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Idea: restrict how much the support can
change from one column to the next.

Definition: EMD

Definition: Support-EMD

Definition: Constrained EMD model

Example:

original signal approximation in model (k = B = 1)

Recovery example (parameters: h = 100, w = 10, k = 2, B = 20, m = 80):

Comparison of recovery algorithms (parameters as above, 100 trials):

Motivation: Seismic Signals Model Approximation Algorithm
Part of a shot record from the Sigsbee data set: Embed the problem into a min-cost flow instance.

Example:

Objective function:

The parameter λ determines the trade-off between EMD and amplitudes.
We find a good approximation with a binary search over λ.

Each min-cost flow instance can be solved in O(k n √n).
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sEMD(a,b)  EMD(supp(a),supp(b))

Ak,B  {X  Rhw : supp(xi )  k for i  [w],

                              sEMD(xi, xi1)  B}
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