scanning. When using
fiducial markers point matching is sometimes possible to do automatically using
a method like the iterative closest point (ICP) algorithm [156].

Transformations based on radial basis functions

A more powerful way to describe the geometric transformation is creating a
global function based on a set of radial basis functions (RBF), which are func-
tions depending only on the distance between two points. Thin plate splines
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(TPS) are such radial basis functions that are derived from minimisation of a
smoothness measure based on the partial derivatives of the transformation [14].
For intuition one can think of a thin metal plate that is being bent by point con-
straints. This plate will arrange itself in a configuration in which the bending
is smoothly distributed.

A number of other basis functions for RBF-based transformations have been
proposed for image registration includingmultiquadratics, inverse multiquadrat-
ics, elastic body splines (EBS), and Gaussian functions. The reader is referred
to e.g. [120, section 3.1] for references. Fornefett et al. used Wendland functions
which have similar shape as a Gaussian function but compact support [44]. This
means that the deformation resulting from matching a landmark only influences
the transformation in the vicinity of this landmark. Kohlrausch et al. developed
a variant of EBS which are based on a Gaussian. These are called Gaussian
elastic body splines (GEBS) [72]. Like EBS, GEBS come from an analytic solu-
tion of the Navier equation which will be presented in section 3.3.3. In chapter
8 shifted log functions [89] will be used for interpolating surface displacements
from organ surface to its interior.

An interesting example of the use of feature matching and RBF interpolation
in registration for radiotherapy is described in a recent paper by Osorio et al.
[105]. Here feature matching and TPS approximation is solved simultaneously
using an iterative method called thin plate spline robust point matching. Point
features are automatically generated from triangulated surface representations
of organs. Their model allows registration of multiple organs simultaneously
and inclusion of extra user specified point or line features.

Transformations based a grid of control points

Another approach to parameterising a transformation using basis functions is
to base the transformation on a number of control points arranged in a regular
grid. An often used technique is cubic B-splines, which are defined using the
four basis functions [118]:

B0(u) = (1− u)3/6

B1(u) = (3u3 − 6u2 + 4)/6

B2(u) = (−3u3 + 3u2 + 3u+ 1)/6

B3(u) = u3/6 (3.10)

Using these it is possible to develop a transformation function which is locally
controlled using an nxnynz grid of control points φi,j,k with uniform spacing:

h(x) =
3
∑

l=0

3
∑

m=0

3
∑

n=0

Bl(u)Bm(v)Bn(w)φi+l,j+m,k+n (3.11)

where i = bx1/nxc−1, j = bx2/nyc−1, k = bx3/nzc−1 , u = x1/nx−bx1/nxc,
v = x2/ny − bx2/nyc, and w = x3/nz − bx3/nzc.
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This technique is called free form deformation (FFD)2. That the trans-
formation is locally controlled means that when a control point is moved the
points in the vicinity are transformed. Also the compact support of the B-
Splines means that when evaluating the effect of moving a control point, only
the vicinity of this point needs to be considered. In [118] a cubic B-spline FFD
transformation approach is applied in registration used in mammography for
breast cancer. This registration is based on MR images and using MI as simi-
larity measure for creation of external forces. The internal energy expression is
composed of elastic, stiff and continuous terms. Here an atlas based term is also
used. The FFD approach combined with a MI similarity metric has been used
by multiple authors in the field of radiotherapy see e.g. [90] [122] [153]. Another
set of basis functions that can be used for FFD are Bernstein polynomials used
for Bézier curves [131].

Mesh based models

Some models for image registration are based on dividing the entire image into
polygons (2D) or polyhedra (3D), where the subdivision follows boundaries in
the images (usually the subdivision is finer near boundaries too). This can be
used for finite element analysis [115] [52] [51] or spring-mass based registration
[91] [125] (see section 8.2).

A number of authors have based their registration approach on using organ
segmentations for creating a mesh of points connected by triangles (organ sur-
face), tetrahedra or hexahedra (entire organ volume). This approach is called
model based registration by some authors. Usually an elastic model is used.
Further discussion of mesh based registration is postponed until the ’related
work’ sections of chapters 7 and 8.

3.2.2 Non-parametric transformation functions

As mentioned above non-parametric transformations are typically described by
a field consisting of a displacement vector per voxel of the reference image. A
continuous transformation function is defined by interpolation between these
vectors. The grid based displacement vector field representation constitutes a
vast number of degrees of freedom.

3.2.3 Topology of the Transformations

A desirable quality of a transformation function is that it is homeomorphic.
This means it is continuous, one-to-one and onto. A property of homeomorphic
transformations is that they have a unique and continuous inverse transforma-
tion.

That the transformations are continuous ensures that adjacent structures
are still adjacent after the transformation. A continuous transformation con-
catenated with another continuous transformation results in a third continuous
transformation.

2Note that some authors use the term free form deformation for non-parametric transfor-
mations
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To check whether a transformation h is a homeomorphism it is sufficient
to check that the Jacobian of h(x) is positive for all ~x ∈ Ω. For h(x) =
[h1(x1, x2, x3), h2(x1, x2, x3), h3(x1, x2, x3)]

T the Jacobian J is defined as:

J(x) = det(∇h|x) =

∣

∣

∣

∣

∣

∣

∣
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(3.12)

Checking whether or not the Jacobian is greater than zero can be used to
determine if the transformation is locally one-to-one in each point x. This is a
prerequisite for the transformation to be globally one-to-one.

3.3 Optimisation methodologies

Deformable image registration is in general an ill-posed problem. For example,
there can be many fields of displacement vectors in a nonparametric registra-
tion resulting in the same deformed image and thereby the same cost value as
calculated by the chosen similarity measure. Therefore the similarity metric is
usually combined with a regularisation term.

For parametric transformations the regularisation is often achieved using a
combination of a regularisation energy term on the parameters and the proper-
ties of the parameterisation function itself. Other transformations (like RBFs)
function as interpolators and work by providing a smooth interpolation of pre-
scribed displacements (the matching of landmarks).

For non-parametric methods the smoothness of the resulting transformation
relies entirely on the regularisation chosen. For some non-parametric methods
the regularisation imposed is an implicit result of a search strategy instead of
a term included in the cost function to optimise.

3.3.1 Hierarchical approaches

Most practical implementations of image registration methods utilise some kind
of Hierarchical coarse-to-fine approach. Several possible approaches exist [77]:

multiresolution approaches: The deformation is first approximated on low
resolution versions of the images to be registered. The result of this coarse
registration is then used as a starting point for a registration at a higher
resolution. This continues until the deformation has been approximated
at the highest resolution. A multiresolution strategy enables us to sys-
tematically handle modes of deformation at different scales. By finding a
minimising transformation at a low resolution first we have a better chance
of avoiding local minima at a higher resolution. Often the downsampling
of images is combined with an image filter like a Gaussian filter.

Gaussian scale space: Involves the convolution of the input images using
Gaussian filter with successively increasing standard deviation (while pre-
serving image resolution). Again the idea is to do initial registration on
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images with few details, and then iteratively increasing the amount of
detail.

increasing complexity of the transformation function: this is especially
well suited for transformation functions which consist of a number of
basis functions like a Fourier series, where the first terms describe large
scale image information and further terms describe increasing levels of
detail. Here the initial level of registration can estimate coefficients of the
first terms which can then be fixed while further levels estimate the next
coefficients.

increasing complexity of registration methods: This entails consecutively
using different registration methods. For example most deformable regis-
tration methods require an initial global (e.g. rigid or affine) registration
to be made.

3.3.2 Methods for parametric registration

For parametric methods a number of numerical methods can be used for opti-
misation of the cost function. Among the most popular are the gradient descent
(GD), conjugate gradients (CG), the Levenberg-Marquardt algorithm (LMA),
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) and its limited-memory coun-
terpart (L-BFGS). As the optimisation performed by the registration methods
in this dissertation are either physically inspired gradient descent or derived
from the calculus of variations, the difference between the optimisation meth-
ods mentioned above will not be treated here. Instead the reader is referred
to [95]. A key ingredient in efficent optimisation of a cost function is how effi-
cient it is to compute the derivative of the cost function with respect to each of
its parameters. If these derivatives cannot be found analytically they may be
estimated using finite difference approximations.

3.3.3 Methods for non-parametric registration

Where transformations in parametric approaches to some extent are regularised
by the continuous nature the parametric functions, regularisation is crucial
when using non-parametric transformations. In this section some examples will
be given of non-parametric registration methods.

Elastic matching using linear elastostatics

A method for registration using a model of a linear elastic continuum was
presented in [4]. This model is based on finding an equilibrium between external
forces applied to the elastic continuum and internal forces that arise from elastic
properties being modeled. The external forces applied are derived based on local
similarity of voxels in the images. The internal elastic forces are based on a
model in which small local elastic deformations are assumed, and where a linear
relationship between the deformation and restoring forces is also assumed. An
external force b is applied. This leads to the Navier equation which is a partial
differential equation (PDE) used for regularisation of the registration:
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µ∇2u(x) + (λ+ µ)∇ (∇ · u(x)) + b(x) = 0 (3.13)

where the vector u is the displacement vector used in the description of the
spatial transformation, and λ and µ are material constants. This equation
must be solved for every voxel in the image volume. Christensen and Johnson
used the linear elastic model combined with a Fourier series parameterisation
of the transformation for developing an inversely consistent registration [26].

Demons

The so-called demons registration method was introduced by Thirion in [138].
Optical flow (see section 3.3.3) is used to find a driving force at each point
based on the intensity gradient of the image. The allowed transformations are
described using a vector field where each voxel has an associated deformation
vector describing where this voxel is mapped to in the reference image. To
regularise the flow a Gaussian filter is used. The voxel based demon method
is described in detail in [137]. In [144] this method is validated on a suite of
CT images from multiple cancer sites. In this work they achieved a speedup of
the registration by 40 % by reformulating the driving forces in a way that uses
gradient information from both source and reference images.

Viscous-fluid registration

A registration method designed to handle large geometric displacements be-
tween two images is the viscous-fluid registration method by Christensen et
al. [27] [29]. We will investigate this method further in chapter 5 The general
idea in this method is to use a motion model that is derived from continuum
physics and describes the motion of a viscous fluid for regularising the registra-
tion process. Using this model homeomorphic mappings can be achieved even
for image registrations that require large deformations to be described. The
driving force in the viscous-fluid registration is a body force vector field that is
derived on the basis of image intensities finding the local direction of steepest
decrease of an SSD similarity measure.

The method is very time consuming because it requires an iterative solution
of a partial differential equation (PDE) and in each iteration another PDE must
be solved to find a vector field of velocities. In [27] they obtained registration
times in the order of 9-10 hours for a 128x128x100 volume on a so-called mas-
sively parallel (MasPar) supercomputer. They used the numerical method of
successive over-relaxation (SOR) to solve for the velocity vector field. In [16]
and [18] Bro-Nielsen et al. present a method that speeds up the calculation of
the velocity vector field using a convolution filter based on an eigenfunction
basis of a linear operator that (when applied to velocities) describes a relation-
ship between velocities and body forces. A comparison is made between the
demons method and the viscous-fluid registration method using Bro-Nielsen’s
filter for finding the velocities. Bro-Nielsen points out that driving forces are
very similar and both methods use explicit Euler time integration. Thus the
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main difference is the use of a Gaussian filter for regularisation instead of his
filter for solving for velocities. He proceeds to show that the Gaussian filter is a
low-order approximation to his filter. In [146] registration time of Bro-Nielsens
method is compared to other methods for solving the viscous-fluid PDE also
taking the accuracy of the solution into consideration. Here it is noted that
due to the need for a considerable size of Bro-Nielsen filter to get an accurate
solution, the numerical method of successive over relaxation (SOR) is faster
in some cases. A fast implementation is achieved in [35] through the use of a
full multi-grid solver for solving the viscous-fluid PDE and use of this solution
method to also achieve a multiresolution implementation.

In [28] the viscous-fluid registration method is extended to include the use of
landmark information. A hybrid model is presented in which regions of interest
are converted to binary volumes. These volumes are included when body forces
are calculated which makes it easier to guarantee that important structures in
the images are matched. This hybrid model is used to match images from pa-
tients being treated for cervical cancer. For some patient material the method
does not completely succeed in registering the images due to ill-posed defor-
mations of organs. To remedy this, a purely landmark based approach called
fluid-landmark registration [30] is used as a preprocessing step where matching
is done on the basis of strategically placed points.

HAMMER

An advanced registration method that has caught some attention, especially for
brain registration, is the ”hierarchical attribute matching mechanism for elastic
registration” (HAMMER) proposed by Shen et al. [124]. Besides intensities
and edge information, registration here is based on a segmentation of images
into different types of tissue. This is used as input for a characterisation of
voxels based on geometric moment invariants which is a way of characterising
geometric properties of objects. The method is hierarchical both in terms of
a multiresolution implementation and an iterative increase in the number of
driving voxels used for point matching between images. Local minima are
avoided by using driving vectors with the most distinct sets of attributes first
and gradually adding points until all voxels are used.

Optical flow based registration methods

The process of estimating optical flow means finding a quantitative measure of
how image intensity information has changed between two images. Technically
both images are regarded as part of one mathematical function where spatial
changes have occurred in the time between acquisitions transforming one image
into the other. The optical flow is a vector field consisting of the changes in
space coordinates. These vectors can be thought of as ’optical velocity’ vec-
tors showing the direction of image intensity flow. Most optical flow estimation
methods originate from the computer vision discipline, and as a result many
methods are only formulated in two dimensions. Furthermore occlusion of ob-
jects behind other objects in a 2D frame of video is a difficult issue. This
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problem does not exists in the context of medical image registration.
A well known method for estimating optical flow is the Horn and Schunck

algorithm [56]. Here the optical flow field is found by minimising a cost function
which consists of an intensity term and a term penalising non-smooth flow fields.
The optimisation is based on the calculus of variations. Because the Horn
and Schunck method performs a global optimisation it is able to produce very
smooth transformations. The method was used for estimating intrathoracic
tumour motion by Guerrero et al. [48].

In [152] an invertibility cost term is added to the Horn and Schunck method.
This is used for obtaining inverse consistent registration (that is registration of
source image to the reference is the same as the inverse transformation of the
reference to the source). In this paper Yang et al. also formulate an inverse
consistent version of the Demons algorithm.

A different approach than the global optimisation performed by Horn and
Schunck was taken by Lucas and Kanade [84]. Here an assumption of constant
flow in a window around a pixel being considered is made. This leads to an
overdetermined system which can be solved by the least squares method. The
Lucas and Kanade method leads to a registration result which is of a more local
nature - that is information about displacements at edges does not propagate
through areas of uniform intensity.

The two optical flow estimation methods mentioned above as well as the
Demons method by Thirion have become the basis of a wealth of variants. In
chapter 6 we focus on two optical flow based methods for deformable image
registration; a 3D version of the Horn and Schunck method and the extension
of this algorithm proposed by Cornelius and Kanade [32] to handle intensity
changes that do not arise as a direct consequence of geometric motion, i.e.
intensity variation due to physical properties of the acquisitions themselves.

A survey on methods for optical flow estimation is out of scope here. The
reader is instead referred the survey by Beuchemin and Barron [10] and to the
papers by Barron et al. [8] and McCane et al. [92] in which a comparison of
optical flow methods are made in a computer vision context.

Other variational methods

Other groups have also used the calculus of variations in their work on image
registration. E.g. Lu et al. used calculus of variations to represent the minimi-
sation of their registration cost function as a set of elliptic partial differential
equations [82], and validate the method on lung and prostate CT images. Zhang
et al. used variational methods for registration of head and neck images [154]

3.4 Concluding remark

Images of different anatomical sites of the human body and different imaging
modalities pose different problems to the registration method. Registration
of pelvic MR images is something completely different from registering e.g. CT
brain images. No registration method exists that is suitable for all applications,
and the choice of registration method for a particular problem must be based
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on which assumptions can be made about the images to be registered and the
nature of the deformation expected.



Chapter 4

Using graphics hardware for scientific

computing

4.1 Introduction

The graphics processing unit (GPU) of modern graphics cards provides a high
ratio between computational power and cost making it an attractive platform
for general computations. Modern graphics cards have a highly parallelised
architecture that enables multiple calculations to be processed simultaneously
leading to very fast processing rates. The key to utilising this parallelisability is
the formulation of a numerical problem in a SIMD (single instruction multiple
data) fashion. This means that the same calculations must be performed on a
large amount of data elements. The SIMD architecture means that the GPU is
well suited for accelerating e.g. numerical computations formulated on a regular
grid like the voxels of a medical 3D image.

When we started using GPU processing power for accelerating image regis-
tration the only way to do this was to access the hardware through a graphics
library like OpenGL or DirectX. This was done by mapping general computa-
tions onto concepts from computer graphics (section 4.2). During this Ph.D.-
project the field of general purpose computation on the GPU (GPGPU) has
matured enormously lead by the involvement of the major graphics hardware
producers. The leading of the emerged frameworks for GPGPU is called CUDA.
The earliest work presented in this dissertation is based on GPGPU through the
OpenGL graphics API and a major part of the later work is based on CUDA.
As a consequence GPGPU through both OpenGL and through CUDA will be
presented. The chapter will end with a short survey of existing work on GPU
accelerated image registration. Parts of the chapter come from [130].

4.2 GPGPU through graphics drivers

The first approach to programming the GPU for general computations was to be
well aware of the fact that graphics cards and the accompanying software layers
are developed to render computer graphics and map the required computations
and memory model onto graphical concepts. In this approach GPU processing
power for non-graphical applications was utilised through standard (OpenGL or
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DirectX) graphics drivers. A major limitation to this way of using the GPU for
calculations is that each thread of computation has a predetermined memory
location where its resulting value will be stored, and it is not possible to output
values to other memory locations. We say that it is possible to gather but not
scatter data.

As will be presented in chapter 5 we have implemented the viscous-fluid reg-
istration method in graphics hardware through the use of ordinary 3D graphics
drivers. In this section a very short introduction to conventional 3D graphics
rendering will be given followed by an introduction to how this can be used for
GPGPU. First the general notion of a graphics pipeline is introduced together
with the fixed function pipeline, the standard implementation of the graphics
pipeline. After this some programmability is introduced, which enables us to
perform more general computations than just rendering graphics.

4.2.1 The fixed function pipeline

Traditionally the rendering of 3-dimensional objects into an image on a graphics
card was done in a so-called fixed function pipeline, in which the application
programmer had very little control over the data processing done on the GPU.
For an overview of the graphics pipeline see figure 4.1, where the relationship
between the three stages application stage, geometry stage, and rasterisation
stage can be seen.

Application
Stage

Geometry
Stage

Rasterization
stage

3D triangles 2D triangles pixels

For each triangle vertex:

   Transform 3D coordinate 

   into screen position

   Compute attributes

   (e.g. vertex color)

For each triangle:

   Rasterize Triangle 

   Interpolate vertex 

   attributes.

   Shade pixels

   Resolve visibility

Figure 4.1: A general overview of a classical graphics hardware architecture.

In the application stage input for the graphics card is generated depending
on what is to be rendered. The main input to the GPU consists of points
(so-called vertices) and directions in 3D space (both represented as vectors)
and textures. The input points can be used to specify vertices of polygons
or lines to be drawn. Complex models of 3-dimensional objects can be made
from hundreds or thousands of such polygons. The polygons are divided into
triangles.

In the geometry stage the 3D points are projected from 3D space to 2D space
to find out which pixels on the output image correspond to the input points.
Also some per vertex attributes are calculated. For example the colour at the
vertex is calculated. These attributes are to be interpolated over the triangles.
The image being produced by the GPU consists of pixels. In the rasterisation
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stage, the projected triangles are rasterized. The term rasterisation means
filling in the triangles and colouring the pixels inside the triangle edges.

Often one or more textures are mapped onto the rendered triangles. Tex-
tures are images which are stored in texture memory on the graphics hardware.
For each vertex of a polygon, texture coordinates can be specified to indicate
a position in the texture to be mapped onto the vertex. Usually texture coor-
dinates are specified in relative coordinates, in which the entire texture surface
maps to the quadrilateral [0, 1]2 The texture coordinates are interpolated over
the triangle, which results in the image being stretched to match the projected
vertices with these positions. The texture colours read from the interpolated
position in the texture is combined with the interpolated colour to result in a
final output colour.

4.2.2 Programmability on the GPU

With the introduction of vertex programs and fragment programs, programmers
of 3D computer graphics gained a lot more power over the computations on the
GPU. Vertex programs are pieces of code to be executed for each vertex, and
fragment programs are pieces of code to be executed once for each fragment,
which can be described as “candidate pixels”. In the fragment program the
colour of a pixel is calculated, but the fragment may later be discarded because
it is determined to be non-visible.

CPU

Application       
Stage       

System
Memory

Video
Memory

GPU

3D triangles Bus
(PCIe/AGP)

Textures 3D triangles Frame bufferTextures

Geometry  
Stage

Rasterization                                                 
Stage                                               

Texture
unit

Rasterizer
with Z cull

Pixel
shader

Raster
operations

unit

Vertex
shader

Figure 4.2: An overview of the GeForce 6 architecture which was the target
platform of the OpenGL based implementation of the viscous-fluid registra-
tion method

The Nvidia GeForce 6 hardware platform which was the target architecture
for the OpenGL based implementation of the viscous-fluid registration method
(chapter 5) is outlined in figure 4.2. This generation of hardware supports
shader model 3.0 which allows long vertex and fragment programs with ad-
vanced control structure. The geometry stage consists of a vertex shader that
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is responsible for executing vertex programs. The rasterisation stage consists
of a rasterizer, which fills out triangles, a pixel shader, which runs fragment
programs, and a raster operations unit(ROP) which is responsible for blending
semitransparent pixels into the frame buffer or simply writing opaque colours.
A so-called depth buffer is maintained and used to check whether or not a pixel
is visible. As can be seen on the figure, both vertex programs and fragment
programs can read from texture via the texture unit . If fragment and/or vertex
programs are not specified, a default (fixed function) implementation will be
run.

4.2.3 Doing general computations on the GPU

The computational capacity of modern graphics hardware can be utilised for
general computations by adopting a so-called stream programming model , in
which fragment programs are used as computational kernels operating on streams
of fragments stored in textures. This can be done through one of the graphics
rendering APIs OpenGL or DirectX.

When one would loop over all data points in a CPU based implementation of
a numerical calculation, the same is achieved in a GPU based version through
graphics drivers by drawing a polygon or a line that covers the pixels corre-
sponding to the data values that we wish to process. In this way rasterisation
serves to invoke computation and the fragment program runs on all fragments
in parallel.

Iterative computations can be achieved by using multiple render passes.
Feedback from one iteration to the next is achieved by storing the resulting
pixels from one rendering pass in a texture which can be used as input in a
subsequent pass. By designating texture coordinates to vertices we can keep
track of positions in textures to be read from in a fragment program. These
coordinates are interpolated throughout fragments of each triangle and in this
way the fragment program knows the relationship between the position in the
grid of the data element being processed and the corresponding texture position.
Of course textures containing results from other calculations can also be used
as input.

Mapping data to textures

In many scientific computing applications we need to perform calculations on
three-dimensional arrays. There are multiple ways of representing 3D arrays on
the graphics card. The most commonly used option is to represent them as ”flat
3D textures” [109], which are essentially two-dimensional textures on which the
slices of 3D arrays are placed next to each other. Contrary to the alternative
of using a dedicated 3D texture this method requires address translation to be
made from 3D grid positions to 2D texture coordinates. The advantage with
the flat representation is that it is possible to update the entire grid in a single
render pass, something which is not possible for 3D textures.
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Different types of kernels

Naturally, the types of computation performed in fragment program kernels
depend on the GPGPU problem being solved. A simple use of a fragment
program is to implement a map operation in which a function is evaluated
on each element in a stream, returning a stream of the resulting values. In
general the value returned from fragment programs depend on multiple values
read from one or more textures. Each of these textures are uploaded from
the CPU main memory or result from computations from earlier rendering
passes. Kernels can also have other functionality than map operations. One
possibility is to use them as filters, in which only a subset of the input stream
is output. Another important use of kernels is reduction operations, in which
multiple stream elements are combined into one. By running multiple passes
reduction operations allow e.g. summation of all elements or location of the
largest element in parallel without write conflicts.

4.3 Non-graphics abstractions for GPGPU

Following the interest in GPGPU the major graphics hardware producers have
seen a new market in the use of their hardware. As a consequence of this the
hardware vendors Nvidia and ATI1 each released a more dedicated framework
for doing scientific computing on graphics hardware. These frameworks are
called CUDA and CTM respectively. These removed some of the previous
limitations for doing scientific computations on the GPU. As a consequence of
the new programming interfaces operating through graphics rendering APIs is
no longer necessary.

ATI released Close To Metal (CTM) [3] which is an API allowing program-
mers to directly access the memory and processor of ATIs graphics hardware.
We have used CTM for implementing a non-Cartesian fast Fourier transform
(NFFT) [130]. Although more powerful than using OpenGL or DirectX, CTM
was still cumbersome to use because of the low level programming needed. CTM
was followed by the ATI Stream SDK which supplies higher level abstractions
to the programmer.

Shortly after CTM was released the Compute Unified Device Architecture
(CUDA) [103] was released by Nvidia. CUDA quickly became popular because
of its powerful C-based abstractions which allowed the programmer to concen-
trate on the data parallel formulation of a computational problem instead of
struggling with hardware related issues. As CUDA is the language of choice for
most of the implementations presented in this dissertation, it will be described
in more details in section 4.4.

Brook is an extension of ANSI C that implements a streaming computational
model with abstractions for streams and kernels. Also reduction operations are
supported. These allow for instance a summation of all elements in a stream.
The first GPU based implementation of Brook is called BrookGPU [24]. While
presenting the user with the Brook compiler and runtime systems, BrookGPU

1Now owned by AMD
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can use both OpenGL, DirectX, and CTM as computational backend. In the
ATI Stream SDK kernels are written in the Brook+ language which is an im-
plementation of Brook with some enhancements.

With the high level abstractions the GPU can now be used for computa-
tion through high-level C-like programming languages without knowledge of
graphics programming in general. In the CUDA and CTM frameworks scat-
ter operations have been made possible, giving new possibilities when using
the newest generation of graphics hardware for general computations. In the
CUDA framework we furthermore have access to an amount of very fast mem-
ory shared between a number of kernels. Although some restrictions do apply
in the two APIs, one can consider the GPU as a multiprocessor where each
individual processor can read from and write to a shared memory pool.

A recent framework for GPGPU programming is the open computing lan-
guage (OpenCL), which excels at being efficiently executable on both GPUs
and CPUs. It is based on a C-based syntax and many of the central concepts in
the framework is similar to ones in CUDA. With the project being supported
by the major hardware producers Apple, AMD, Intel and Nvidia it has a good
chance of becoming popular.

4.4 A closer look at CUDA

In this section an introduction to CUDA will be given. First the computational
and memory concepts of the CUDA architecture are introduced followed by a
look at the hardware realisation of this architecture. Finally we will look at
how to program CUDA enabled devices and optimise computations for a larger
throughput.

4.4.1 Kernels in CUDA

In CUDA kernels are written in C2. CUDA kernels have no return value but
are allowed to gather and scatter values arbitrarily in GPU memory.

Thread hierarchies and kernel invocations

In CUDA the single instruction multiple data (SIMD) terminology has been
replaced with the term single instruction multiple threads (SIMT). Kernels are
executed N times in parallel in N individual CUDA threads by providing an
execution configuration. This configuration specifies the dimensions of 1-, 2-
or 3-dimensional thread blocks which are again arranged in a specified 1- or
2-dimensional grid of thread blocks - see figure 4.3. Each thread has access to
its position in the thread block called its thread id as well as the position of
this block in the grid of blocks, called its block id . This information is used for
determining which data elements correspond to each thread.

The configuration of threads into blocks has opened new possibilities for
designing massively parallel algorithms. As will be described below threads

2Support for other high-level languages is planned in future versions of CUDA.
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in a block can cooperate through a pool of shared memory with no latency.
Furthermore threads in a block can be synchronised at specified synchronisation
points. This is practical for example when all threads in a block cooperate on
writing values in shared memory and all shared values must be written before
these can be processed.

Figure 4.3: The configuration of 2D thread blocks in a 2D grid of blocks.
From [103]

4.4.2 Memory model

In CUDA terms the main memory accessible from the CPU is called host mem-
ory and memory positioned on the hardware device supporting CUDA is called
device memory . CUDA kernels have access to a number of device memory
spaces. As the use of these spaces depends on latency of memory operations,
the physical implementations on the hardware platforms supporting CUDA is
important and this will be included in the presentation below.

global memory consists of portions of device memory. A considerable latency
is associated with accessing global memory. This memory can be accessed
across multiple thread blocks in a single thread invocation (although we
have no guarantees about avoidance of write conflicts). Also this memory
is persistent over multiple kernel invocations.

local memory is per-thread only memory which is used when a kernel cannot
be compiled into only using GPU registers for computations. This can be
because too few registers are available or because indexed memory access
is needed which is not possible with registers. This memory is as slow to
access as global memory.
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shared memory is a pool of memory which is shared between the threads in
a block. Shared memory is on-chip memory and thus as fast as registers.

constant memory contains values that can only be written to from code
on the host side (code running on the CPU) through a runtime API.
Constant memory is cached meaning that repeated access to a constant
memory element is sped up considerably.

texture memory is a remnant of the graphics concepts previously used for
GPGPU. Texture memory can be configured in one-, two-, or three-
dimensional arrays of various types of values. This memory is cached and
depending on the configuration and data type, interpolation and bound-
ary conditions can be handled in hardware.

4.4.3 Multiprocessor hardware

CUDA enabled hardware devices contain a number of streaming multiprocessors
(SMs) which each contain eight scalar processors and a SIMT instruction unit
(illustrated in figure 4.4). As mentioned each multiprocessor also contains on-
chip shared memory. The thread hierarchy model maps to this hardware as one
multiprocessor is responsible for the execution of all threads in a block, running
each thread on its own scalar processor.

Figure 4.4: SIMT multiprocessors with on-chip shared memory. From [103]

4.4.4 Extensions to the C programming language

To allow programmers to execute parallelised code in CUDA a number of key-
words have been added to the C programming language. Some of these allow
specification of whether a C function is to be compiled for the host computer
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architecture, the CUDA device, or both. Others are used for specification of
which memory space to be used for storing a variable.

CUDA also provides a runtime library consisting of both host and device
components as well as components available in both. The host runtime compo-
nent provides functionality for management of CUDA devices, allocation and
management of memory, invocation of device kernels, and interoperability with
OpenGL/DirectX graphics APIs for visualisation of results.

The device runtime components provides fast but less accurate versions of
common mathematical functions as well as the syncthreads() function which
allows synchronisation of all threads in a block. Besides this the library provides
functions for reading from textures, atomic functions (read-modify-write oper-
ation without interference from other threads) and warp vote functions. The
result of these vote functions called all and any is the same for all threads
in a warp and based on the arguments given in all threads. The common com-
ponent consists of built-in vector types and a number of functions from the
standard C library.

Extra libraries provide access to GPU-based computational resources for
common computational tasks including the CUBLAS library for linear algebra
operations and the CUFFT library for fast Fourier transformations.

As a final comment, an invaluable advantage of CUDA compared to the
old OpenGL based approach is the ability to compile device code to host code
running in an emulation mode. This allows much more efficient debugging.

4.5 Optimising performance

An important concept when analysing the performance of a GPU-based algo-
rithm is its arithmetic intensity. This is defined as the ”amount of compu-
tational work” that is performed per off-chip (global) memory access. Appli-
cations with high arithmetic intensity are most likely compute bound while a
low arithmetic intensity is an indication of a memory bound algorithm. To
illustrate why this concept is important, figure 4.5 shows the execution time of
six programs with different arithmetic intensities as a function of the number
of instructions. The data making up the figure was obtained using the GPU
benchmark suite GPUBench [23]. The figure is comprised of six subtests that
perform one to six memory cache accesses each (solid lines). Notice the hor-
izontal line segments. They show that for each memory access, a number of
”free” computations can be made without influencing the overall execution time
if they are independent of the result of the prior memory fetches. Only as the
diagonal part of the graph is reached, there is a cost associated with issuing
additional instructions.

From the figure, we can predict the execution time of an application con-
sisting entirely of memory reads by following the dashed line. Notice that the
slope of this line is much steeper than the slope of the diagonal solid line, which
constitutes the border between a memory bound and a truly compute bound
application. An application with an arithmetic intensity that places it between
the dashed line and the solid diagonal line is memory bound, while an appli-
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Figure 4.5: Memory access costs as a function of the number of shader in-
structions (solid lines). Number of memory fetches is varied from 1 to 6.
Data was obtained using GPUBench [23] on an ATI Radeon X1800 XT.

cation with an arithmetic intensity that places it on (or close to) the diagonal
would be compute bound. The performance of a compute bound application
will grow with the rapid increase in arithmetic performance from each new gen-
eration of GPUs, whereas a memory bound application will increase speed as
a function of memory bandwidth, which unfortunately is much slower growing.
Whenever possible, one should use on-chip memory (e.g., registers or dedicated
fast (shared) memory) to avoid the cost of expensive global memory fetches.
As it is often impossible to interleave all memory fetches with computations in-
dependent of their results, the GPU APIs handle several concurrent threads on
each processor. When a thread requires memory access on which the subsequent
instruction relies, the processor will switch to a different thread to avoid being
idle. Once the data arrives it can again switch back to the original thread. The
number of concurrent threads is determined by the amount of on-chip storage
for each processor. The reader is referred to [109] for further discussion of this
topic.

To summarise the discussion above, it is crucial to minimise the overall
number of global memory accesses for a given algorithm in order to obtain
maximum performance. Ideally, each memory access should be interleaved with
computations independent of its result to hide its cost completely. When at all
possible, one should use on-chip memory such as registers for computations as
there is no penalising cost associated with accessing these.

Specifically for CUDA additional guidelines are given in [103] on how to
increase performance through optimising data layout and memory access pat-
terns. Optimal strategies differ between access to global and shared memory.
Another target for optimisation is the execution configuration, which must con-
figured so that enough blocks run in parallel to utilise the available processing
power.
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4.6 Related work on image registration on the GPU

The earliest examples of work on using the computational power of a GPU to
accelerate image registration involves using graphics hardware through OpenGL
for creating digitally reconstructed radiographs (DRRs) which are essentially
(2D) X-ray images constructed from a (3D) CT scan. This can be used for
doing a rigid 3D-to-2D registration based on an X-ray image taken at the time
of treatment and a pre-operative CT scan [76] [70]. Khamene et al. use a
DRR approach in radiotherapy for registering 2 portal images to a planning
CT [68] [67]. These first implementations only used the GPU for creation of
the DRR. Ino et al. used GPGPU for DRR creation as well as evaluating the
NCC similarity and gradients used for optimisation [57]. Kubias et al. base
their GPU DRR registration on a similarity measure which is a combination of
8 known similarity measures all computed in parallel on the GPU [74]. Finally
Grabner et al. have also implemented DRR-based 3D-to-2D registration on a
GPU through OpenGL [45]. In this work automatic differentiation was utilized,
which means that no finite differences are needed.

Soza et al. used graphics hardware for accelerating image deformation by
Bézier curves used in an FFD-based registration approach [131]. Using a similar
approach Levin et al. used graphics hardware for accelerating image deforma-
tion based on thin plate splines [78]. Hastreiter et al. based their registration
transformation on piecewise linear functions and adaptive subdivisions of the
grid of displacement vectors approximating a non-linear transformation [55]. In
this work they use OpenGL functionality for accelerating the deformation of
the source image prior to computation of mutual information.

In [132] Strzodka et al. presented a GPGPU based implementation of the
2D regularised gradient flow registration method [31]. In this work the DirectX
API was utilised. Later this work was extended to 3D by Köhn et al. [69].

Vetter et al. [142] used OpenGL for the implementation of a deformable
multi-modal registration method. Here the similarity measure based on mutual
information was supplemented with the statistical measure Kullback-Leibler di-
vergence between the current joint intensity distribution and prior information
about the joint intensity distribution learned from earlier registrations [49].

The demons based method described in section 3.3.3 has been implemented
on the GPU by Sharp et al. [123]. In their work graphics hardware was also used
for accelerating the reconstruction of cone beam CT (CBCT) images. Their
work was implemented in Brook. Courty et al. also published a GPGPU-based
implementation of demons using recursive Gaussian filtering when regularising
displacements [33]. Finally the Demons method was also accelerated on the
GPU by Muyan-Özçelik et al. [98] [119]. In this work CUDA was used. Using
shared memory allows for a 10 % faster registration than the Brook implemen-
tation by Sharp et al. [123] on the same hardware.

Li et al. have implemented the Levenberg-Marquardt algorithm which is a
non-linear least squares optimisation method on the GPU through OpenGL [79].
This is used for optimising the SSD similarity measure subject to a Sobolev
smoothing term based on a finite element discretisation. Also using OpenGL
Rehman et al. used the GPU for solving the optimal mass transport problem



36 Chapter 4. Using graphics hardware for scientific computing

formulated as a first order PDE [117]. This problem was originally formulated
as a minimisation of transport cost associated with moving a pile of soil from
one site to another. This translates to image registration as finding the optimal
transformation in terms of transformation displacements moving image inten-
sities from one image to another. Modat et al. have used GPU computation
through CUDA to realise a fast implementation of the FFD approach with MI
as the similarity measure [94]. A parallel-friendly calculation of gradients from
the MI measure was used.

4.7 Concluding remarks

Many numerical problems can be elegantly formulated in a SIMD manner. This
is especially true for many 3D image processing tasks, where a voxel constitutes
a natural unit for data parallelism. The large number of voxels in 3D images
means that it is possible to keep all computational units occupied simultane-
ously, allowing highly efficient implementations. In this dissertation we have
used GPU computation as a tool for enabling registrations to be made in a time
frame which makes validation studies of the registration methods practical and
which will be suitable for potential future clinical use.
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Chapter 5

GPU accelerated viscous-fluid registration

This chapter presents the implementation of the viscous-fluid registration method
by Christensen et al. [28] on the GPU. As mentioned in section 3.3.3 a draw-
back with Christensen’s method has been very long computation times. We
will demonstrate that it is possible to implement the viscous-fluid registration
method in a way that utilises the computational power of modern graphics
hardware and hereby achieve significantly faster registration times. The prime
motivation for using a mainstream graphics card is that it constitutes a very
cost effective way of obtaining a high amount of computational power. The
chapter is based on [101] and [102].

5.1 Input data

In our implementation of the viscous-fluid registration method both voxel in-
tensities and regions of interest (ROIs) that are manually contoured can be
used to calculate the driving potential. To describe this, an image set Ti(x) is
defined as in [28] for every image study i:

Ti(x) =
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...
TiN (x)
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Gray scale (zero for x in masks)
Binary mask for organ 1
Binary mask for organ 2

...
Binary mask for organ N















where x ∈ Ω

See figure 5.1 for an illustration. This way of representing images means that
every image Ti(x) contains N+1 parts. The first part is the gray scale intensities
in the range from 0 to 1. The last N parts are binary masks. Each of these are
1 for x that are inside the corresponding contoured ROI and 0 for other x. The
vector x is a position in the scanned volume Ω.
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Figure 5.1: Illustration of the representation of images acquired in
brachytherapy treatment. Grid-representation of the image can be seen in
(a) and (b). (a) Grey-scale intensities with voxels that are inside regions of
interest set to 0 (black colour). (b) Binary mask representing a uterus ROI.
Voxels inside this ROI are set to 1 (white) and voxels outside are set to 0
(black). If more than one region of interest had been used, more of the binary
masks would have been added.

5.2 Frame of reference

The description of a transformation between image study i and j is denoted hij .
It is based on an Eulerian frame of reference, where values are associated with
fixed spatial positions in the reference volume through which the “particles” of
the source image move. In other words, the particles are tracked with respect
to the final coordinates. Informally this means that for each voxel point in
the grid that forms the resulting image of the registration, a vector is stored
pointing back to the point in the source image, that has been deformed to this
final coordinate. When using an Eulerian frame of reference, we are sure that
every voxel in the resulting image is accounted for.

This frame of reference is in contrast with a Langrangian frame of reference
in which the positions of the particles are tracked with respect to the source
coordinate system. Here we are not sure that the positions of the particles being
tracked correspond to pixel coordinates in the reference coordinate system.

The vectors pointing from the resulting image (described in the reference
system) back to the source image constitute a displacement field u for each
registration. The relationship between u and hij is as follows:

hij(x) = x+ u(x) (5.1)

By applying the material derivative to find the time rate of change of u we
can find an explicit Euler equation for time integration:

u(x, t+ δ) = u(x, t) + δv(x, t) − δ

3
∑

i=1

vi(x, t)
∂u(x, t)

∂xi
(5.2)
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where v is a velocity vector (vi denotes the ith component of v) and δ is a small
time step. This can be used to iteratively find the displacement field using a
velocity field in every step. In the next section how to find this velocity field
will be explained.

5.3 Motion model

Equation (5.2) provides us with a way of iteratively updating the displacement
field using small time steps δ. Between each update, a field of velocity vectors
that describe the motion of particles must be calculated. These velocity vectors
are calculated from a motion model derived from continuum mechanics describ-
ing the motion of a viscous fluid. The motivation for using this model is the
need to be able to describe very complex local deformations while still allowing
large deformations. The viscous-fluid model is used to perform a regularisation
to ensure continuity and smoothness of the transformation. It is described by
the following PDE of velocities [27]:

µ∇2v(x, t) + (λ + µ)∇ (∇ · v(x, t)) + b(x,hiR(x, t))) = 0 (5.3)

where ∇2 is the Laplacian operator, ∇ is the gradient operator, and ∇ · v is
the divergence of v. The material constants λ and µ describe the viscosity of
the fluid. v(x, t) is the velocity of the ”particles” of the image being deformed.
The vector b(x, hiR(x, t))) is the body force that is used as driving potential in
the registration process. How to find the body forces will be explained in the
next section.

Despite the regularisation performed, the viscous-fluid model allows large
deformations by penalising large velocities instead of large displacements. Where
the linear elastic deformation model assumes that the restoring force is propor-
tional to linear deformation, the viscous-fluid model instead assumes that the
restoring force is proportional to the velocity of the motion (compare eq. 5.3
with eq. 3.13), and large displacements are relaxed over time.

5.4 Driving forces

The driving potential in the fluid registration model (eq. 5.3) is a field of body
forces b(x, hiR(x, t))). The body forces are designed to minimize the following
SSD similarity measure [28]:

D[Ti, TR;hiR] =

N
∑

k=0

αk

∫∫∫

Ω
|Tik(hiR(x))− TRk(x)|

2dV (5.4)

where R denotes the reference image. The αk values are weights describing the
importance of the entries of T .

The body forces are found by minimising the Gâteaux derivative of the
similarity metric resulting in [28]:
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b(x, hiR(x, t)) = −

N
∑

k=0

αk(Tik(hiR(x, t)) − TRk(x)) · ∇Tik|hiR(x,t) (5.5)

The expression ∇Tik|hiR(x,t) means the evaluation of the gradient in the La-
grangian reference frame of Tik at position hiR(x, t). From eq. 5.5 a direction
of the force is found in which the deformation is locally pushed towards a lower
value of the similarity metric.

5.5 GPU based implementation

In this section we show that the viscous-fluid registration method described in
the previous sections can be implemented in a way that exploits the computa-
tional capabilities of a modern GPU.

The following subsections describe the discretisations used to evaluate the
above equations from a grid based description of the vector fields involved and
our mapping of these grid computations to graphics hardware.

5.5.1 Discretisation and algorithm

To solve the equations in the viscous-fluid registration method numerically on
a spatial grid, suitable discretisations need to be made. In this work finite
difference approximations are utilized.

By rewriting the expression in (5.3) and applying second order finite differ-
ence approximations, a system of linear equations on the form Av = −b can be
derived that describes an approximation to (5.3) on a 3D grid . Here the vectors
v and b are lexicographical orderings of the components of all v- and b-vectors
in the grid, and A is a sparse, banded matrix. To find an approximate solution
to this, we use the numerical method of Jacobi iteration. For each grid point
(corresponding to a voxel in the scanned images) the corresponding velocity
vector is found iteratively in a number of passes where the following update
rule is used:

v
(n)
i =

−bi −
∑

j 6=i aijv
(n−1)
j

aii
(5.6)

In each pass a more accurate approximation to the correct solution is found
by applying the update rule to velocity vectors from the result of the previous
pass. At each grid point velocity vectors at all 26 neighbours in the grid need
to be accessed for this update rule to be evaluated. Points on the boundary of
the grid are handled by sliding boundary conditions allowing vectors to point
along the boundary edge but not into or out of it. Second order finite difference
approximations are also used for evaluating (5.2) and (5.5) on the grid. Here
trilinear interpolation is used for looking up values in between grid points.

The method of Jacobi iteration is chosen because the update of each grid
point in an iteration is independent on the updated value of all other grid points.
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This makes it suitable for a massively parallelised implementation on graphics
hardware.

When updating displacement vectors from the velocity field, it is not suffi-
cient to just use a discretised version of (5.2) since singularities will arise after a
number of iterations. To prevent this from happening, it is necessary to perform
regridding [29] when the Jacobian gets near zero at any point. During regrid-
ding the deformation currently described by the displacement field is applied
to the source image. The result of this is made the new source image used in
the subsequent registration iterations.

An overview of the method can be seen in algorithm 1. Prior to the viscous-
fluid registration an automated rigid registration is performed to account for a
global displacement of images w.r.t. each other. This is currently done using
the Insight Segmentation and Registration Toolkit1.

Inspired by [29] a perturbation field is calculated in algorithm 1 for each
time step. This field is used for checking the Jacobian without updating the
displacement field, and it is also used to find a suitable time step δ. The vectors
P in the pertubation field is computed by:

P(x, t) = v(x, t) −

3
∑

i=1

vi(x, t)
∂u(x, t)

∂xi
(5.7)

Notice that the Euler update rule in equation 5.2 can be written using the
displacement field in the following way:

u(x, t+ δ) = u(x, t) + δP(x, t) (5.8)

The step size δ is found by finding the largest vector in the perturbation field
and it is chosen so the maximum displacement is at a fixed value of 0.5 voxels.

5.5.2 GPU implementation via OpenGL

Mapping of the required computations to a GPU is done using the fragment
processor, where computations are performed on a per-voxel granularity. The
individual steps of algorithm 1 are implemented as fragment programs. Each
program is responsible for evaluating the results of one of the steps at the
designated grid point corresponding to a single pixel. The parallelised execution
of the fragment programs on the GPU allows for a substantial acceleration of
the calculations. For an overview of textures and fragment programs used in
the OpenGL based implementation, see figure 5.2. Numerical values used in
the registration are stored in graphics memory in 2D textures using the flat 3D
representation described in section 4.2.3. For storing vector values, 32 bit float
RGB textures are used. These are textures with a Red, Green, and Blue colour
component at each pixel. Each component is an IEEE floating point value
with 32 bit precision. For storing the voxel intensities and regions of interest,
8 bit RGBA textures are used. These textures contain only a single byte for
each colour component and are used for storing both the voxel intensities of the

1See http://www.itk.org/
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Algorithm 1: ViscousFluidRegistration(S,R): The viscous-fluid regis-
tration method (at a single resolution).

input : Source image S, Reference image R
output: Resulting displacement field
Let all vector fields be reset to zero vectors
t← 0
repeat

Calculate body forces
Solve for instantaneous velocities
Calculate the perturbation field
From this perturbation field calculate a step size δ
if regridding is needed then

Perform regridding
else

Update displacements using step size δ
t← t+ 1

until t >= tmax or δ > δmax ;
return displacement field

Figure 5.2: Dependencies between data textures and fragment programs in
the OpenGL based implementation of the viscous-fluid registration method.
Squares represent textures (subdivision represents a flat 3D representation
containing 16 slices). Rounded rectangles represent fragment programs. El-
lipses represent steps running on the CPU

source and reference images and the binary volumes of the regions of interest. In
the red colour component, the intensity of the corresponding voxel of the source
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image is stored. Equivalently the intensity of the reference volume is stored in
the blue component. The green and alpha components are used to store the
boolean values from the regions of interest of the source and reference images
respectively. As the regions of interest are defined not to overlap, a unique
byte value is designated to each region of interest, and this byte is stored in the
texture. The regions of the source and target images that correspond to the
same organ are given the same value.

We have used two approaches to converting from 3D grid positions to 2D
texture coordinates. Values at arbitrary positions need to be looked up when
calculating body forces. These positions are found through a look-up in the
texture containing displacement vectors. To handle this the fragment program
is given information about the number of slices to the left and right in the
current row of slices in the texture. This information is used to make a lo-
cal displacement without knowledge of the global position in the texture. In
the fragment programs implementing the remaining steps of the viscous-fluid
method, it is known which slices are needed in the computations. Therefore the
corners of these slices are simply specified as vertex attributes when drawing
the quadrilateral that is used to invoke computation of a slice. In this way
coordinates are interpolated in hardware and the fragment program can know
the texture coordinates of all neighbouring values.

Two textures are used for containing velocity vectors because the Jacobi
iteration kernel uses one texture for reading values from the previous iteration
and the other texture for storing the updated values. In this way values are read
and written back and forth between the two textures for the desired number of
iterations. A similar approach must be used when updating the displacement
vectors.

5.6 Registration results

In this section the results of accelerating the viscous fluid registration method
are presented. Timing experiments were performed in which the time required
for registering images from radiation therapy on the GPU was compared to
registration time on an identical CPU based reference implementation. Here
”identical” means that this CPU version also uses Jacobi iteration for solving
the viscous-fluid PDE. All optimisation flags were turned on in the compiler.
However no hand optimisation was done on the CPU based code. This results
in a comparison which is somewhat unfair because we have not taken advantage
of the more general memory model in our CPU implementation. For a serial
architecture several efficient methods for solving systems of linear equations
exist. Also we do not pre-calculate image gradients. However, although the
CPU implementation is not optimal the results of our timings can still be used
as guide to the order of magnitude of the obtained speedup.

The timing experiments were performed on an Intel Core2 6400 running at
2.13GHz with 2 gigabytes of system memory and a Geforce8800GTX GPU. The
registered image set was of resolution 256x256x32 with a single ROI specified.
100 Jacobi iterations were used per time step. The results can be seen in table
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Step CPU GPU Speedup

Calculate forces 5.62 0.02 236.6
Solve for velocities 86.31 0.54 161.2
Perturbation field + update displacements 2.49 0.13 18.7
Evaluate Jacobian 1.37 0.12 11.0

Sum (ignoring regridding cost) 95.79 0.82 117.2
Average iteration (with regridding) 99.04 1.14 87.1

Table 5.1: Timings of the different steps of the viscous-fluid registration method
on a CPU and a GPU based implementation. Times are reported in seconds
per iteration.

5.1. In case the evaluation of the Jacobian results in a regridding step this
amounted to 4.72 sec. and 2.86 sec. of additional work on the CPU and GPU
respectively. The average execution time per iteration in the bottom row of the
table reflects the additional cost of regridding.

To demonstrate the feasibility of using the registration method for radio-
therapy 3D images, the method has been applied to both MRI and CT images
acquired in connection with radiotherapy treatment.

5.6.1 CT registration experiments

To investigate the ability of our implementation of the viscous fluid registration
method to handle the CT image modality, registration experiments were per-
formed on pairwise combinations of three 3D CT images acquired in connection
with the treatment of a head and neck cancer patient. Slices of two images can
be seen in figure 5.3 (upper left and lower left parts). Too large deformations
exist in these images for a rigid registration alone to be sufficient. In the im-
ages depicted here, a coarse rigid registration was performed manually before
the viscous-fluid method was applied. A total of 170 viscous-fluid time steps
were used to register the two images of dimension 256x256x64. The result of
the registration is illustrated in the upper and lower right parts of the figure.
The registration method handles these CT images quite well. As can be seen
in figure 5.3 the algorithm is successful in describing the difference in tumor
size (arrow). In general the few head and neck CT registration experiments
performed gave encouraging results.

5.6.2 MRI Registration experiments

We have also tested our implementation on magnetic resonance images. This
was done by registering a number of 3D MRI images from cervical cancer pa-
tients.

In most cases the viscous-fluid registration was capable of handling the
cervical cancer images reasonably well. However some images could not be
registered by this method without the use of pre-segmented regions of interest
(more on this below) and some registrations failed despite the use of ROIs. An
example of a successful registration can be seen in figure 5.4. An automatic rigid
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Figure 5.3: Images depicting the results of registering two CT images acquired
in connection with the treatment of a head and neck cancer patient. All
images depict the same slice. The upper left part depicts the undeformed
source image followed by the deformed source image (upper right). The
lower left part shows the reference image followed by an image displaying the
result of applying the transformation to a rectilinear grid.

registration was performed based on image intensities before the deformable
registration was started. 130 time steps were used for the shown registration.
It can be seen that the difference in bladder positioning is nicely described
by the method even without the use of regions of interest. In figure 5.4 the
deformable registration has successfully described a difference in angling of the
pelvic bones on the two images. This can not be seen on the deformed grid
because this only displays in-plane deformations.

The cervical cancer MR images pose a more difficult task for the registration
method than the above head/neck CT image because of larger organ motion
and since the assumption of an identity intensity mapping is often violated due
to differences in intestine content. An example of this can be seen on the left
hand side images of figure 5.5. For registering these 256x256x32 images 110 time
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Figure 5.4: Images depicting the results of registering two MR images ac-
quired in connection with the treatment of a cervical cancer patient. For a
description of the different parts of the figure, see the caption of figure 5.3.

steps were used. Looking at the results on the right hand side of figure 5.5 it
can be seen that the uterus has been wrongly expanded to fill out a surrounding
piece of intestine with a similar intensity (arrow). In this example the use of
a region of interest describing the position of the uterus will be advantageous
because the algorithm can use this prior information to distinguish between
organs.

The clinical registration experiments above can be hard to evaluate be-
cause no gold standard exists describing the ”correct” transformation. With
the purpose of introducing a correct registration result, a number of experi-
ments have been carried out in which images acquired by MRI in connection
with radiotherapy treatment have been deformed using mathematical functions.
In the example demonstrated here, rotational displacements around the centre
are applied. How large an angle the rotation is has a sine dependence to the
distance from the center. Images depicting the result of registering an image
from a brachytherapy treatment to a version transformed with the function in
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Figure 5.5: Images depicting the results of registering two MR images ac-
quired in connection with the treatment of a cervical cancer patient. This
is a difficult registration task due to differences in intestine content. Note
that the uterus has been wrongly expanded to fill out a surrounding piece of
intestine with a similar intensity (arrow). For a description of the different
parts of the figure, see the caption of figure 5.3.

the wave experiment can be seen in figure 5.6. Besides the source, transformed
source, and reference images, we also show an image describing the mathemati-
cal function used to transform a grid (on the bottom left). On the bottom right
we show the transformation found by registration. In the middle the found
displacements are subtracted from the mathematical transformation. This can
be used to see if the registration algorithm finds the same transformation as
was defined mathematically. If this is the case, a rectilinear grid should emerge.
It can be seen that the registration method handles the wave experiment rather
well in most parts of the image. However some parts of the registration result
show a large degree of local deformation resulting in a ”pinching” of parts of the
image. Note that this is not obvious from a quick look at the image resulting
from the registration. Besides the pinching deviations between the deforming
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function and the registration result also occur near image borders where our
boundary conditions prevent the method from finding a match.

The transformed images (source, transformed source, target):

The transformed grids (transformed with function, rectified by registration,
transformation found by registration):

Figure 5.6: Images depicting the result of registering an image from a
brachytherapy treatment to a mathematically transformed version of that
image. On the top row the source image, transformed source image, and
reference image is found. Here slice 9 of 16 is shown. On the bottom row: to
the left the mathematical function is used to transform a grid. On the right
side the transformation found by registration is shown. In the middle the
found displacements are subtracted from the mathematical transformation.

5.7 Discussion

In this section we discuss a number of issues that one needs to be aware of
when using the viscous-fluid method. We also discuss of the use of a GPU for
accelerating the method.

For the method to work well, intensities need to be consistent meaning
that the same part of an organ in two images need to be the of same (or
very similar) intensity. For CT scans the assumption of intensity preservation
is generally met, but in connection with MRI, it is required to use the same
protocol and placement of coils. Due to the choice of similarity measure between
images, the viscous-fluid method with its current implementation of driving
forces cannot be used for multimodality registration (image fusion). In the face
of images of different modality, the only way of using our implementation is to
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base registration on binary masks alone which is not optimal. Ways to allow
the viscous fluid motion model to be used for multimodal registration would
be to base the driving forces on mutual information [34] or normalised gradient
fields [50]

As a result of the way driving forces are calculated in the viscous-fluid
registration, it does a better job at describing expansion rather than rotation.
In practice this can give problems when an organ (e.g. the uterus scanned in
connection with cervical cancer treatment) is bent in one image and straight
in another. In this case it can happen that some parts of the source image are
incorrectly compressed while other parts are incorrectly expanded to fill out
the positioning of the organ in the reference image leading to an inadequate
registration. An example of this can be seen in figure 5.7 which is taken from
[28].

Figure 5.7: Illustration showing an erroneous registration of an upright posi-
tioned uterus (blue shape) to a bent uterus. Several steps in the registration
are shown. It can be seen that some parts of the source image (top left) are
incorrectly compressed while other parts are incorrectly expanded to fill out
the positioning of the organ in the reference image (bottom right) From [28]
courtesy of Gary E. Christensen. Reprinted with permission from Elsevier

The significant speedup of registration obtained by porting the algorithm
to being GPU accelerated can partly be explained by the superior number of
floating point operations per second (Flops) of the GPU compared to the CPU.
An Nvidia Geforce 8800GTX GPU is capable of producing approximately 500
GFlops [103]. This must be compared to the theoretical maximum throughput
of 7.4 GFlops for a 3.8 GHz Intel Xeon CPU. In general the development in
computer graphics hardware works in our favour. The capabilities in terms
of computing and memory access is steeply increasing. This development is
expected to continue in the coming years. Also the possibility of using multiple
GPUs in a single PC has the potential of decreasing computation times even
further.

However the number of Flops achievable on the two architectures is not
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sufficient information for determining the achievable speedup when porting to
the GPU. As mentioned in section 4.5 what must also be taken into account
is the ratio between the number of machine instructions and the number of
memory accesses - this is sometimes called the arithmetic intensity [109]. In
the viscous-fluid implementation - especially in the Jacobi iteration steps - the
computational intensity is not high. This means that the limiting factor in the
calculation is here not the number of Flops but rather the number of gigabytes
per second of memory access.

The viscous-fluid registration method discretised using finite difference ap-
proximations is very well suited for being GPU accelerated through OpenGL
drivers. One of the reasons for this is that in all steps except the calculation of
body forces, all texture coordinates for looking up values can be determined by
interpolation between texture coordinates specified as vertex attributes. This
enables the use of hardware interpolation and cache friendly memory access
instead of random access [129].

5.8 Conclusion and further comments

In this chapter it has been demonstrated that modern graphics hardware can
be used to significantly decrease the time required for registration of medi-
cal 3D images using the viscous-fluid registration method. This was done by
formulating the required computations in fragment programs executable on a
GPU.

Images from the female pelvic region which is one of the clinical focus ar-
eas in this dissertation feature very large geometric discrepancies due to high
mobility of soft organs like the uterus, intestines and bladder. Furthermore dif-
ferences in bladder and intestine content can introduce large differences in image
intensity in which case an assumption of identity photometric transformation
breaks down.

As mentioned in chapter 3 the hybrid viscous-fluid model of [28] (intensities
plus binary volumes) has previously been used to register images from cervical
cancer patients. In cases where the method does not completely succeed in reg-
istering the images due to ill-posed deformations of organs the fluid landmark
registration [30] was used. In our initial work on the cervical cancer case we
adopted the hybrid viscous-fluid approach (chapter 5). However we found it
desirable to avoid the fluid landmark step. For this reason focus shifted to-
wards including physical organ simulations in the registration - more on this in
chapters 7 and 8.

While gaining experience with the viscous-fluid method, we saw quite a few
cases in which the registration looked acceptable when evaluated on a com-
parison between the transformed image and the reference image, but a closer
inspection of the development of the transformation revealed physical impossi-
bilities. An example of this is the growth of an intestine from the uterus seen in
figure 5.5. We also found that even quite small differences in intensities caused
by changes in position of the coil during MR acquisition could cause a compres-
sion or expansion of parts of the image (usually the fatty tissue below the skin)
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so that image intensity was smeared out. The latter of the mentioned prob-
lems might be alleviated by the use of MI or NGF as the similarity measure.
However the development of impossible transformations that were not easily
detected from looking at the registered image made us uncomfortable with the
method, and we began looking for alternative methods. While working on a
GPU implementation of the 2D Horn & Schunck optical flow algorithm for a
project on MR temperature monitoring [37] we were impressed with the perfor-
mance of the method on 2D MR data. This lead us in the direction of the work
by Cornelius & Kanade on including an intensity deviation term in the optical
flow estimation, which we extended to 3D. We implemented these optical flow
estimation methods on the GPU, which will be presented in chapter 6.
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Chapter 6

Optical flow registration

6.1 Introduction

In this chapter we evaluate two fully automated intensity based deformable
registration methods driven by the concept of optical flow [56], [32]. These
methods were chosen based on our previous experience with registration of 2D
MRI for online MR temperature monitoring [37]. We extended the models
from 2D to 3D. In literature the Horn and Schunck method has previously
been used in 3D (see e.g. [48]). However, to our knowledge the Cornelius and
Kanade method has previously only been presented for applications in 2D.
As a preliminary validation study we report the result of using one of these
methods for registering 4DCT lung acquisitions and the other for registering
head and neck CBCT and conventional CT acquisitions. To compute such
complex registrations in a clinically acceptable time frame, we implemented
the two algorithms in parallel on a commodity graphics processing unit (GPU).
The methods used in the study presented here are easily parallelisable making
them ideal for GPU implementation. Furthermore, the running times of these
methods are relatively short even in a non-accelerated version meaning that a
significant acceleration will allow us to do deformable registration in very short
time frames. The chapter is partially based on [100].

6.2 The Horn and Schunck model

The Horn and Schunck method is based on an assumption of preserved image
intensity between the two 3D images to be registered. This means that it
only works for registering images of the same modality and only for images
with consistent grey values when multiple image sets are compared. It is also
assumed that the deformation is smooth. This is in general a valid assumption
for soft tissue deformation. The Horn and Schunck method is thus suitable
for registering successive CT images due to the reproducibility of Hounsfield
Units for this modality. Denoting the image intensity by I we can write the
assumption of intensity preservation as:

I(x, y, z, t) = I(x+ δx, y + δy, z + δz, t + δt) (6.1)
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where δx, δy, and δz are the displacements occurring between times t and t+δt.
Assuming small displacements the right hand side of (6.1) can be expanded as
a Taylor series resulting in:

I(x+δx, y+δy, z+δz, t+δt) = I(x, y, z, t)+
∂I

∂x
δx+

∂I

∂y
δy+

∂I

∂z
δz+

∂I

∂t
δt+H.O.T.

(6.2)

where H.O.T. means higher order terms, which we ignore. Combining (6.1) and
(6.2) we get

∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂z
δz +

∂I

∂t
δt = 0. (6.3)

Dividing by δt results in:

∂I

∂x

δx

δt
+

∂I

∂y

δy

δt
+

∂I

∂z

δz

δt
+

∂I

∂t

δt

δt
= 0 (6.4)

and taking the differential limit we get

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂z

dz

dt
+

∂I

∂t
= 0. (6.5)

We now denote the three velocity components by u = dx
dt , v = dy

dt , and w = dz
dt

(think of these as the displacements occurring in the time between two image
acquisitions). This means that (6.5) can be written as:

Ixu+ Iyv + Izw + It = 0 (6.6)

where the x, y, z, or t in subscript denotes differentiation.

In practise deviations from intensity preservation will occur. Therefore we
introduce an energy term Eb that we wish to minimise:

Eb = Ixu+ Iyv + Izw + It. (6.7)

In the minimisation of 6.7 we wish to ensure that the field of velocity vectors
is smooth. Thus we introduce a constraint energy term Ec:

E
2
c = ||∇u||2 + ||∇v||2 + ||∇w||2

= u2x + u2y + u2z + v2x + v2y + v2z + w2
x + w2

y + w2
z (6.8)

and combine the two energy terms in an energy functional E, which is evaluated
over the entire image domain:

E =

∫∫∫

(

E
2
b + α2

E
2
c

)

dxdy dz =

∫∫∫

f dxdy dz (6.9)

where α is a weighting factor.

A necessary condition for a velocity field to be a minimizer of E is that it
satisfies the Euler-Lagrange equations (see e.g [73]) given by:
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∂f
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−
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∂f

∂uy

)

−
∂
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(

∂f
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)
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∂f

∂vy

)

−
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(
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∂f

∂wx

)

−
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(

∂f

∂wy

)

−
∂
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(

∂f

∂wz

)

= 0 (6.12)

Evaluating the terms in (6.10) results in:

∂f

∂u
= 2Ix (Ixu+ Iyv + Izw + It) , (6.13)

∂

∂x

(

∂f

∂ux

)

=
∂

∂x

(

2α2ux
)

= 2α2uxx, (6.14)

∂

∂y

(

∂f

∂uy

)

= 2α2uyy, (6.15)

∂

∂z

(

∂f

∂uz

)

= 2α2uzz (6.16)

Eliminating the factor 2 and introducing the Laplacian ∇2 = ∂2

∂x2 + ∂2

∂y2
+ ∂2

∂z2

the Euler-Lagrange equation (6.10) for u becomes:

Ix (Ixu+ Iyv + Izw + It)− α2∇2u = 0 (6.17)

Similarly the expressions for v and w become:

Iy (Ixu+ Iyv + Izw + It)− α2∇2v = 0 (6.18)

Iz (Ixu+ Iyv + Izw + It)− α2∇2w = 0 (6.19)

We now assume we are representing the velocities in a Cartesian grid and use
finite difference approximations when evaluating the Laplacians. Then we ap-
proximate the Laplacian of u by ∇2u ≈ ū − u where ū is the mean of u in
the 3 × 3 × 3 neighbourhood of the current grid position (excluding the cur-
rent grid position itself). Weighting all neighbors equally this approximation is
proportional to ∇2u and we can account for the difference from ∇2u using the
factor α. Likewise the approximations ∇2v ≈ v̄− v and ∇2w ≈ w̄−w are used.
Inserting this in (6.17)-(6.19) gives:

Ix (Ixu+ Iyv + Izw + It)− α2 (ū− u) = 0 (6.20)

Iy (Ixu+ Iyv + Izw + It)− α2 (v̄ − v) = 0 (6.21)

Iz (Ixu+ Iyv + Izw + It)− α2 (w̄ −w) = 0 (6.22)

This can be written on matrix-form like this:
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 (6.23)

Use of Cramer’s rule results in (after some calculations):

(I2x + I2y + I2z + α2)u = I2y ū+ I2z ū− IxIt + α2ū− IxIy v̄ − IxIzw̄ (6.24)

(I2x + I2y + I2z + α2)v = I2xv̄ + I2z v̄ − IyIt + α2v̄ − IxIyū− IyIzw̄ (6.25)

(I2x + I2y + I2z + α2)w = I2xw̄ + I2y w̄ − IzIt + α2w̄ − IxIzū− IyIz v̄(6.26)

which can be rewritten as

(I2x + I2y + I2z + α2)(u− ū) = −Ix[Ixū+ Iyv̄ + Izw̄ + It] (6.27)

(I2x + I2y + I2z + α2)(v − v̄) = −Iy[Ixū+ Iy v̄ + Izw̄ + It] (6.28)

(I2x + I2y + I2z + α2)(w − w̄) = −Iz[Ixū+ Iyv̄ + Izw̄ + It]. (6.29)

We are now ready to solve the system (6.23) by Jacobi iteration (see e.g. [71,
section 4.6]) using the following update rules:

u(k+1) = ū(k) − Ix[Ixū
(k) + Iy v̄

(k) + Izw̄
(k) + It]/(I

2
x + I2y + I2z + α2) (6.30)

v(k+1) = v̄(k) − Iy[Ixū
(k) + Iy v̄

(k) + Izw̄
(k) + It]/(I

2
x + I2y + I2z + α2) (6.31)

w(k+1) = w̄(k) − Iz[Ixū
(k) + Iy v̄

(k) + Izw̄
(k) + It]/(I

2
x + I2y + I2z + α2) (6.32)

where we approximate Ix, Iy, and Iz as the mean of two central difference
approximations (one for the source image and one for the reference image). For
It we use a forward difference approximation.

6.3 The Cornelius and Kanade model

When registering MR to MR or CBCT to CT the assumption of intensity
preservation is no longer valid. In the CBCT modality intensity in Hounsfield
units are affected by the larger contribution from x-ray scatter. Also the design
of the detector and the image reconstruction algorithm used has an impact
on Hounsfield unit reproducibility for CBCT. To facilitate handling of intensity
differences, Cornelius and Kanade extended the original algorithm thus enabling
it to tolerate some deviation from that assumption [32]. In their work it was
further assumed that the non-motion-related intensity differences are smoothly
varying in space. Here we extend the method to three dimensions.

The function E to be minimised in the Cornelius and Kanade method is on
the following form:

E =

∫∫∫

(

E
2
b + α2

E
2
c + β2

E
2
I

)

dxdy dz =

∫∫∫

f dxdy dz (6.33)
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where Ec is as in the previous section and EI will be introduced below. The term
Eb is introduced as a result of acknowledging that changes in intensity may have
other causes than motion. Isolating the intensity difference from (6.2) results
in

I(x+δx, y+δy, z+δz, t+δt)−I(x, y, z, t) =
∂I

∂x
δx+

∂I

∂y
δy+

∂I

∂z
δz+

∂I

∂t
δt. (6.34)

Dividing by δt results in:

I(x+ δx, y + δy, z + δz, t + δt)− I(x, y, z, t)

δt
=

∂I

∂x

δx

δt
+

∂I

∂y

δy

δt
+

∂I

∂z

δz

δt
+

∂I

∂t

δt

δt
(6.35)

and taking the differential limit we get

dI

dt
=

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂z

dz

dt
+

∂I

∂t
. (6.36)

We now let the term Eb denote the difference between left and right hand side
of this expression:

Eb =
dI

dt
−

∂I

∂x

dx

dt
−

∂I

∂y

dy

dt
−

∂I

∂z

dz

dt
−

∂I

∂t
(6.37)

or, using the shorthand notation B = dI
dt :

Eb = B − Ixu− Iyv − Izw − It (6.38)

The idea in the Cornelius and Kanade method is to solve for B as well as for the
displacement field, thereby allowing compensation for deviations from intensity
preservation. The new energy term EI penalises large derivatives in the field of
B values:

E
2
I = B2

x +B2
y +B2

z (6.39)

Besides the Euler-Lagrange equations (6.10)-(6.12) we now also have an Euler-
Lagrange equation in B:

∂f

∂B
−

∂

∂x

(

∂f

∂Bx

)

−
∂

∂y

(

∂f

∂By

)

−
∂

∂z

(

∂f

∂Bz

)

= 0 (6.40)

From the four Euler-Lagrange equations we get:

Ix (−B + Ixu+ Iyv + Izw + It)− α2∇2u = 0 (6.41)

Iy (−B + Ixu+ Iyv + Izw + It)− α2∇2v = 0 (6.42)

Iz (−B + Ixu+ Iyv + Izw + It)− α2∇2w = 0 (6.43)

−B + Ixu+ Iyv + Izw + It + β2∇2B = 0 (6.44)

Introducing approximations to the Laplacians as above, the linear system of
equations becomes:
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(6.45)

Use of Cramer’s rule gives:

(−β2I2x − β2I2y − β2I2z − α2 − α2β2)u

= β2IxIt − β2I2y ū− β2I2z ū −α
2ū− α2β2ū+ β2IxIyv̄ + β2IxIzw̄ − β2IxB̄

(−β2I2x − β2I2y − β2I2z − α2 − α2β2)v

= −β2I2x v̄ + β2IyIt − β2I2z v̄ −α
2v̄ − α2β2v̄ + β2IyIzw̄ − β2IyB̄ + β2IxIyū

(−β2I2x − β2I2y − β2I2z − α2 − α2β2)w

= −β2I2xw̄ − β2I2y w̄ + β2IzIt −α
2w̄ − α2β2w̄ − β2IzB̄ + β2IyIz v̄ + β2IxIzū

(−β2I2x − β2I2y − β2I2z − α2 − α2β2)B

= −β2I2xB̄ − β2I2y B̄ − β2I2z B̄ −α
2It − α2β2B̄ − α2Izw̄ − α2Iyv̄ − α2Ixū

Letting C = β2I2x + β2I2y + β2I2z + α2 + α2β2 this can be written as

C(u− ū) = −β2Ix(Ixū+ Iyv̄ + Izw̄ + It − B̄)

C(v − v̄) = −β2Iy(Ixū+ Iy v̄ + Izw̄ + It − B̄)

C(w − w̄) = −β2Iz(Ixū+ Iyv̄ + Izw̄ + It − B̄)

C(B − B̄) = α2(Ixū+ Iyv̄ + Izw̄ + It − B̄) (6.46)

which results in the following Jacobi iteration update rules:

u(k+1) = ū(k) − β2Ix(Ixū
(k) + Iyv̄

(k) + Izw̄
(k) + It − B̄(k))/C

v(k+1) = v̄(k) − β2Iy(Ixū
(k) + Iy v̄

(k) + Izw̄
(k) + It − B̄(k))/C

w(k+1) = w̄(k) − β2Iz(Ixū
(k) + Iyv̄

(k) + Izw̄
(k) + It − B̄(k))/C

B(k+1) = B̄(k) + α2(Ixū
(k) + Iyv̄

(k) + Izw̄
(k) + It − B̄(k))/C (6.47)

6.4 GPU based implementations

The numerical method of Jacobi iteration is very suitable for an SIMT imple-
mentation to be run on a GPU. This is due to the fact that during the com-
putation of each Jacobi iteration only information from the previous iteration
is needed at each grid point. Thus write conflicts are avoided. The downside
to Jacobi iteration is a slower convergence than e.g. Gauss-Seidel (or variants
such as successive overrelaxation). Furthermore, more memory is used because
values of the solution vector are needed in both iteration k for reading and k+1
for writing. This means that twice the memory is consumed. The amount of
memory available in the graphics cards we have used can be a constraint when
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registering large data sets. Therefore our GPU implementation of the Horn &
Schunck method as well as the Cornelius & Kanade method can be configured
to use a method which can be characterised as something in between Jacobi
iteration and Gauss-Seidel.

Using shared memory copies of the required values from the solution vector
of the n-th iteration needed by any of the threads in each three dimensional
block of threads are read. For this the threads work together, each copying
a small part of the input data. To ensure all values are read before further
computation a (per block) thread synchronisation is performed. The copied
values are subsequently used for a step of the Jacobi iteration. For the grid
points covered by the part of a block bordering towards another block we need
to read values that are to be updated by another block. We have no guarantees
about the order of execution of blocks so we do not know which of the read
values belong to iteration k or have been updated to iteration k + 1. At grid
points interior to a block a normal Jacobi iteration scheme is followed. Using
per-block Jacobi iteration allows us to halve the memory used for storing values
of the solution vector.

Possible termination criteria for the Jacobi iteration are to use a fixed num-
ber of iterations or find the largest change in an optical flow velocity/displacement
vector and terminate the iterations once the norm of this vector is below a cer-
tain threshold. We use the latter approach but avoid the cost of a reduction
operation by allocating a Boolean variable in global memory which is set to
false before every iteration. Those of the threads responsible for Jacobi itera-
tion that change their displacement vector by more than the threshold it will
write true in the variable. This means that if the Boolean variable is false after
an iteration we have met the termination criterion.

6.4.1 Multi-resolution approach

To speed up the registration and to avoid local minima our implementation
uses a multiresolution approach. A number n is chosen which specifies the
number of resolutions. In each resolution the input images are downsampled by
a factor 2 in all directions1 followed by a recursive call to the multiresolution
method. When the recursive call returns the resulting displacement field is
upsampled to the current resolution and the input image is transformed using
the upsampled transformation field. The deformed image is then fed as input
to the optical flow estimation method. The resulting displacement field is used
to transform the field from the recursive call and the resulting field is returned.
The recursion ends once the lowest resolution is reached. The approach can be
seen in pseudocode in algorithm 2.

Again we have focused on memory consumption. After computing spatial
and time derivatives in each resolution the input images can be swapped out to
host memory as only the derivatives are needed in the Jacobi iteration. This
introduces an overhead in time consumption but allows registration of larger
data sets.

1In cases where the x and y-dimensions were more than twice the z-dimension(the number
of slices), the images was not downsampled in the z-direction.
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Algorithm 2: MultiResolutionRegistration(S,R, n): The multiresolution
method used for our optical flow registration implementations. The func-
tion OpticalFlowEstimation(St , R) called is either the Horn and Schunck
or the Cornelius and Kanade method.
input : Source image S, Reference image R, resolution number n
output: Resulting displacement field
if n > 1 then

Sd ← DownSample(S)
Rd ← DownSample(R)
D ← MultiResolutionRegistration(Sd , Rd, n− 1)
Du ← UpSample(D)
St ← S transformed using Du

Dn ← OpticalFlowEstimation(St , R)
Dt ← Du transformed using Dn (composition of transformations)
return Dt

else
Dn ← OpticalFlowEstimation(Sd, Rd)
return Dn

6.5 Registration validation studies

6.5.1 Image material

The Horn and Schunck registration has been evaluated on the POPI-model
which is a 4D thorax virtual phantom [141]. It consists of 10 CT data sets
of resolution 482×360×141 which have been acquired at different breathing
phases during a single breathing cycle. The images were acquired at the Léon
Bérard Cancer Center, Lyon, France. In each data set corresponding to a
breathing phase 41 landmark points have been manually identified, and these
points are used for our validation. The voxel spacing of the acquisitions is
0.98×0.98×2.0 mm3. The image material used for validating the Cornelius
and Kanade method is a series of 6 CBCT images of a head and neck cancer
patient and a conventional planning CT image acquired at the Department of
Oncology, Aarhus University Hospital. The scans have been conducted weekly
during the treatment course starting at the first fraction. The CBCT images are
of dimensions 512×512×51 with a voxel spacing of 0.47×0.47×3.0 mm3, while
the conventional CT image is of dimensions 512×512×55 with a voxel spacing
of 0.78×0.78×3.0 mm3. Validation of bone alignment is based on 6 landmark
points in each 3D data set. These points have been manually positioned prior to
registration at easily identifiable positions on the bony anatomy of the cervical
vertebrae and the base of skull representing clinically relevant match points.
Positioning of these points is illustrated in figure 6.1.

Three series of registration experiments have been carried out:

1. CT to CT registration using the Horn and Schunck registration method:
Following the convention from the POPI initiative all images from the 4D
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Figure 6.1: Visualisation of the positioning of the landmark points on the images
acquired from the head and neck cancer patient.

data set (at time phases numbered 0, 2, 3, 4, 5, 6, 7, 8 and 9) have been
registered to the reference image at phase 1.

2. CBCT to CBCT registration using the Cornelius and Kanade registration
method: The CBCT images numbered 2 to 6 have been registered to
CBCT image 1.

3. CBCT to CT registration using the Cornelius and Kanade registration
method: The CBCT images have been registered to the planning CT
image.

For the Horn and Schunck method a reference CPU based implementation has
also been implemented allowing us to compare the computation times between
the CPU and GPU versions.

Image preprocessing

The CBCT images were processed using the curvature preserving GREYC-
storation image denoising filter [140]. As this filter works in two dimensions, an
in-house program has been used that simply filters each image slice indepen-
dently. The effect of the filter is to remove noise (and in some cases artifacts
from the CBCT reconstruction) while preserving the edge contrast between
different kinds of morphology. See figure 6.2 for an example. The registration
methods we present in this paper are designed to estimate the detailed defor-
mation of morphology. If there is global displacement of patient position (that
is translation and/or rotation) between two images it is necessary to do a rigid
alignment of the images before the deformable registration in order to supply
the method with a suitable starting point for estimation of organ deformation.
The rigid registration method we use is based on the Insight Registration and
Segmentation Toolkit (ITK). The measure used to compare images is based
on mutual information. Input images are filtered using a threshold filter so
that only bone morphology is included in the rigid registration. Again a multi-
resolution approach is taken. For validation study 1 no image preprocessing
was required as the images were already rigidly aligned. In validation studies 2
and 3, a rigid registration was required. A bounding box corresponding to the
physical extent of CBCT image 1 has been cut out of the planning CT image
and resampled to the same resolution as the CBCT images.
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Figure 6.2: The effect of applying the GREYCstoration filter to a head and
neck CBCT image. The unfiltered image is the one on the right. The level of
noise has been reduced without blurring the image. Window-level settings have
been set to emphasize the difference between the two images.

6.5.2 Results

When registering images from the POPI 4DCT data set the 768 megabytes
of onboard memory available on the Nvidia geforce 8800GTX used allowed
us to do full registration without using the memory conserving version of the
Jacobi iteration scheme described in section 6.4. However when registering the
CBCT images we used the new scheme. We have not observed any noticeable
difference in registration result achieved when exchanging the normal Jacobi
iteration with the per-block variant.

Validation study 1: Registration of the POPI 4DCT data set

The registration accuracy, evaluated on the target registration error (TRE) of
landmark positions, is summarized in table 6.1. The distances are calculated
as the Euclidian length of 3D vectors. Original average landmark distance was
3.5 mm ± 2.0 mm. After registration, this average distance was equal to 1.1
mm ± 0.6 mm.

A visualisation of the registration result can be seen in figure 6.3. In this
visualisation the source image is shown in a reddish colour while the reference
image is shown in a bluish colour. Where the images align a grey scale image
emerges. In the unregistered case on the left blue and red areas can clearly be
seen indicating that the morphology is not aligned. In the registered case to the
right these coloured areas have almost disappeared indicating that the images
have been successfully registered.
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Registration Mean original Max. original. Mean TRE Max. TRE
(src./ref.) distance / mm distance / mm / mm / mm

0/1 0.5 ± 0.5 2.4 0.7 ± 0.3 1.4
2/1 0.5 ± 0.6 2.6 0.7 ± 0.4 1.7
3/1 2.2 ± 1.8 6.6 1.3 ± 0.8 3.4
4/1 4.5 ± 2.5 10.0 1.2 ± 0.5 2.7
5/1 6.0 ± 2.9 12.1 1.3 ± 0.7 3.6
6/1 6.5 ± 3.3 14.0 1.2 ± 0.6 3.2
7/1 5.5 ± 3.0 14.0 1.3 ± 0.6 2.8
8/1 3.8 ± 1.6 6.2 1.0 ± 0.5 2.7
9/1 2.1 ± 1.0 4.5 0.9 ± 0.6 2.5

Average 3.5 ± 2.0 8.0 1.1 ± 0.6 2.7

Table 6.1: Target registration error (TRE) compared to original distances of
landmark points in the POPI data set.

Images Before registration After rigid registration After deformable reg.
src/ref mean/mm max/mm mean/mm max/mm mean/mm max/mm

2/1 4.3 ± 1.3 6.4 1.7 ± 1.1 3.5 1.6 ± 0.4 1.9
3/1 4.2 ± 1.6 6.5 2.5 ± 1.1 3.7 1.8 ± 1.0 3.4
4/1 5.2 ± 1.1 6.6 1.8 ± 1.2 3.9 1.4 ± 1.0 3.1
5/1 6.5 ± 0.8 8.0 1.4 ± 0.9 2.7 1.4 ± 0.6 2.1
6/1 7.2 ± 0.9 8.6 1.7 ± 0.7 2.8 1.7 ± 0.8 3.0

Average 5.8 ± 1.1 7.2 1.8 ± 1.0 3.3 1.6 ± 0.8 2.7

Table 6.2: Evaluation of distances of bony landmarks for the CBCT-to-CBCT
registration.

Validation study 2: CBCT to CBCT registration

In table 6.2 the alignment error of the landmark points positioned on the bony
anatomy is summarized both before registration, after the rigid registration,
and after the deformable registration. Original average landmark distance was
5.8 mm ± 1.1 mm. After the rigid registration, this average distance was equal
to 1.8 mm ± 1.0 mm and after the deformable registration it was 1.6 mm ± 0.8
mm.

The result of registering CBCT image 3 to CBCT image 1 is visualized
in figure 6.4. The images depicting the results of the rigid registration show
an acceptable alignment of most bony anatomy, but it can be seen that the
soft tissue and the area surrounding the oral cavity is not aligned. Improved
alignment is obtained as a result of the deformable image registration as shown
in the visualisation. In figure 6.5 a visualisation of the computed transformation
can be seen showing that the deformation is smooth.

Validation study 3: CBCT to planning CT registration

The average alignment errors after the CBCT to CT registrations are found in
table 6.3. After the rigid registration, this average distance was equal to 2.2
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Figure 6.3: Differences between source and reference image before (left) and
after (right) registration of an image from the POPI data set. A saggital slice
and an axial slice are shown before and after registration. The source image is
shown in a reddish colour while the reference image is shown in a bluish colour
giving a gray scale image where the images align.

mm ± 0.6 mm and after the deformable registration it was 1.8 mm ± 0.6 mm.

The result of registering CBCT image 6 to the planning CT image can be
seen in figure 6.6 . Again it can be seen that even though the skull and spine is
aligned after the rigid registration, deformable registration is needed to account
for changes in jaw positioning and deformation of soft tissue.

Time consumption

On an Intel Core 2 CPU at 2.4 GHz the Horn and Schunck registration used for
each 3D image in the POPI dataset in validation study 1 takes 30 minutes. On
an Nvidia Geforce 8800GTX GPU in the same machine each registration takes
37 seconds, making the GPU version 48.6 times faster. For the 3D Cornelius and
Kanade method we did not write a CPU reference implementation. Therefore
we do not know the exact difference in processing time between CPU and GPU.
However we expect the acceleration of this method to be somewhat smaller than
for the Horn and Schunck method due to a less efficient use of shared memory
on the GPU. Each 3D registration of the CBCT images in studies 2 and 3 using
the Cornelius and Kanade method takes 64 seconds.
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Figure 6.4: Red/blue visualisation of the difference between the rigid registra-
tion (left) and the deformable registration (right) of CBCT image 3 to CBCT
image 1. A saggital slice and an axial slice are shown for each registration.

After rigid registration After deformable registration
Source image mean / mm max / mm mean / mm max / mm

CBCT 1 2.2 ± 1.0 3.7 1.4 ± 0.6 2.7
CBCT 2 1.7 ± 0.4 2.2 1.4 ± 0.5 1.9
CBCT 3 1.9 ± 0.5 2.9 1.7 ± 0.3 2.2
CBCT 4 2.8 ± 0.6 4.1 2.7 ± 1.1 4.9
CBCT 5 2.0 ± 0.3 2.5 1.7 ± 0.5 2.6
CBCT 6 2.3 ± 0.7 3.7 2.0 ± 0.6 3.3

Average 2.2 ± 0.6 3.2 1.8 ± 0.6 3.0

Table 6.3: Evaluation of distances of bony landmarks for the CBCT-to-CT
registration.

6.6 Discussion

When specifying landmark points the limiting factor on the accuracy is often
the slice thickness because a point may be between two slices which makes it
hard to identify. In the light of this we consider the registration accuracy results
in validation study 1 very acceptable as the mean landmark error is well below
the slice thickness. This accuracy is comparable to results for the Demons
algorithm previously reported in the POPI initiative [140]. In validation study
2 and 3 we used landmark points to track the registration of clinically relevant
points on the cervical vertebrae and the base of skull. For this preliminary
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Figure 6.5: Illustration of the transformation applied to the axial slice shown
in figure 6.4. The transform is used to deform a rectilinear grid with a grid
spacing of 10 mm. Only the in-plane deformation can be seen.

study we did not perform a dedicated evaluation of the error in landmark point
identification but we estimate that the error in each landmark point position
may be as high as 2.0 mm. The magnitude of this error is mainly due to the slice
thickness of 3 mm. It is interesting to note that although the rigid registration
was done on bone morphology the mean landmark error on bone morphology is
reduced by the deformable registration. In all registrations the mean error is
smaller than the slice thickness. As demonstrated in figures 6.4 and 6.6 a rigid
registration is not sufficient to describe the geometrical difference between the
images. However these geometrical differences have been substantially reduced
by the deformable registration.

Based on these studies we are optimistic that the Cornelius and Kanade
method is suitable for registering head and neck CBCT images from a series of
radiotherapy treatments to the planning image. Hopefully this will allow us to
compensate for the unreliable Hounsfield units by using the inverse transforma-
tion of the one found in validation study 3 to map the Hounsfield units from the
planning CT to each CBCT. This will make it possible to evaluate the doses
delivered in the treatment fraction corresponding to each CBCT acquisition by
doing a dose calculation on the corrected CBCT image. This has previously
been suggested by Yang et al. [153]. When all CBCT images are registered
to the same geometrical reference system, it will then be possible to evaluate
the actual accumulated dose from a series of fractions for comparison with the
planned doses. This can be done by deforming the dose distributions from each
CBCT to the geometrical reference frame constituted by the planning CT [104].

Furthermore an accurate registration makes it possible to do automatic
segmentation by transferring segmentations from the planning CT. Currently
a larger head and neck CBCT registration study is being planned in which
landmarks in bone as well as soft tissue will be used for accuracy evaluation.
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Figure 6.6: Red/blue visualisation of the difference between the rigid regis-
tration (left) and the deformable registration (right) of CBCT image 6 to the
planning CT image. A saggital slice and an axial slice are shown for each
registration.

Also a smaller slice thickness will be used allowing us to position landmarks
more accurately.

In the pursuit of online IGRT, the performance of the required image pro-
cessing in a sufficiently short time frame constitutes a huge technical challenge.
Using the GPU has led to a very significant reduction of the registration time.
The explanation of this reduction in processing time must be found in the par-
allelized architecture of the GPU. An acceleration in the magnitude presented
here is not only possible for the Horn and Schunck method but should be attain-
able for other registration methods which lend themselves to being split into a
large number of independent calculations. By splitting the images into blocks
to be registered, is it also possible to distribute computations onto multiple
GPUs. This does however introduce an overhead from the memory synchroni-
sation needed at block boundaries so whether or not this would speed up the
registration significantly is unclear. So far we have shown that using GPUs the
mentioned registration methods can be accelerated to a level which is accept-
able for use in an online setting in which the deformable registration is done
while the patient is still on the treatment couch. This is the first step towards
online dose plan adjustment. The processing power of GPUs can be utilized not
only for registration as presented here, but for many of the compute intensive
imaging tasks in IGRT making it an ideal and cost-efficient tool, which can help
us getting further towards online IGRT.
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Chapter 7

Biomechanical volumetric mesh registration

In this chapter we present our work on creating a fully automatic algorithm
for registration of organs represented as a volumetric mesh. Registration of
the organ surface is driven by force terms based on a distance field represen-
tation of pre-segmented source and reference shapes. Registration of internal
morphology is achieved using a non-linear elastic biomechanical finite element
model. The method is evaluated on phantom data based on fiducial marker
accuracy and prostate data obtained in vivo based on inverse consistency of
transformations. Furthermore we investigate the applicability of the method
for registering female pelvic organs. The parallel nature of the method allows
an efficient implementation on a GPU and as a result the method is very fast.
The presented work is the continuation of work previously published [99] in
which we used a simpler elastic model [88] for regularisation of the organ defor-
mation. A key feature of the method is that the user does not need to specify
boundary conditions (surface point correspondences) prior to the finite element
analysis. Instead the boundary matches are found as an integrated part of
the analysis. The proposed method has many potential uses in image guided
radiotherapy (IGRT) which relies on registration to account for organ defor-
mation between treatment sessions. Also, since the proposed method relies on
pre-segmented data, it can be used for multimodal registration of e.g. prostate
in the context of functional imaging.

7.1 Related work

7.1.1 Registration using elastic finite element models

The finite element method (FEM) is an often used approach for solving differen-
tial equations numerically over a 2D area or 3D volume. The basic idea in finite
element analysis (FEA) is to discretise the domain into ”elements” spanned by
vertex points. This can e.g. be triangles in 2D or tetrahedra in 3D. Values are
associated with the vertices and interpolated inside elements using basis func-
tions. The differential equation is rewritten into an integral form called its weak
formulation [6]. By using (typically linear) element functions defined both glob-
ally and locally over each element it is possible to integrate over space and time.
This is done either explicitly or implicitly by formulating a (typically sparse)
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system of equations, making it possible to solve for a solution to the differen-
tial equation at discretised vertex positions. In the kinds of deformable models
we are interested in the differential equation is typically a linear [17] [145] or
non-linear [93] elastic model derived from continuum physics. Linear models
feature an assumption of a linear relation between stress (a measure of force per
unit area) and strain (a measure of deformation), whereas non-linear models
feature a non-linear stress-strain relationship. The cost of the more advanced
non-linear model is a higher computational burden.

Finite element modelling of meshes spanning an entire image

Some authors have used elastic FEA as regularisation term in intensity based
registration. In [52] a linear elastic deformable FEM is applied to the entire im-
age domain, and the image is divided into subvolumes which are given different
material properties. These are connected by appropriate boundary conditions.
This technique is used for registering images used in preoperative planning of
brain surgery. In subsequent work the linear elastic model is coupled with a
model of incompressible fluids via appropriate boundary conditions [51]. Peckar
et al. have used linear elastic FEA for finding a smooth transformation that sat-
isfies a number of point constraints. Schnabel et al. [121] have also used a finite
element model in connection with intensity based registration, but for creation
of images to be registered. The idea is generating realistic registration problems
with a known displacement mapping so that accuracy of existing registration
methods can be evaluated.

Finite element modelling of mesh representations of organs

Yan et al. uses FEA of for quantifying organ motion based on volumetric meshes
retrieved from segmentation of CT images. This was used for dose accumula-
tion [150]. Ferrant et al. used active surfaces and distance fields for initial sur-
face matching of brain meshes and FEA for subsequent computation of interior
mesh vertex displacements [40]. This model was also used for prostate registra-
tion [11]. Brock et al. also use FEA for estimating interior vertex displacements
after initial boundary vertex projections [21] [19] and have also in earlier work
used a linear elastic model for investigating the impact of breathing deforma-
tion on the delivered dose to a liver tumour [20]. They use a pre-computed
surface correspondence map based on curvature correspondences as boundary
conditions to the simulation.

Liang and Yan note that the accuracy of such techniques are limited by
the surface projection algorithm [80]. To alleviate this problem they solve for
interior and boundary vertices simultaneously by applying extra constraints
ensuring that boundary vertices of the deforming organ stay on a triangle mesh
describing the surface of the reference organ. Their model requires initial user
defined boundary landmark correspondences.

In most work on FEM in image registration a linear elastic tissue deforma-
tion model has been applied. For large deformations however, especially those
involving rotation, this model induces significant errors [110]. Consequently we
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have chosen a non-linear model.

Recently Choi et al. published an iterative mesh fitting method which bears
many similarities with our method [25]. They define a surface distance term for
driving the registration. Unlike our approach their method uses a linear elastic
FEM to displace meshes. In order to handle large deformations they utilise a
technique called stiffness warping to account for the rotational part of the defor-
mation. Zhang et al. avoid manual definition of landmarks by employing a finite
element contact impact analysis [155]. This allows a model of a lung to slide in
the pleural cavity. In their FEA the compute the deformation in multiple steps
because their linear elastic model is not able to handle the large deformations
of the lung in one step. Also Haker et al. use an iterative FEM [54]. Based on
landmarks they project both source and reference organs onto a sphere using
an active surface model. The sphere has been triangulated into a tetrahedral
mesh, and guided by a few control landmarks, a point correspondence is found
for mesh vertices. These are used as boundary conditions for a volumetric finite
element analysis. Their work is based on theory in conformal mapping1 [1] [53].
Conformal mapping was also used by Warfield et al., who also extended the
linear elastic model with inhomogeneous material characteristics which allows
fibres to be modelled [145].

7.1.2 Distance fields in image registration

Euclidean distance fields (or distance maps) are used in an N -dimensional space
to track the (Euclidean) distance to the closest point of an object in this space.
In 3D the field is used to describe the distance to a 2D surface. Both unsigned
and signed distance fields can be used. The latter features a negative distance
when inside an object. An extensive survey of applications of Euclidean distance
fields have been presented by Jones et al. [59].

Besides the already mentioned work by Ferrant et al. [40] and Choi et al. [25],
a number of groups working on medical image registration have included the use
of Euclidean distance fields in their work. In [87] tissue classification in reference
CT images is performed based on fixed Hounsfield units and distance fields to
material boundaries are computed. In the source image bones are represented
as a point cloud. Based on an SSD measure of distance values bones are rigidly
registered to the reference image. This is used for tracking of wrist bones. Marai
et al. also minimised a cost function of distance field terms to recover rigid body
transformations [87]. In [106] an SSD of distance field based similarity metric
is constructed for shape matching. Here the transformation consists of both a
rigid term and a term for local deformable corrections. Xiao et al. use distance
fields for rigid registration of surfaces that only partially overlap [147].

7.2 Shape representation

Prior to the registration, data from a three-dimensional imaging source has
been segmented and segmented organs in both source and reference datasets

1That the mapping is conformal means that it is bijective and that angles are preserved.
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are represented as binary volumes. These binary images are initially smoothed
using a Gaussian filter. Next, Euclidean distance fields φ : R3 → R are gener-
ated for both datasets by using the implementation of Danielssons method [36]
found in the Insight Segmentation and Registration Toolkit (ITK).

The distance fields are subsequently used as input to an algorithm which
produces tetrahedral meshes. Before mesh generation the distance field is fur-
ther smoothed using the fourth order level set anisotropic diffusion smoothing
filter implementation in ITK. This filter smoothes the surface while preserving
sharp features. The quality of the smoothing (and thus parameters to the algo-
rithm) has been evaluated by visual inspection of a few generated meshes and
parameters have been kept constant throughout all registration experiments.
The deviation of the surface from original contours introduced by filtering has
not been investigated.

Based on a distance field we use an in-house implementation of the isosurface
stuffing mesh generation algorithm [75] for producing a tetrahedral mesh. This
meshing method guarantees strict upper and lower bounds on the dihedral
angles (angle between planes spanned by the sides of a tetrahedron) in the
generated tetrahedra which increases the stability of the used FEM. The method
operates on a body centered cubic (BCC) grid which consists of two regular
uniform grids, one shifted by a half grid distance in all three spatial directions
(figure 7.1 top left). All grid points are marked as either inside, outside or on the
surface. This can be easily evaluated using the distance field. Furthermore all
axis aligned or diagonal lines between grid points are checked for intersections
with the surface. At intersections cut points are introduced. A so-called warping
step evaluates the distance between cuts and BCC grid points, and if too close
removes the cut points while moving the grid points onto the shape surface.
Finally tetrahedra are generated based on a set of stencils covering all possible
combinations of grid point and cut points on the grid (figure 7.1 bottom left).
Two examples of meshes generated with this method can be seen in figure 7.1
right. Our implementation fills the mesh with tetrahedra of uniform size, but
in [75] the method is extended to produce graded meshes with large tetrahedra
inside and small tetrahedra near the boundary.

7.3 External driving forces

As mentioned, the objective of the registration is to find a transformation of
mesh vertices such that the surface vertices of the source body is mapped to the
surface of the reference body while interior vertices are at an equilibrium. We
propose an iterative algorithm driven by forces computed near the boundary of
the source shape. These forces, concatenated in the vector R, are defined for
each source mesh vertex i by

Ri = γ(Ai + βBi) (7.1)

where β is constant throughout the registration process and γ is iteratively
increased until the surface match is achieved.
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Figure 7.1: The isosurface stuffing method for generation of a tetrahedral
mesh. Top left: The body centered cubic (BCC) grid allows 3-dimensional
space to be spanned by tetrahedra. Bottom left: Stencils for mesh gener-
ation. Plus means that a vertex is inside the input shape, minus means it
is outside, and zeroes are on the surface. White circles are cut-points. The
yellow tetrahedra are those generated for the shown combinations. Right:
Examples of generated meshes along with histograms of dihedral angles. Note
that red bars have been scaled down by a factor of 20. All three illustrations
from [75] courtesy of François Labelle and Jonathan Shewchuk

The force term A is based on the distance fields that were pre-computed
before mesh generation of both the source (φS) and reference (φR) organ shapes.
It applies to all mesh vertices less than τ millimetres from the source shape
surface and is given by

Ai =
(

φS(p
o
i )− φR(p

d
i )
)

∇φR|pd
i

(7.2)

where po
i denotes the initial position of particle i (in the source shape) and

pd
i denotes the position of particle i in the current configuration of the itera-

tive registration process. The expression φR|pd
i
evaluates the reference surface

distance at the deformed position of particle i. Intuitively Eq. (7.2) provides
force vectors in the direction of steepest descent of the distance field calculated
from the reference shape - i.e. towards the reference volume. The forces are
weighted with the difference between each particle’s current distance to the ref-
erence shape and the particle’s original distance from the surface in the source
shape. Ai vanishes as particle i finds it ”desired” distance to the reference
surface. Equation (7.2) can be found from the Gâteaux derivative of the metric

D[φR, φS ;p
d] =

∑

i∈Sτ

(

φS(p
o
i )− φR(p

d
i )
)2

on the distance fields φS and φR.

Here pd denotes the 3N -dimensional vector of all components of the pd
i vectors,

and Sτ denotes the set of vertex indices for vertices less than τ millimetres from
the source surface.

The force term B is working normal to the current configuration of the
source surface and is calculated for all boundary vertices as the mean of all
normal vectors from adjacent surface triangles :
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Figure 7.2: Illustration of the forces driving the source shape surface vertices
towards the surface of the reference shape. a) 2D illustration showing the
reference surface (dashed line), distance field (intensity gradient), source shape
(white area), and the direction of forces derived from force term A. b) a surface
patch consisting of 6 surface triangles surrounding a vertex. A normal vector
(dashed line) is calculated per triangle, and the mean vector is used in force
term B. c) 2D illustration of B forces showing the same components as in a).
Notice how this term allows the source boundary to move into narrow extrusions
of the reference surface.

Bi =
(

φS(p
o
i )− φR(p

d
i )
) 1

Ni

∑

f∈Ti

(f2 − f1)× (f3 − f1) (7.3)

where Ti denotes the set of Ni surface triangles which include vertex i. Each
surface triangle f consists of vertex points f1, f2 and f3 - see figure 7.2

7.4 Non-linear elastic model

In each iteration a non-linear elastic FEM is used to displace the source mesh
based on the ”boundary” forces R computed above. This step is based on the
work by Miller et al. defining a total Lagrangian explicit dynamics (TLED)
FEM formulation [93]. An efficient parallel implementation has been described
in detail by Taylor et. al [135]. A summary of their model is provided below.

The TLED FEM on a tetrahedral mesh leads to the standard equations
of equilibrium, MÜ+DU̇+K(U)U = R, where M is a mass matrix, D is a
damping matrix, K(U) is a stiffness matrix, R are the external forces, and U is
the nodal displacements. Notice that K is a function of U. In this work we omit
the dynamic terms MÜ and DU̇. Hence, for a given load of external forces we
search for a configuration of nodal displacements U in which K(U)U = R(U).
Note that in our case R also depends on U according to equations (7.1)-(7.3).

The TLED FEM method describes shape deformation and displacements
with respect to the initial undeformed geometry. Element function derivatives
precalculated from the initial mesh configuration are used in each iteration
when calculating interior forces (stress and strain) reacting to an exterior load.
With such formulation continuous recalculation of spatial derivatives of the
element functions is avoided. Deformation is measured in terms of the defor-
mation gradient tensor t

0X which contains elements t
0Xij = ∂txi

∂0xj
. In words,
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the deformation gradient describes the degree of displacement of material point
coordinates tx with respect to the initial position 0x. By convention a left su-
perscript describes at which configuration of the body a quantity is measured
and left subscript describes the configuration the measurement is made with
respect to [9]. The deformation gradient can be calculated from the vertex
displacements and precomputed element shape function derivatives [93], [135].
Given linear tetrahedral element shape functions h the deformation gradient
can be calculated by t

0X = tuT
e 0∂hx + I. Here tue is a matrix of displace-

ments of vertices in the element, 0∂hx is a matrix of the derivatives of the shape
functions in the element, and I is the identity matrix.

The internal forces K(U)U are calculated as a sum of elemental forces
K(U)U = F(U) =

∑

e
tF̃(e) where e denotes the individual elements. For

linear tetrahedral elements tF̃ can be evaluated as

tF̃ = 0V t
0B

T
L

t
0Ŝ (7.4)

where 0V is the volume of the undeformed tetrahedron, 0BL is the strain-
displacement matrix, which describes the relationship between nodal displace-
ments and strain in an element, and t

0Ŝ = [t0S11
t
0S22

t
0S33

t
0S12

t
0S23

t
0S13]

T is
the second Piola-Kirchhoff stress on vector form. As the element deforms t

0BL

can be found by transforming the initial strain displacement matrix t
0BL0 using

the transformation gradient :

t
0B

(a)
L = 0B

(a)
L0

t
0X

T (7.5)

where a ranges over the four vertices of element e. 0B
(a)
L0 is given by:

0B
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(a = 1, 2, 3, 4), where 0ha,i =
∂ha
∂xi

(7.6)

For the second Piola-Kirchhoff stress t
0Ŝ in (7.4) we have a choice of consti-

tutive equation. We use a hyperelastic neo-Hookean model given by

t
0Sij = µ(δij −

t
0 C

−1
ij ) + λtJ(tJ − 1)t0C

−1
ij (7.7)

Here µ and λ are the Lamé constants, δij is Kronecker’s delta, tJ = det(t0X), and
t
0C is the Right Cauchy-Green deformation tensor calculated by t

0C = t
0X

T t
0X.

7.5 Enforcing a rigid motion

Besides the elastic FEM, a rigid motion model has also been included in the
registration method. This model is based on the work by Müller et al. on
meshless deformation based on shape matching [97]. The basic idea is to fit
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the system of particles pd
i to a rigid translation and rotation. Thus we wish to

minimise

∑

i

mi

(

R(po
i − po

cm)− (pd
i − pd

cm)
)2

(7.8)

Here mi is the mass of particle i, R is a 3 × 3 rotation matrix, and po
cm and

pd
cm are the centres of mass of the original (undeformed) particle system and

the deformed particle system respectively:

po
cm =

∑

i mip
o
i

∑

imi
pd
cm =

∑

imip
d
i

∑

i mi
(7.9)

In the following we use the following notation for positions relative to the centre
of mass: ri = pd

i − pd
cm and qi = po

i − po
cm To find R we first look at the

simpler problem of finding a general transformation matrix M that minimises
∑

imi(Aqi − ri)
2. For a matrix M to be a minimiser of this expression the

derivatives of the expression with respect to all coefficients of M must be zero.
This results in the following transformation [97]:

M =

(

∑

i

miriq
T
i

)(

∑

i

miqiq
T
i

)−1

= MrqMqq (7.10)

The symmetric matrixMqq only contains scaling, i.e. no rotation. Consequently
R can be found as the rotational part of Mrq. This can be found by doing a
polar decomposition of Mrq into the matrix product Mrq = RS, where R is
the rotational part and S is the symmetric part. Having determined R all
particles can be restricted to the rigid transformation of the original positions
by changing their position to

pd
i,rigid = R(po

i − po
cm) + pd

cm (7.11)

7.6 Registration algorithm

An overview of the registration algorithm is given in algorithm 3. The search
for a source mesh deformation in which the source and reference surfaces are
matched while interior vertices are at equilibrium is based on a gradient descent
type approach. In each iteration of the registration algorithm the total force,
T(U), acting on the source shape is calculated as T(U) = R(U) + F(U). Each
entry in this vector is used to update displacements (Ui ← Ui + δ ·Ti) with a
maximum displacement change of ∆U,max. Note that algorithm 3 does not cover
the rigid part of the registration. When the registration is restricted to rigid
motion as explained in section 7.5 the interior forces are not computed. Instead
all particles are just iteratively displaced along their external force vectors and
in each step subsequently fitted to a rigid transformation.

The scaling factor γ (Eq. (7.1)) is iteratively increased by multiplication
with constant factor ∆γ > 1 whenever T(U) is approaching an equilibrium, i.e.
when max(||Ti||) < T1. The algorithm terminates when all interior vertices are
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at rest and increasing γ does not increase max(|Ri|) at which point all surface
vertices of the source mesh have been registered to the surface of the reference
mesh. This leads to the termination criterion max(|Ti|) < T2.

Algorithm 3: Overview of our FEM-based registration algorithm

Let source organ shape be represented as a tetrahedral mesh with
original vertex distances φS(p

o
i ) known

Let reference organ shape be represented as a Euclidian distance field φR

Let β, τ , λ, and µ be known and constant
Let all vertex displacements U be initialized to zero
γ ← γ0
repeat

Calculate external forces R(U) from (7.2), (7.3) and (7.1)
Evaluate internal forces F(U) using the FEM
Calculate resulting force T(U) = R(U) + F(U)
Update displacements Ui ← Ui + δ ·Ti, with a maximum
displacement change of ∆U,max

if max(|Ti|) < T1 then
γ ← γ ·∆γ

until max(|Ti|) < T2 ;

7.6.1 Implementation

Compute intensive parts of the proposed registration method was implemented
on the GPU using the programming framework CUDA. The GPU implemen-
tation of the TLED algorithm {1} is similar to the implementation presented
by Taylor et al. [135]. As the internal forces in the FEM are calculated per ele-
ment the calculations in the TLED model can be massively parallelised. When
accumulating forces from elementwise internal force computation, care must be
taken to avoid write conflicts. Our solution is to associate four write indices
to each tetrahedron which enable us to know where to store the force contri-
butions in elementwise kernels. A per-vertex kernel is subsequently responsible
for addition of force contributions.

For evaluation of the expressions of the type max(|Ti|) < T , a kernel has
been written which inspects a Ti value and stores the value false in a fixed
global memory position if |Ti| > T . Before invocation of this kernel on all force
vectors, true is written to the particular memory position, and if it is still true
after all kernels have terminated the criterion max(|Ti|) < T is fulfilled.

The computation of an optimal rotation matrix in the rigid transformation
model has been implemented on the CPU. For the polar decomposition the
”newmat” matrix library2 was used.

2newmat can be found at http://www.robertnz.net/nm_intro.htm
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7.7 Evaluation

As an investigation of the versatility of the registration method, a number of
registration experiments have been conducted. Below the result of some of these
experiments will be presented. The running times reported below are measured
on an NVIDIA Quadro FX 5600 graphics card in a computer with an Intel core
2 6400 CPU.

7.7.1 Data sets

Modelling wax phantom

To evaluate the performance of the proposed registration method when regis-
tering meshes of an object that has undergone a bending motion, we performed
experiments using a modelling wax cylinder phantom. The phantom was CT-
scanned in three configurations: (a) straight (b) bent approximately 45 degrees
and (c) bent 90 degrees. The phantom surface was manually delineated. Seven
lead markers were positioned on the surface of the phantom for evaluation pur-
poses - see figure 7.3.

Figure 7.3: The wax cylinder used in the validation experiments. Left: three
different configurations (1) to (3) of the vax cylinder (reconstructed surface).
Right: photographs of the phantom.

The following parameters were used for the registration algorithm: β = 0.01,
γ0 = 1000, λ = 5 kPa, µ = 10 kPa, ∆γ = 1.03, ∆U,max = 0.005 mm, τ = 5 mm,
δ = 0.01, T1 = 30 kN, and T2 = 3 kN.

Prostate data set

To evaluate the algorithm on actual morphology acquired in vivo, we registered
two manually delineated prostates from successive MRI scans of a prostate can-
cer patient. As no ground truth about the deformation between the two con-
figurations (a) and (b) of the organ is available, an evaluation was performed
based on inverse consistency of the resulting transformation. For prostate reg-
istration parameters were set as above with the following exceptions: λ = 0.33
MPa, µ = 3.3 kPa, and ∆γ = 1.07.

Cervical cancer BT MR image

We have tested the proposed registration method on organs delineated on
two MR images that have been acquired in connection with cervical cancer
brachytherapy treatment - see figure 7.4. Parameters used were identical to the
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ones used on the prostate data set. The meshes will be referred to as configu-
ration (a) and (b) respectively. Before creation of meshes the two images were
rigidly aligned based on a manual landmark match on the pelvic bone.

Figure 7.4: Visualisation of tetrahedral meshes (a) and (b) generated
from delineations of organs on two MR images acquired in connection with
brachytherapy of cervical cancer. Green: bladder, red: uterus, blue: sigmoid
colon, and yellow: rectum.

7.7.2 Results

Modelling wax phantom registration

A mesh consisting of 6034 tetrahedra was constructed from configuration (a) of
the phantom cylinder and registered to configurations (b) and (c). The two reg-
istrations were completed in 9 seconds and 17 seconds respectively. The results
are shown in figure 7.5. The marker positions were expressed in barycentric
coordinates on an associated surface triangle and tracked to the final deformed
configuration of the mesh. For each marker a registration error was calculated
as the length of the difference vector between the registered marker position

Figure 7.5: Iterative registration of a modelling wax cylinder from a straight
configuration to two configurations with different degrees of bending (top and
bottom respectively). The leftmost images depict the initial source mesh config-
urations with the reference mesh overlaid transparently. The rightmost images
depict the final deformation. Intermediate steps in between show every 1000th
iteration (top) or every 2000th iteration (bottom). A chequerboard pattern has
been mapped to the surface for easier movement tracking {2}{3}{4}.
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Figure 7.6: Two-way registration of two prostate meshes obtained from suc-
cessive MRI scans of a prostate cancer patient. The leftmost images depict
the initial configurations of the source mesh with the reference mesh overlaid
transparently. The rightmost images depict the final deformation. Intermediate
steps in between show every 1000th iteration {5}.

and the corresponding marker positions in the reference mesh. For the registra-
tion from configuration (a) to configuration (b) the initial error was 14.2 mm
± 12.7 mm (average ± std. dev.). After registration the error was reduced to
1.33 mm ± 1.39 mm. When registering configuration a to configuration c the
error was reduced from 26.9 mm ± 24.8 mm to 2.03 mm ± 1.03 mm.

7.7.3 Prostate registration

From the prostate delineations in two MRI datasets meshes were created con-
sisting of 49005 (a) and 50697 (b) tetrahedra respectively. Two registrations
were made: from (a) to (b) and (b) to (a). The running times of the two
registration were 20 seconds and 28 seconds respectively. The results are shown
in figure 7.6. For 5000 randomly selected points inside prostate configuration
(a) registration consistency errors were evaluated by transforming the point
from configuration (a) to configuration (b) and back. The average inverse con-
sistency errors were calculated as the average length of each vector between the
initial and final points. The average obtained errors were 0.955 mm ± 0.469
mm (max = 2.62 mm). This should be seen relative to the registration dis-
placements of these same points: 6.25 mm ± 2.83 mm ( max = 16.4 mm ). The
distribution of the inverse consistency errors can be seen in figure 7.7. As the
inverse consistency error can be biased, it can only be used as an indication of
accuracy. To adequately evaluate the performance of the proposed method for
prostate registration, a larger study must be made involving known markers
that can be used for validation.

7.7.4 Registration of female pelvic organs

In the following registration of organs from repeated MR acquisitions of the
female pelvis is validated by visual inspection of the final result as well as the
movement of the organ surface during registration. This is far from sufficient
for a thorough examination of accuracy and/or robustness of the method but
serves as an initial exploration of possible uses for registration of pelvic organs.
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Figure 7.7: Inverse consistency errors. Left: distance from source shape surface
to surface of reference shape. Middle: Magnitude of deformation found by the
registration. Right: Distribution of consistency errors 2 mm below surface. All
measures are in millimetres.

Registering the uterus

Registration of the uterus from configuration (a) to (b) can be seen in figure
7.8. Based on visual inspection of the resulting registered surface, we find the
registration quite successful. However for this particular case a rigid registra-
tion might be sufficient to achieve sufficient accuracy. The registration took
approximately 1 minute for a mesh size of 4529 vertices and 21107 tetrahedra.

Figure 7.8: Registration of the uterus from configuration (a) to configuration
(b). The source shape is shown in red and the reference shape in transparent
grey. Every 3000th iteration is shown.

Registering the sigmoid colon

The sigmoid colon may deform to a degree where a rigid registration isn’t
sufficient. With regards to the sigmoid this case is quite well posed because
the delineation produces a tubular structure. This is in general not the case
as the sigmoid may twist so much that it is hard to automatically identify
a tubular structure from the contours. Motion of the organ surface during
registration from (a) to (b) can be seen in figure 7.9. Notice that the source
surface intersects itself during registration. This is of course not acceptable.
In this case the self-intersection resolves itself during further registration. The
problem of self-intersections will be discussed further in section 7.8. Initiating
the registration with a rigid registration (as described in section 7.5) solves
the problem of self-intersection in this particular case (see figure 7.10). The
registration took approximately 1 minute for a mesh consisting of 3443 vertices
and 14564 tetrahedra when using only the elastic model. Using the rigid model
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for the initial match saves 20 seconds of that time.

Figure 7.9: Registration of the sigmoid colon from configuration (a) to con-
figuration (b). The source shape is shown in red and the reference shape in
transparent grey. Every 3000th iteration is shown. Arrows indicate where
self intersection occurs.

Figure 7.10: Registration of the sigmoid from configuration (a) to configu-
ration (b) using first a rigid motion model followed by the non-linear elastic
FEM. The source shape is shown in red and the reference shape in trans-
parent grey. Every 200th iteration is shown for the rigid motion (the first 8
steps) and every 3000th iteration for the deformable part.

Registering the rectum

For the rectum difference in filling means that configuration (b) is wider than
(a). As we do not wish to register the rectum content, meshes are generated
only for a wall of 6 mm or less below the surface. The value of 6 mm is a
compromise chosen as a consequence of our implementation of the mesh gen-
eration method which needs the wall size to be at least double the BCC grid
distance. Having a thinner wall requires a smaller tetrahedron size and thus
longer registration time.
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Initial attempts of registering the rectum from (a) to (b) without initial
rigid motion were unsuccessful and as a consequence of this the motion was
restricted to be rigid until the shapes were estimated to be rigidly aligned by
visual inspection. After this the deformable registration proceeded as in the
previous registration experiments. The registration is visualised in figure 7.11.
Despite the rigid part the registration still fails because the bladder wall is
attracted to the wrong side of the reference surface. Registration of the rectum
from (b) to (a) is shown in figure 7.12. This time the registration is more
successful.

Figure 7.11: Registration of the rectum from configuration (a) to configu-
ration (b). The source shape is shown in red and the reference shape in
transparent grey. An arrow indicates where self intersection occurs. The
arrow indicates an area of the rectum wall that is attracted towards a wrong
destination. Every 3000th iteration is shown for the FEM based registration
and every 200th iteration for the rigid part (the first 19 steps shown).

Registering the bladder

For the bladder meshes shown in figure 7.4 our registration method does not
work well. In this case the main problem is our mesh generation method which
is not well suited for generating meshes for this delineation without connecting
opposite bladder walls. In trial runs of the method on other bladder delineations
where the bladder volume changed a lot we often ran into problems with either
self-intersections (registering from high to low volume) or that too large forces
were needed making the system unstable (registering from low to high volume).
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Figure 7.12: Registration of the rectum from configuration (b) to configu-
ration (a). The source shape is shown in red and the reference shape in
transparent grey. Every 3000th iteration is shown for the FEM based regis-
tration and every 200th iteration for the rigid part (the first 20 steps shown).

In the latter case the risk exists that a tetrahedron will be inverted causing the
registration to ”explode”.

7.8 Discussion

Considering the accumulation of inherent errors such as contouring errors, finite
image resolution etc., we are quite satisfied with the accuracy achieved in the
phantom experiment. With respect to the prostate registration we find a mean
inverse consistency error of less than 1 mm very acceptable as well. However as
the ground truth in the latter experiment is unknown, this does not necessarily
imply that the actual error is this low. Clinical studies including patients with
implanted fiducial markers or other consistent anatomical landmarks within
the segmented organs are needed to further evaluate the registration accuracy.
The magnitude of errors introduced in the contouring process has not been
investigated for any of the reported registration experiments.

The proposed registration method includes a number of free parameters
that must be defined initially. The algorithm is quite robust w.r.t. the choice
of most of these parameters. Note however that when different types of tissue
are deformed, it is necessary not only to change the material parameters λ and
µ but also to adjust ∆γ which governs rate of increase of driving forces during
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the registration process.

By incorporating a physically consistent deformation model for the transfor-
mation of vertex positions, it is possible to specify measured material properties
for the morphology being registered. When using different parameters for e.g.
tumour tissue and surrounding healthy tissue, we can furthermore register non-
homogeneous materials. Again, it is left for further studies to investigate this
effect on the registration accuracy.

The introduction of the force term B was motivated by the inability of the
distance field term to lead the surface nodes into narrow boundary concavities.
An alternative to introducing the B term would be using the gradient vector
flow approach of Xu and Prince [149]. Based on a diffusion of gradient vectors,
their approach creates a vector field which points towards the surface but also
points into narrow concavities.

As exemplified with the above rectum and bladder cases our method does
not in general work with organs that empty and fill, i.e. cases where we model
organ walls as ”solid” structures. Based on our experience using the registration
method so far we have identified three ways that the proposed method can fail:

1. Too large volume difference between organ shape requires stretching or
compression of tetrahedra to an extent that induces a risk of inverted
tetrahedra.

2. The organ surface deforms to intersect itself during registration.

3. The organ surface is attracted towards a part of the surface that we know
is not correct.

The first of these issues is perhaps the most problematic as it is linked to
the discretisation in the biomechanical model. Using larger tetrahedra would
increase the stability but would restrict us from having high detail in our organ
meshes. Possibly a graded mesh generation (different tetrahedron sizes inside
the organ) would alleviate the problem somewhat. At present the conclusion
must be that the proposed method is only suitable for registering organs that
do not change volume too much.

Standard ways of avoiding self-intersection in physical modelling is to in-
clude a collision handling step in the simulation loop. A possible approach is de-
scribed by Fisher and Lin in [43]. Here distance fields are continually deformed
according to object deformation which allows for easy collision detection.

As our force calculations only use information from the vicinity of a partic-
ular vertex it is not straightforward to determine whether a particle is attracted
towards the ”right” surface. When registering solid objects with little volume
change this is usually not a problem as the regularisation performed by the
biomechanical model will ensure that opposite surfaces in the source mesh will
also eventually be mapped to opposite surfaces in the reference configuration.
For hollow objects the problem can be alleviated by weighting the inflation force
term B higher. A solution we are considering is to allow a user to intervene
in the registration by interactively selecting landmark positions on source and
reference surfaces to guide the registration. The philosophy here would be that
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the user is not required to give exact point correspondences but just specify
extra forces to aid the registration. Like the force terms A and B these forces
would then slowly disappear as surface match is approached.

Due to the nature of the proposed algorithm it can easily be parallelised and
implemented e.g. on a GPU to achieve high performance. We find execution
times in the order of 20-60 seconds acceptable for potential clinical use. Due to
the parameter ∆U,max, which limits the magnitude of displacement changes in
each iteration, the running time is highly dependent on the initial magnitude of
deformation between source and reference shapes. Thus registration time does
vary from case to case.

The registration time reported above does not include the time spent on
calculation of distance fields, which in the currently used implementation can
be significant. Fortunately GPU based distance field computation has been
investigated by several parties which have resulted in e.g. the rasterisation based
methods found in [133] and [39].

The problems faced when attempting to use the method presented in this
chapter for bladder registration has inspired us to develop a new method for
registration of the bladder, which instead of volumetric modelling of the bladder
wall is based on a membrane model. This method will be presented in the next
chapter.



Chapter 8

Surface membrane registration

8.1 Introduction

The finite element based elastic registration method introduced in the previous
chapter is not well suited for cases where the organ being registered undergoes
large changes in volume. Such cases occur especially when registering organs
that empty and fill like intestines or the bladder. In these situations we are
however not very interested in registration of interior morphology. As e.g.
bladder content present in one image will be gone in another, a point matching
of this filling to positions in an empty bladder does not make much sense. What
we are interested in registering in this case is the bladder wall.

As the bladder can drastically change its shape between two image aquisi-
tions we cannot rely on e.g. curvature correspondences for creating a bladder
surface mapping. In this chapter a method for creating a match of surface mor-
phology between an organ segmented in two images is presented. This method
is based on minimising a surface membrane energy. Furthermore it is possible
to guide the registration by specifying landmark point correspondences.

8.2 Related work

The registration of organ surfaces has attracted the attention of multiple au-
thors in the field of radiotherapy. Also, many of the methods we will refer to
in this section have been developed for registration of cortical structures in the
brain.

Kaus et al. [63] propose an automated surface registration model in which a
rigid registration of a triangle mesh to a binary image is followed by a non-rigid
deformable registration model that is inspired by the active contour models of
Kass et al. [61]. This model has been applied for registration of lung, liver and
prostate [62], where displacement of organ surface vertices is interpolated to
the interior using radial basis functions.

Many methods for finding point correspondences involve creating a mapping
from the object surface and onto a sphere. This is always possible if the organ
surface is a genus zero surface which means that it must be closed, smooth, and
have no self-intersections or handles. Brechbühler et al. set up a constrained
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optimisation problem for mapping a cuberille1 onto a sphere [15]. To get a sen-
sible initial mapping for optimisation they simulate a heat conduction between
a hot and a cold pole. After optimisation the spherical parameterisation is ex-
panded as a series of spherical harmonic functions. Kelemen et al. utilised this
approach for creating a model for brain segmentation based on principal com-
ponent analysis [64]. The work by Brechbühler et al. was improved by Quicken
et al. who solved the parameterisation problem for general triangulated surfaces
using a multiresolution approach [114]. Also Price and Moore have extended
the approach of Brechbühler et al. to triangular surfaces [113]. After the spher-
ical parameterisation and creation of the spherical harmonic series expansion
the source triangle mesh sphere is rotated to align with the reference. This
is done by matching the first order ellipsoids from the series expansion guided
by a few point landmarks. Fischl et al. were among the first to perform brain
registration in spherical space [42]. Alignment of folding patterns of the cortical
surface is performed by minimising the squared difference in convexity between
a new subject and an average convexity of a population previously registered.
The measure of convexity is formulated in the spherical space. Their spherical
parameterisation [41] was based on minimising squared changes in distances be-
tween each vertex in a triangular mesh and a neighbourhood of vertices around
it. Also triangle flipping was penalised using a term calculated from the ori-
ented area of triangle faces. Their approach is somewhat similar to the internal
energy minimisation we propose in this chapter. Before projection to a sphere
and minimisation of the above terms, the cortex is ”inflated” while the surface
is held together using a spring-mass system (more on this below).

Based on the work on creating a conformal mapping between any genus zero
surface and a sphere [1] [53], Haker et al. map two delineations of a prostate
to a sphere for registration [54]. Using the same method Xiong et al. register
bladder surfaces [148]. Given three point matches, the transformation between
two conformal mappings is uniquely determined. Gu et al. present another
method for creating conformal mappings [47] and use this for registering meshes
of brains guided by landmark curves.

In the current work we utilise a 2D grid representation of an object surface.
In such a grid each grid point contains a 3-dimensional vector describing a
position on the object surface. This kind of representation was introduced
by Gu et al. who call these geometry images [46]. Their method for creating
geometry images was based on cutting a network of edges between triangles
and mapping the cut onto the image boundary. Joshi et al. used a method
similar to this for mapping a brain surface onto a unit square [60]. In this
parameterised space brain surfaces were registered based on landmark lines
and linear elasticity. Praun and Hoppe present another method for creating
geometry images [112]. They create a spherical parameterisation by minimising
a stretch based measure and subsequently map this parameterisation onto a
polyhedron that is unwrapped to form a square.

As will be presented later we use a method similar to that of Fischl et al. [41]

1a cuberille is a surface consisting of square faces separating the foreground and background
voxels of a binary grid
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for projecting a closed surface onto a sphere. The method is physically moti-
vated and simulates the ”inflation” of a sphere inside an elastic membrane. The
membrane model used is a spring-mass system [13] which is a simple model for
animation of deformable objects which is used in many contexts - e.g. surgical
simulation [96] and computer games [58]. The model is based on point masses
connected by massless springs. When springs are stretched or contracted a
restoring spring force is generated which is proportional to the change in length.
The idea of using a spring-mass system in the process of creating a spherical
parameterisation was first suggested by Kent et al. [65]. Matuszewski et al. have
used spring-mass systems for image registration [91]. Here the external forces
driving the deformation were based on the cross-correlation similarity measure.
Söhn et al. have also used a spring-mass model in image registration [127]. Here
the role of the spring-mass system was regularising the displacements of a set
of ”featurelets” that each were guided by anatomical features in a subvolume
of the image surrounding the featurelet.

8.3 An overview of the proposed method

In the following we assume that the organs to be registered have been contoured
in both source and reference images. These segmentations are furthermore
assumed to be represented as triangular surface meshes. A standard way to
achieve this is to rasterise segmentation contours into a binary mask and use the
marching cubes method for creating the triangle mesh [81]. Another possibility
is applying contour stitching techniques [5]. We have used our implementation
of the isosurface stuffing method (see section 7.2) for generating tetrahedral
meshes [75] and retrieved a triangle based surface mesh by simply taking those
triangle faces from the tetrahedra which have all three corners on the organ
surface.

The main idea in the surface registration method presented in this chapter
is to parameterise the surface of the reference organ in a 2D space. This results
in a position mapping between (u, v) coordinates in this two-dimensional space
and (x′, y′, z′) coordinates in physical space. The (u, v) space is represented
as an ordinary two-dimensional grid (a geometry image) allowing us to quickly
look up a position in physical space from a (u, v) coordinate and also allowing
simple linear interpolation to be made. From the geometry image derivatives
of position with respect to the parameters u and v are computed and stored
in similar maps. As an initial step both the source and reference surfaces are
projected onto a sphere. As will be described below this is done by simulating
a sphere inflation inside the respective surface while modelling the surface as
a rubber membrane. Positions on the spheres are mapped to (u,v)-coordinates
using polar coordinates. From the (u, v)-mapped reference triangle mesh a
geometry image is generated. The (u, v)-mapping of source mesh vertices found
by sphere inflation is used as an initial mapping into the geometry image.

Registering the source surface to the reference surface then amounts to optimis-
ing the mapping from vertices in the triangular mesh representing the source
surface into the (u, v)-space representing the reference surface. The optimal
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Figure 8.1: An overview of the presented surface matching method. The red
box contains the components constituting the transformation between source
and reference shape. The blue box emphasises the optimisation part.

mapping sought for is minimising the potential elastic energy in a membrane
model of the source surface while the vertices of this surface are constrained
to move on the reference surface. For an overview see figure 8.1. The entire
transformation (red box) between shapes is constituted by the reference geom-
etry image and the (u, v)-map from source mesh vertices to (u, v)-positions in
the geometry image. The object of the optimisation (blue box) is to optimise
this (u, v)-mapping. For this the source mesh of original positions, the geome-
try image, and derivatives of the geometry image with respect to u and v are
needed.

The membrane model used in the current work is a spring-mass system.
Energy minimisation is performed iteratively in a gradient descent-like manner.
For each source mesh vertex a force which leads to a lower potential energy is
computed in 3D space and projected onto the tangent space of the reference
surface at the current (u, v)-position. The projected force vector is then used
to move the (u, v)-coordinates of the vertex. Besides the membrane energy
minimisation, landmark point matches can be specified in 3D space and included
in the optimisation via a landmark matching force term.

Our main contribution in this work is the idea of using geometry images for
constraining the positions of source vertices while formulating the energy term
to optimise in Cartesian 3D space. To our knowledge ours is the only method
based on this approach. We believe the approach is more intuitive than the
optimisation of stretch or curvature based measures in the parameterised 2D
space used in methods mentioned in the previous section. Furthermore our
approach allows us constrain surface particles during minimisation of internal
energy in any elastic model as long as the minimisation can be performed by
iterative displacement of vertex positions.
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8.4 Creating surface maps

The 2D parameterisation of an organ surface is based on projecting the trian-
gular mesh representing the organ onto a sphere and parameterising based on
spherical coordinates. As all mesh vertices are on the sphere surface the radial
component r of the spherical mapping is constant and thus redundant, creating
a representation of surface points in a two-dimensional space. As illustrated
in figure 8.2 the azimuthal angle φ ∈ [0, 2π] is mapped to u ∈ [0, 1] and the
elevation angle θ ∈ [−π, π] is mapped to v ∈ [0, 1].

Figure 8.2: Going from spherical coordinates to a two-dimensional space

8.4.1 Projecting organ surface onto a sphere

As discussed multiple methods exist for mapping a surface mesh onto a sphere.
We have chosen to use a physically motivated model in which a sphere is ”in-
flated” inside the organ and surface vertices are restricted to stay outside this
sphere. This choice is mostly motivated by the fact that we had already imple-
mented this model at an earlier time. A spring-mass system is applied on the
organ surface to ensure that surface vertices stay connected during the sphere
inflation. Verlet integration [58] is used for evolving the model in time. The
sphere inflation is continued until all surface vertices are positioned at a dis-
tance from the sphere centre corresponding to the sphere radius - see figure
8.3.

Figure 8.3: Projection of a bladder surface onto a sphere. The sphere radius
is increased until all vertices are positioned on the sphere surface {6}.

Having subtracted the sphere centre from a surface vertex position and
normalised in the radial direction so that the position is mapped to the unit
sphere, the coordinates ui and vi for vertex i are computed from sphere surface
coordinate (x̄i, ȳi, z̄i, ) by:
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ui =
arctan(x̄i/ȳi)

2π
+ 1/2 (8.1)

vi =
arccos(z̄i)

π
(8.2)

8.4.2 Creating the geometry image

The surface projection described above creates a mapping from surface vertices
to a position(u, v) in the parameterised space. We want to create a map al-
lowing fast determination of which physical point (x, y, z) on the organ surface
corresponds to a given parameter coordinate (u, v). As described below our ap-
proach is to sample the (u, v) space [0, 1]× [0, 1] in a regular grid. This allows us
to evaluate any (u, v) position by doing bilinear interpolation between sampled
values.

It is not straight-forward to create the geometry image by simply rasterising
surface triangles into the (u, v) map because the space is non-linear - especially
near the poles of the sphere (see figure 8.4 right). Inspired by work on ray trac-
ing [126] and collision detection [85] we instead send a ray from the sphere centre
along the line determined by the angles corresponding to a particular combina-
tion of u and v and compute which triangle this ray will intersect - see figure 8.4
left. Ray-triangle intersection testing is accelerated using a bounding volume
hierarchy (BVH) [126, chapter 9]. In this technique 3D space is partitioned in a
tree of volumes (we use spheres) each bounding an entire subtree. Intersection
testing is done by traversing the tree, avoiding intersection test on triangles
inside spheres determined not to be hit by the ray. It is furthermore possible to
avoid traversing the BVH in many cases, as rays corresponding to neighbouring
positions in the map often hit the same or neighbouring triangles [85]. Once
a ray-triangle intersection is determined, barycentric coordinates are computed
and used to interpolate between the original positions of the surface triangle
vertices. Due to the singularities near the poles, when v = 0 or v = 1 all values
for u will result in a mapping to the same position (the position of the pole).
To avoid over-sampling geometry mapped near the poles, no rays are sent for
v < 0.005 or v > 9.995. Instead the interval v ∈ [0.005, 9.995] is stretched to
cover v ∈ [0, 1] in the geometry image.

Following the creation of the geometry image, second order finite difference
approximations are used to compute derivatives of the 3D position with respect
to u and v respectively. Looking up neighbouring values when evaluating the
approximations is handled as illustrated in figure 8.5. In the event that the u
component is outside the interval [0, 1] it can be transformed into the interval
by ”wrapping” as shown in the figure. If v /∈ [0, 1] the u coordinate must be
mirrored around the edge and the v coordinate is transformed by vnew = 3/2−v.
These precautions reflect the spherical coordinate system forming the basis of
our (u, v) map and allow us to extend the mapping to a periodic, continuous
function of R2. Note that because we have pre-calculated our u and v derivatives
in the case where u ∈ [0, 1] and v ∈ [0, 1] we must take this into account when
looking up derivatives in the case v /∈ [0, 1]. This is done by negating the
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Figure 8.4: Left: Casting rays from the sphere centre to evaluate the bound-
ary position corresponding a given (u, v) coordinate (half of the sphere has
been removed for illustrative purposes). Right: Visualisation of how the
triangles of a bladder surface mesh are positioned after a projection onto the
(u, v) space

derivative because u and v axes are inverted (see figure 8.5).

Figure 8.5: Left: Handling of boundaries in the (u, v) maps achieving con-
tinuity. Right: The position map tiles as shown. Arrows indicate direction
of u and v axes. Colours in the map encode positions, showing x,y, and
z-components in the red, green, and blue color components respectively.

8.5 Optimising vertex (u, v) mapping

As result of the above we now have a 2D map in which any position corresponds
to a position on the surface of the reference organ. Let us denote this map by
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p(u, v) : R
2 7→ R

3. Furthermore we have mappings from (u, v) coordinates to
derivatives in u: du(u, v) : R

2 7→ R
3 and v: dv(u, v) : R

2 7→ R
3.

Using the geometry image we can move source vertices around in the (u, v)
space and are thus implicitly moving the vertices on the reference organ surface.
The initial mapping generated by sphere inflation is not scale preserving, so
we need to shift source vertex from its initial (u, v) position to a position in
which the system is at rest as defined by some elastic model. In the following
a spring-mass model is used, but the parameterisation presented here can be
incorporated into any model that relies on iterative displacement of vertices for
optimisation.

8.5.1 The spring-mass model

We are interested in distributing the vertices of the source organ surface mesh
over the surface of the reference organ. This is done by searching for a point
distribution minimising the potential energy in a spring-mass system. Each
vertex is connected to a number of neighbours by Hookean springs (springs
that generate a restoring force that is linearly proportional to the displacement
from a rest length). Denoting the number of vertices by M and the number of
neighbours of vertex i by Ni, the energy we wish to minimise can be written as

E =
1

2

M
∑

i=1

Ni
∑

j=1

kij(cij − oij)
2 (8.3)

where cij is the distance between vertices i and j in the transformed configura-
tion, kij are spring constants, and oij is the distance in the original (untrans-
formed) state. The current neighbour distance (spring length) between i and j
can be found as cij = ||p(uj , vj)− p(ui, vi)||. The original (rest) length oij can
be pre-computed from the initial mesh.

One strategy for minimisation of the energy in (8.3) is to sum force contri-
butions from all neighbour springs to a vertex and displacing the vertex in the
direction of the resulting force. How this displacement is done in (u, v)-space
will be described below. In (x, y, z) space the resulting force for vertex i is
calculated by:

fi =

Ni
∑

j=1

kij(cij − oij)
p(ui, vi)− p(uj , vj)

cij
(8.4)

Our experience with this strategy is that there is a high risk that triangle
flipping will occur (that one or more triangles get inverted, facing their original
back side outwards). As a consequence we instead adopted another strategy
for calculating a force on vertex i. We find the neighbour m where the ratio
||p(um,vm)−p(ui,vi)||

cim
is largest and calculate the force as:

fi = kim(cim − oim)
p(ui, vi)− p(um, vm)

cim
(8.5)

Concerning what connectivity to use for the spring-mass system, there are mul-
tiple choices. I have used the set of vertices reachable from vertex i by following
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one, two, or three triangle edges (see figure 8.6 for an illustration of the one- or
two-step neighbourhoods).

Figure 8.6: The neighbourhood of vertex i shown in red consists of all vertices
reachable by following one or two triangle edges (shown in green or blue
respectively).

8.5.2 Landmark matching forces

As a supplement to the membrane energy minimisation, landmark correspon-
dences can be specified as a way of adding prior knowledge into the registration
process. Landmarks are positioned in physical 3D space and need not corre-
spond to any vertex in the source or reference meshes. In figure 8.7 our strategy
for landmark matching is illustrated. The red sphere represents landmark num-
ber k at position qsrc

k in source (x, y, z) space and the yellow sphere represents

the corresponding landmark at position qref
k in reference (x′, y′, z′) space. The

source landmark influences those source vertices that are positioned closer than
rl to qsrc

k in the undeformed source configuration (the sphere of influence is
illustrated in grey). Denote distance between source position of landmark k
and original position of source vertex i by loik , and the distance between ref-
erence position of landmark k and the deformed position of source vertex i by
ldik = ||qref

k −p(ui, vi)||. For each of the influenced vertices a landmark matching
force gik is computed as:

gik = w(ldik, l
o
ik)

qref
k − p(ui, vi)

ldik
, (8.6)

where the weighting function w is given by

w(a, b) =







0 if a < b
(a− b)Kw if 0 ≤ a− b ≤ 1
Kw if a− b > 1

(8.7)

Here Kw is a weighting constant that should be relative to the elasticity of the
membrane material. In figure 8.7 the influenced particles are blue or yellow. The
blue vertices are further away from the destination landmark than they were
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from the source landmark originally and thus attraction forces are calculated
from (8.6) and (8.7). The black particle is closer to the landmark than it
originally was (compare lengths A and B), and no force is calculated. Thus
landmark matching relies purely on attraction and not on repulsion.

Figure 8.7: Illustration of forces responsible for matching corresponding land-
marks from the source and reference surfaces. See text for an explanation.

8.5.3 Optimisation procedure

From (8.5) we compute a direction to displace vertex i in physical (x′, y′, z′)
space using a step size δ. To relate this displacement ti (= δfi) to displacement
si in (u, v) space, it is projected onto the derivative vectors du and dv:

si =

(

ti·du(ui,vi)
||du(ui,vi)||2

ti·dv(ui,vi)
||dv(ui,vi)||2

)

(8.8)

The denominator found in the components of si penalises large derivative vec-
tors thus compensating for the scale distortion of the geometry image. The
vector si is used to displace the (ui, vi) coordinate. An overview of the optimi-
sation procedure can be found in pseudo code in algorithm 4.

8.6 Interpolating surface registration to interior

As we would like to be able to transfer deformation of the registered organ to
a volumetric vector field, we must decide how to estimate deformation of the
interior based on surface displacements. To define a transformation of organ
interior we follow the approach presented in [89]. Here radial basis functions
(RBFs) are used for interpolating the computed displacements of the source
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Algorithm 4: Overview of the optimisation of the mapping of vertex
positions from source surface mesh to reference surface

input : Triangle mesh of source surface.
Triangle mesh of reference surface.
Step size δ, landmark matching weight Kw, landmark influence

radius rl and spring constants kij
output: The set of optimised (u, v) coordinates for vertices i = 1 . . .M
Compute geometry image p(u, v) of the reference surface (section 8.4)
Compute initial (u, v) coordinates for all source vertices (section 8.4)
generate neighbourhoods of all source mesh vertices
repeat

for all source vertices i = 1 . . .M do
Evaluate spring force fi using (8.5)
Compute position displacement ti = δfi
Project ti onto position derivatives using (8.8) to get si
Displace the (ui, vi) coordinates by adding si

until Potential energy E (8.3) and landmark position errors have
converged ;
return (u, v) coordinates

organ surface to the interior. In the following this technique is described both
for general interpolation and in particular for interpolating displacements. As
our triangular meshes also have description of the interior based as a tetrahedral
mesh, we have a choice of evaluating the interpolation function at vertices in
the tetrahedral mesh or at all positions in a uniform grid.

8.6.1 Interpolation by radial basis functions

Assume that the value of a scalar valued function F : R3 → R is known in M
distinct discrete points xi in three dimensional space. Then RBFs provide a
means for creating a smooth interpolation function of F in the whole domain
of R3. This function is written as a sum of M evaluations of a radial basis
function g(ri) : R → R. Here ri is the distance between the point x = (x, y, z)
to be evaluated and xi:

F (x) =
M
∑

i=1

aig(||x− xi||) + c0 + c1x+ c2y + c3z, x = (x, y, z) (8.9)

where ai are scalar coefficients. The last four terms constitute a first degree
polynomial with coefficients c0 to c3. This describes an affine transformation
which cannot be realised by the radial basis functions alone. From the M
known function values F (xi, yi, zi) = Fi we can assemble a system of M + 4
linear equations:

GA = F (8.10)
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where F = (F1, F2, . . . , FM , 0, 0, 0, 0), A = (a1, a2, . . . , aM , c0, c1, c2, c3) and G
is an (M + 4)× (M + 4) matrix :

G =

































g11 g12 • • • g1M 1 x1 y1 z1
g21 g22 • • • g2M 1 x2 y2 z2
• • • • • • • • • •
• • • • • • • • • •
• • • • • • • • • •

gM1 gM2 • • • gMM 1 xM yM zM
1 1 • • • 1 0 0 0 0
x1 x2 • • • xM 0 0 0 0
y1 y2 • • • yM 0 0 0 0
z1 z2 • • • zM 0 0 0 0

































(8.11)

Here gij = g(||xi − xj ||). A number of choices for g will result in a unique
solution of the system [2]. We use the shifted log function:

g(t) =
√

log(t2 + k2), k2 ≥ 1 (8.12)

with k = 1. Solving (8.10) for A gives us the coefficients to use in (8.9) when
interpolating between known values.

8.6.2 Interpolating displacements

The RBF interpolation method can be used for interpolating displacements to
the interior of the registered organ. Let the initial positions of surface vertices
be denoted xi = (xi, yi, zi) and the displacements of these vertices as computed
in the registration by ui = (uxi , u

y
i , u

z
i ). Then three systems are set up

GAx = (ux1 , u
x
2 , . . . , u

x
M , 0, 0, 0, 0)T (8.13)

GAy = (uy1, u
y
2, . . . , u

y
M , 0, 0, 0, 0)T (8.14)

GAz = (uz1, u
z
2, . . . , u

z
M , 0, 0, 0, 0)T (8.15)

where G is found from (8.11). Solving for Ax, Ay, and Az involves a single
matrix inversion and three matrix-vector multiplications and gives us the coef-
ficients for interpolating displacements in all three directions by the expression
(8.9) {7}.

8.7 Evaluation

In the following we present the initial evaluation of the proposed surface regis-
tration method. The results of four registration experiments are reported:

1. Registration of a modelling wax cylinder from straight configuration (a)
to a 45 degree bend (b).

2. Registration of a modelling wax cylinder from straight configuration (a)
to a 90 degree bend (c).
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3. Registration of a repeated delineation of a bladder showing a large change
in volume

4. Registration of a repeated delineation of a bladder doing a bending motion

For all registration experiments the same spring constant of k = 10 N/m was
used for all springs, and the landmark matching constant was also set to Kw =
k. A landmark influence radius of rl = 2.0 cm and a step size of δ = 2.5
was used. Unless otherwise stated the 2-step neighbourhood has been used for
spring generation. The generated geometry images had a resolution of 400 ×
400. Convergence of the optimisation was established manually by inspecting
a visualisation of the surface registration as well as the potential energy and
landmark error distance.

8.7.1 Modelling wax cylinder registration

The modelling wax phantom data set used for testing the registration method
is the same as presented in section 7.7.1. The triangular meshes being regis-
tered consist of the surface triangles of the tetrahedral meshes used there. To
guide the registration four landmarks have been placed on the surface of each
mesh. The positioning of these points can be seen in figure 8.8. The mesh of
configuration (a) consists 1434 triangles, configuration (b) of 1380 triangles,
and configuration (c) of 1438 triangles.

Figure 8.8: Positioning of landmarks used to constrain the surface registration
of the modelling wax cylinder. The shown meshes are configurations (a), (b),
and (c) respectively

Registering configuration (a) to (b)

For the registration of cylinder (a) to (b) the entire registration process (includ-
ing parameterisation of both objects and geometry map generation) took 1.5
minutes. Figure 8.9 shows the combined landmark matching and spring relax-
ation process. It can be seen that during optimisation the surface is displaced
over the top end of the cylinder. Visual comparison of the optimized surface
match and the undeformed source shape confirms that the surface has been
shifted into place. Figure 8.10 shows linear interpolation between the source
shape and the deformed source both before and after the landmark matching
and minimisation of potential energy. It can be seen that before optimisation
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Figure 8.9: Matching landmark constraints and minimising membrane energy
during the registration of wax cylinder configuration (a) to (b). The surface
is visualised for each 200 iterations. The triangle mesh is shown in red and a
chequerboard texture is shown to emphasise membrane stretching {9}. The
chequerboard layout on the final result must be compared with the layout on
the undeformed source cylinder (shown on the right).

the top end grows from the side of the straight cylinder and after optimisation
the surface registration correctly describes a bending motion.
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Figure 8.10: Registration from (a) to (b). Linear interpolation between
the source and deformed source shape (left to right). Top: after the initial
projection {8}. Bottom: after constrained energy minimisation. {10}

Registering configuration a to c

Attempts to perform registration of cylinder configuration (a) to (c) using the
2-step neighbourhood resulted in a flipping of a few of the surface triangles. For
this reason a 3-step neighbourhood was used instead. This induced a higher
computational burden meaning that the entire registration (2979 iterations)
took 20 minutes. Linear interpolation of the undeformed source to the initial
projection and optimised projection respectively can be seen in figure 8.11.
Again it can be seen that the failure of the initial projection to describe the
bending motion is alleviated during registration.

Figure 8.11: Registration from (a) to c). Linear interpolation between the
source and deformed source shape (left to right). Top: after the initial
projection. Bottom: after constrained energy minimisation.

8.7.2 Bladder registrations

As mentioned two cases were used when investigating the use of the proposed
surface registration method on bladders. These cases can be seen in figure 8.12.
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Figure 8.12: The two cases of bladder registration investigated: a case involv-
ing a large difference in bladder volume (red) and a case involving a bending
motion (green). Black lines show the surface triangulation.

Volume changing bladder registration

For the bladder showing a change in volume (registering the high-volume blad-
der to low-volume bladder) the initial projection performed by sphere inflation
introduced less distortion than in the wax cylinder registrations. However, as
figure 8.13 shows, the surface was stretched in the left and right sides of the
bladder. This was relaxed by energy minimisation. Guided by MR images
two landmarks were positioned next to the base of the urethra. The low vol-
ume bladder mesh consists of 1034 triangles while the high volume bladder
mesh consists of 2002 triangles. Figure 8.14 shows the interpolation between
the undeformed source and the optimised registration. The registration took
approximately 3 min.

Figure 8.13: Three steps in the minimisation of potential membrane energy
after initial surface projection in the high-to-low-volume bladder registration.

Figure 8.14: Interpolation between high and low volume configurations in
the high-to-low-volume bladder registration. Seen from the side compared to
figure 8.13
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Bending bladder registration

For the bladder case involving a bending motion we again used 2 landmarks
placed near the base of the urethra. The entire registration took three and
a half minutes (3000 optimisation iterations). The source mesh consisted of
2480 triangles. From figure 8.15 the difference can be seen in surface projection
before and after the optimisation process. In the initial projection (top row)
the base of the bladder is registered to another part of the bladder, while this
is corrected after optimisation.

Figure 8.15: Top: Linear interpolation between source and deformed
source after initial projection {11}. Bottom: Linear interpolation between
source and deformed source after constrained membrane energy minimisa-
tion.{12}{13}

8.8 Conclusion and discussion

In this chapter a method was presented for optimising the surface to surface
mapping of an organ that has been delineated in images from repeated 3D
acquisition. Specifically the intended use for the method is registration of blad-
ders. The key concept is the use of geometry images of the reference surface
for restricting source vertices to stay on the surface while the elastic potential
energy of a membrane model is minimised. Non-trivial boundary conditions
ensure continuity even as the (u, v) coordinates of a vertex is displaced to be
outside the geometry image domain.

Using spring-mass systems it is hard to accurately simulate the behaviour
of a real-life elastic material. The modelled behaviour is highly dependent on
the topology of the mesh used, and in particular the determination of suitable
spring constants is non-trivial. However, the registration results shown in the
previous section seem physically plausible. Problem caused by triangle flipping
might be avoided by introducing an triangle area based penalty as in [41]. As
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mentioned the use of geometry images in the way described here is not restricted
to spring-mass systems but is also applicable for e.g. finite element analysis of
membrane behaviour, as long as the minimisation of potential energy is based
on iterative displacement of vertex positions.

For interpolating the transformation of the surface to the organ interior
we proposed using radial basis functions. This choice of method is based on
the use case of bladder registration where we are not too concerned with the
transformation of the interior but are mainly concerned with achieving a smooth
transformation. However, once a surface to surface mapping has been obtained,
this mapping could constitute the boundary condition for a volumetric finite
element analysis of interior displacements as proposed in multiple references in
section 7.1.1.

A note is in order about the projection of forces onto position gradients
from the geometry image. This technique puts an upper limit on the size of
surface triangles relative to the curvature of the described reference shape. As
illustrated in figure 8.16 (a and b) too large distances between vertices may
cause projected spring forces to work in a wrong direction. An evaluation of
the effect on potential energy of moving along the projected force vectors may
help us detect these cases. The same problems exist for the landmark matching

Figure 8.16: a : Too low mesh resolution compared to the curvature of the
surface. The blue dots represent surface vertices in a 2D analogy. Black ar-
rows are forces to be projected onto surface tangent vectors (orange arrows).
The direction of force between two vertices is shown. For the leftmost of the
two vertices a projection of this force onto the tangent vector will work in the
opposite direction than intended. b : Here this problem is avoided because of
a higher mesh resolution. c: The problem exists for landmark matching too.
Two vertices influenced by the red source landmark are attracted towards
the corresponding yellow reference landmark. When projecting the result-
ing forces onto the surface tangent they will work in a counterproductive
direction.

with the proposed method. If the source and reference landmarks are too far
away after the initial projection we risk facing the problem shown in figure
8.16 (c), where the projection of landmark matching forces work in the wrong
direction. For this reason it is desirable that the landmarks are approximately
matched already during the projection - e.g. by finding a best-fit rotation of
inflated spheres possibly followed by interpolation in spherical 2D space.
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The surface matching method presented in this chapter has been designed
to be straightforward to parallelise in a SIMD fashion. All computations in
the initial surface projection and subsequent optimisation are performed in an
iterative, independent fashion. Thus to us it will be an obvious continuation
of our work to accelerate the method using GPU-based computation. Earlier
work shows that there is great potential for acceleration of spring-mass com-
putations using GPUs [96] [116], and as demonstrated in the previous chapter
more physically accurate models based on FEA can also be accelerated on this
platform. The most important future direction however is evaluation of the
method on a larger collection of bladder delineations to validate the accuracy
and robustness of the approach.
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Chapter 9

Future work

In the preceding chapters a number of suggestions have been made about future
improvements of the presented methods. In this section some of these sugges-
tions will be given a somewhat more elaborate discussion. Furthermore other
possible future directions will be mentioned - specifically a joint framework for
intensity and mesh based registration.

9.1 Combining mesh based and intensity based reg-

istration

As exemplified in figure 5.7 many existing intensity based registration methods
relying on local gradients of a similarity measure have difficulties in accurately
describing significant rotation and bending of entities (e.g. organs) between
two images. A common problem in this case is to ensure that the resulting
registration is physically plausible, i.e. that the registration describes the ac-
tual bending/rotation occurring rather than just introducing expansion in some
areas and shrinkage in others.

During the work presented in chapters 5–8 our scope has been directed
towards the future development of a general framework for deformable image
registration of two 3D images. The goal of this framework is to achieve the
following:

1. to take advantage of as much prior information as possible, i.e. when
registering images in which organs have already been segmented, we wish
to take this information into account. Also we wish to include information
from auto segmentation if possible (of e.g. bone structures in CT images).
Finally we wish to support using information about the physical properties
of our segmented volumes - e.g. that bones are rigid and that the bladder
is likely to change its volume.

2. to combine registration based on segmented shapes and registration of
image intensities outside shapes.

3. to support structural connections between shapes - e.g. that vertebra in
the neck are connected by discs, or that the rectum is connected to the
sigmoid colon.

113
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In the work implemented so far we have focused on fast deformable registration
of meshes that remedies some of the disadvantages of intensity based meth-
ods. We would like to use the result of these methods to guide intensity based
registration. Originally our idea was to register all shapes and intensities simul-
taneously via exchange of forces between an elastic biomechanical model and
physically motivated intensity based image registration like the viscous-fluid
model. This idea was inspired by the inclusion of regions of interest in the
body force term in chapter 5 (proposed by Christensen et al. in [28]). However,
for the time being we have narrowed our focus somewhat and plan to first regis-
ter tetrahedral meshes of segmented organs and subsequently use the resulting
deformation maps as prior information in intensity based registration. In this
chapter we present our thoughts and ideas on unifying the registration methods
presented in this dissertation.

9.1.1 Frames of reference

One important problem in combining intensity based registration with mesh
based registration is the difference in reference frames. Intensity based regis-
tration typically uses an Eulerian frame of reference in which displacements are
tracked with respect to voxel positions that are fixed in the reference image.
In contrast model based registration relies on a Lagrangian frame of reference
where the displacements are tracked with respect to initial vertex positions that
are fixed in the source image.

To efficiently use displacements from a mesh-based model in an intensity
based setting we need to create a regular grid of displacements corresponding to
the voxels of the intensity based model. We propose to produce such a displace-
ment grid by rasterising displacements from the mesh model by interpolating
vertex displacements inside tetrahedra. There are two possible approaches for
this:

1. For each tetrahedron we write a displacement vector to all grid positions
that are inside the tetrahedron in its original (undeformed) configuration.
The vectors written are found by interpolation of vertex displacements.
For this to be consistent with the Eulerian frame of reference of the dis-
placement grid, the model based registration must be performed in the
”opposite” direction of the intensity based registration - i.e. the mesh
must be generated from a segmentation of the reference image and regis-
tered to the configuration of the source image.

2. For each tetrahedron we write an interpolated displacement vector to
grid positions inside the deformed tetrahedron. The displacement vectors
written must be interpolated between vectors pointing from the displaced
vertex positions to the original ones.

An advantage of the former approach is that the position to write in the dis-
placement vector grid for a point inside the mesh does not change during regis-
tration. Then for grid positions in the displacement field we can store informa-
tion about which tetrahedron covers the position along with the weights needed
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to interpolate between displacements of corners in the tetrahedron allowing us
to efficiently look up displacements from the mesh. Taking the latter approach
we cannot register intensities and mesh models simultaneously but must first
finish the model based registration and subsequently use this information in
intensity based registration.

9.1.2 Combining optical flow estimation with model-based reg-

istration

To combine optical flow estimation with model-based registration we plan to
use displacements from pre-registered meshes as spatial boundary conditions
for the Jacobi iterations used to solve for the optimal displacement field. The
idea is to use the normal Jacobi iteration kernel for voxel positions outside
organ binary masks and write displacements from biomechanical registration for
voxel positions inside organs. To ensure numerical stability it will probably be
necessary to ensure that we avoid large initial discontinuities in the displacement
field (in the first Jacobi iteration). There are multiple ways of achieving this:� By incremental increase of the displacements from organ registrations.

This can be done by linearly interpolating between zero vectors and the
computed displacements.� By creating a smooth displacement field covering the entire image and
containing the precomputed displacements. This can e.g. be done by
extrapolating using radial basis functions. This displacement field would
then serve as the initial values in the optimisation. To avoid introducing
large misregistrations in this initial guess, it would probably be beneficial
to include rigid registration of bones in the RBF extrapolation of the
initial field.

An alternative to using radial basis functions in the latter option is the elastic
deformation approach using prescribed displacements proposed by Peckar et
al. [107]. Here point displacements are used as hard constraints, and the method
computes a unique displacement field satisfying the constraints and deforming
the remaining image based on linear elasticity. Because an incremental method
is used, large deformations can also be handled.

Instead of using point correspondences Postelnicu et al. extrapolate a tri-
angle mesh surface registration to the entire 3D image domain [111]. This is
done based on an FEA and linear elasticity. Subsequently the registration is
refined for the 3D image domain using intensity based optical flow (similarly to
what we propose). A similar approach has been taken by Joshi et al. who also
extended a brain surface registration to the entire image volume and refined
using an inverse consistent linear elastic intensity driven registration [60].

9.1.3 Combining viscous-fluid registration with model-based reg-

istration

In the viscous-fluid registration method the registration is driven by physically
motivated force terms. Hence we can compute an attraction force driving each
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voxel inside binary masks towards the ”target” positions known from the pre-
computed displacement field. This technique is somewhat similar to the one
used by Christensen et al. [28], but by pre-registering we can hopefully avoid
”pinching problems” like the one depicted in figure 5.7 (page 51).

9.1.4 About the need for segmentation in both images

A drawback with the methods presented in chapters 7 and 8 is the need for
organ segmentation in both source and reference images. With the membrane
model it seems there is no way around this as the segmentation of the reference
image is needed for creating the geometry images, which is an essential part of
the method. However, the volumetric biomechanical model of chapter 7 could
potentially be guided by other means than distance fields. For moderate defor-
mation mutual information might work either using the local force approach of
Crum et al. [34] or using the featurelet approach of Söhn et al. [127]. Here a
choice can be made about what to compare to the reference image: a binary
mask of the current organ configuration or a deformed source image. Also nor-
malised gradient field might serve as a matching component with both these
choices. Using the deformed source approach we might even use NCC or SSD
as similarity measures.

Driving the elastic model using one or more of these intensity based measures
will essentially turn the registration into an intensity based method with mesh-
based regularisation. In this context the difference in reference frames described
above is actually an advantage as the organ segmentation needs to be done in
the reference image of the purely intensity based method, which for our use
will most often be the first (planning) image, where segmentation is already
made. If such a registration is sufficiently accurate it will serve as an auto
segmentation of the new image.

9.2 Multi-organ registration

As mentioned above we would like to support structural connections between
organs in a biomechanical multi-organ registration setting. We hypothesise that
the extra prior information included in this approach will allow more physically
plausible results. Brock et al. use a multi-organ approach in which organ con-
nections are modelled by the use of ”tied connections” in which two organs
share common vertices [21]. A similar approach could be taken in our method.
As mentioned in section 7.8 we would also like to include a general intersection
handling method in the biomechanical registration, to handle both the problem
of self-intersection and to allow organs to interact in a physically plausible way.
We believe this will increase the robustness of the registration and may open
new applications.
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9.3 Volumetric mesh registration using geometry im-

ages

The approach of using geometry images for constraining vertices to a refer-
ence surface can also be used in other models than the membrane registration
of chapter 8. We have already mentioned the possibility of using the result of
membrane based registration as fixed boundary conditions for a subsequent vol-
umetric elastic FEA. Another approach would be to apply the geometry image
as sliding boundary conditions during the volumetric FEA thus combining the
appproaches of chapters 7 and 8. The idea is to first create a mapping between
the source and reference configurations that when interpolated to the interior
of the organ is smooth and regular enough that no tetrahedron in our FEM is
inverted. Then, using the force projection approach presented in section 8.5.3,
the interior energy of the volumetric FEM is minimised while restricting bound-
ary vertices to stay in the parameterised (u, v)-space of the reference geometry
image.

9.4 Principal component analysis

A potential use for the two mesh based organ registration methods is princi-
pal component analysis (PCA), which has been proposed for creating patient-
individual organ motion/deformation models for use in radiotherapy [128]. Us-
ing PCA the motion and deformation of organs can be statistically modelled
as a linear combination of so-called eigenmodes, which are the most dominant
components of the motion/deformation. Weighting different modes differently
it is possible to interpolate and even extrapolate new organ geometries from a
number of initial organ configurations. This can be used to analyse how large
margins on the radiated field are needed in an EBRT treatment. The PCA
approach requires information about surface-to-surface point correspondence,
which can be found with the proposed methods.

9.5 Clinical validation

The evaluation of methods presented in this dissertation has been on a ”proof-
of-concept” level. As mentioned several times in the preceding chapters, a
clinical validation is needed for determining the accuracy and robustness of the
methods.
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Chapter 10

Summary and conclusions

Deformable image registration techniques able to account for displacement and
deformation of organs in a series of medical images acquired in connection
with fractions of radiotherapy is a key component in the efforts to improve the
treatment guided by image data. In this dissertation five registration methods
have been examined as a potential tool in image guided radiotherapy. Three of
these methods were already known intensity based registration methods. These
have been implemented in a massively parallel setting using GPU computations.
As a result computation times were reduced considerably.

The first method was the viscous-fluid registration method, which was made
suitable for SIMD parallelisation by using Jacobi iteration for solving the viscous-
fluid PDE in each time step. As a result of GPU based acceleration, the running
time was reduced to a time frame that makes it feasible to initiate a clinical
evaluation of the method. Our initial experience with the method tells us that
the high degree of flexibility in the resulting spatial transformations makes it
possible to perform registrations involving both large deformations and locally
detailed deformation. However, its ability to register such cases also makes it
difficult to evaluate the results without an inspection of the deformation field.
An example of a misregistration that might go unnoticed was shown on figure
5.5 (page 49).

The remaining two GPU accelerated intensity based methods were optical
flow estimation methods that had been extended from 2D to 3D. Use of the
Horn and Schunck method was presented for CT-to-CT registration, while the
Cornelius and Kanade method was used for registration of CT-to-CBCT as well
as CBCT-to-CBCT. The initial evaluation was encouraging, but an extensive
clinical validation is needed to fully determine the applicability of the methods.
The running time of the two optical flow estimation methods was reduced to a
level that makes it feasible to register a newly acquired head and neck CBCT
image to a planning CT image while the patient is still on the treatment couch.

The fourth registration method was a new method based on a biomechanical
model of an elastic solid and assumed that a segmentation of an organ had been
made in both source and reference image. A non-linear elastic finite element
model was used to model interior forces as a tetrahedral mesh representation
of the organ in the source image was deformed toward the configuration of the
organ in the reference image. This deformation was driven by forces based on a
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distance field representation of the reference surface and forces working normal
to the source shape. An advantage with this method is that finding surface
correspondences is coupled with modelling of the interior elastic model, which
means that unlike some previous methods, we do not need to pre-compute
boundary conditions before FEA. All parts of this registration method had
been formulated in a way that made a SIMT formulation possible, paving the
way for a GPU implementation. A rigid model was included to allow rigid
alignment to be made prior to deformable modelling. An initial test of the
model was made. From the results we concluded that registration of solid,
volume preserving organs seems generally feasible. Further validation studies
are needed to validate this claim. Changes in the method must be made for it
to be able to handle organs that empty and fill.

Finally a novel method for deformable surface registration was presented.
The deforming source surface was modelled as an elastic membrane. Using a ge-
ometry image to represent a two-dimensional parameterisation of the reference
surface, the source surface vertices were constrained to stay on the reference
surface. Subject to this constraint the potential energy in the membrane was
minimised using iterative displacement of source vertices. The displacements
were calculated in 3D space based on spring force directions and projected onto
the tangent plane of the parameterised surface, thus resulting in a displacement
in the parameterised 2D space. A spring-mass system was used for modelling
the membrane. Furthermore the presented model allowed inclusion of user
specified landmark correspondences which was matched using a driving force
approach. The intended use of the membrane model is for bladder registration.

Our focus on registration algorithms was motivated by two clinical cases.
One was registration of MR images acquired in connection with intracavitary
brachytherapy for treatment of cervical cancer and the other was registration
of daily head and neck CBCT images to the planning CT image. The perfor-
mance of the Cornelius and Kanade method on head and neck CBCT images
was encouraging. Future validation will show if the method is robust enough
to enable e.g. auto-segmentation by contour propagation. Initial testing has
revealed that none of the three intensity based methods considered were able to
consistently register all of the pelvis MR images tested in the BT case. This has
been the starting point for the work on mesh based organ registration, and a fu-
ture aim is to combine these organ registrations with an intensity based method
outside organs. We presented methods suitable for registering the uterus and
the bladder, but our methods need modifications to be able to consistently
handle registration of the rectum and the sigmoid colon.

As elaborated on in the previous chapter, there are several possible future
directions that will enable the presented methods to be combined. At present
however, the methods work individually for a limited set of test problems. A
next step is clinical validation of the general robustness and accuracy of the
methods for a larger set of registration problems.
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