
Felling Trees and Covering Lines

You are given an orchard with trees and a machine that can efficiently fell 
trees when moving in a straight line. What is the minimal number of 
directions you need to move your machine in such that you can clear the 
whole orchard?

In the above orchard there are many possibilities of positioning the 
machine such that it can fell three trees. However, it is impossible to clear 
four or more trees in a single direction. We can therefore argue that in this 
case we cannot clear the orchard with only three directions.

In the problem Line Cover, the above puzzle is stated as follows:

Given a set of  points in the plane, is it possible to place  lines 
such that all points are covered by at least one line?

This problem is NP-hard and it is therefore likely that the best way of
solving it is not much different than trying all solutions in a clever way.
To understand what might be clever we observe he following:

 If the point set is random we do not expect any three points lying on 
one line, which means ݇ must be at least 

ଶ
in order to cover the points.

 If ݇ is small compared to ݊ and it is possible to cover the points, many 
of the points must be collinear.

 ݇  1 collinear points can only be covered by ݇ lines if a single line 
covers all the points.

The above indicates that a good chance of finding the solution quickly 
is to try lines covering many points first. In fact, the last observation 
implies that we can greedily pick a line covering more than ݇  1 points. 
Since remaining lines can cover at most ݇ points, the remaining instance 
(called the kernel) is only solvable if no more than ݇ଶ points remain. 
This is exactly the reason why the above puzzle is unsolvable for ݇ ൌ 3.

Incidences New Results
An incidence is a point-line pair such that the point lies on the line. If a 
point set allows many ways of placing a line such that it cover many 
points, intuition tells that this point set contains many incidences.

The famous Szemerédi-Trotter theorem [1] upper bounds the number of 
incidences in a set of ݊ points and ݉ lines:
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A corollary of this theorem states that there are few ways of placing a line 
covering many points. These rich lines are the starting point of our 
algorithm; by trying rich lines first we hope to reduce the size of the 
problem as quickly as possible. The key observation for our algorithm is 
that if the solution has few (or no) rich lines, then we implicitly reduce the 
input size by essentially the same argument as the ݇ଶ kernel.

Algorithm
The algorithm is in essence very simple:

 Given the points, determine all possible lines covering at least 2 points. 
 Sort all those lines by how many points they cover.
 Starting at the richest line and continue in descending order, recurse in 

two branches:
− add the line to a partial solution
− discard the line from being in the final solution

 When the partial solution has size ݇, verify if all points are covered.

The problem with the above algorithm is that the deeper it recurses, the 
less rich the considered lines become. The incidence bound gives that 
there are few lines covering many points, but there might be many lines 
covering few points.

The solution is to switch to a ܱ∗ሺ2ሻ algorithm as soon as few enough 
points remain to make it an efficient switch.
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Our main result is a more refined analysis of the simple recursive 
algorithm. In particular, we use incidence bounds to prove a limit on the 
initial branching. When the incidence bound becomes too weak, we switch 
to a base case algorithm that is unaffected to the number of incidences.
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Previous work has also focused on a wide variety of covering problems 
where the covering object is something other than a line. For covering 
objects for which incidence bounds similar to the Szemerédi-Trotter 
theorem exist, we have successfully generalised our method.

Our generalisations:

 Curve Cover: wide variety of ݀-dimensional curves
− Based on incidence bound from [2]

 Plane Cover: covering points with planes in 3 dimensions
− Based on incidence bound from [3]

An orchard with 10 trees.

An arrangement of 21 points and 6 lines with 19 incidences

Points can be covered by different objects other than lines.
This point set requires fewer circles than lines.
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