
Abstract Reversible Model Real World Reversible Algorithm Results
Energy is an obvious resource in any computation. Historically,
the only resources considered in the asymptotic analysis of
algorithms are computation time and space. Work in information
theory and the physics of computation show that information,
entropy, and energy are fundamentally connected [4]. We propose
two models of computation. The first is based on current methods
of representing logical values as high and low voltages in a wire.
The second is based on the Landauer Limit which relates
information destruction to waste energy.

Landauer’s Principle: Increasing
entropy by 1 bit requires kT ln2
energy where k is Boltzman’s
Constant and T is the temperature. [4]

kT ln2 ≈ 3 · 10−21 J ≈ 8 · 10−25 Wh

This limit can be circumvented with
reversible computation, which
preserves entropy and can be undone
to reset energy. Unfortunately the
best theoretical bounds require a
quadratic increase in or
exponential increase in time. [1]

What is the best tradeoff between
energy, time, and space if we allow
reversible and irreversible
operations? Adiabatic [reversible] clock developed by

Cyclos Semiconductor to be used in new AMD GPU
www.cyclos-semi.com/pdfs/time_to_change_the_clocks.pdf

The Pendulum, developed in the Knight Lab at MIT,
is a fully reversible CPU [2]

www.eng.fsu.edu/~mpf/MPF-SEALeR-talk.pdf

Motivation
 Cheaper Computation

‒ 2005: 26M Servers → 14.0 GW ≈ $8.3 billion / year [7]
 Smaller Environmental Impact

‒ 2010: 31M Servers → 23 − 31 GW
≈ 1.1 − 1.5% of worldwide energy usage [7]

 Longer Battery Life
 Faster CPUs – Cooling is the limiting factor in clock speed.

‒ Less energy → less waste heat → faster computer [6]
Reversible Analysis Techniques

 Instruction Level Abstraction – By working out the energy consumption of
irreversible operations and the amount of garbage produced by reversible
operations, we can work at the Word RAM level of abstraction.

 Assembly Composition – In the worst case, we can use our known
reversible and irreversible instructions to write out assembly which can be
analyzed.

 Memory Diagram – Reversibility often depends on whether a piece of data
has been acted on by an irreversible operation. A diagram of where a piece of
information is used is often easier than trying to create assembly for some
pseudo-code.

 Unwindable Block – We can notate pseudo-code with blocks that are
guaranteed to be reversible. Whenever these are executed, we then know this
section can be unwound.

Bit-Flip Model
 Transitioning from a 1 to 0 requires a unit of energy.
 Theorem: Any w-bit RAM algorithm can be made conservative

using O(w) extra space and a constant factor increase in time.
‒ Conservative Logic – Every gate has an equal number

of 1 outputs as 1 inputs. [3]
‒ Dual-Rail Logic – Encode every bit with two wires as a

pair (1,0) or (0,1).
‒ Convert every gate to Dual-Rail Logic and added extra

outputs to make it Conservative.

 The same argument can be used to prove results about multi-
processor systems.

 Future Work:
‒ Do simulations show any benefit of using these principles

to reduce energy consumption? What about security
settings where dual-rail logic is already used?

‒ Can other symmetric encoding schemes yield better
constant factor overheads?

Future Work
 A Whole New Field for Algorithms

‒ Fast Fourier Transforms
‒ Implicit Data Structures
‒ Dynamic Memory Allocation

 High level language
‒ Notation for reversible vs. irreversible operations
‒ Ways of keeping track of what sections cannot be unwound

 Refine Model
‒ How should memory storage work?
‒ What are the costs of RAM operations?

Energy Reduction Techniques

Instruction Optimization
Word level operations can sometimes be
made more efficient than the corresponding bit
operations would suggest.
Comparing two bits takes a bit of energy;
however, comparing two w-bit words should
only create 1 bit of entropy. With the right
circuit, comparison takes O(1) energy instead
of O(w).

For Loop Unwinding
The counter in a for loop can be decremented
and thus unwound independently of whether
the content in the for loop was reversible.
Characterizing when situations allow partial
unwinding in a program is a large open
question.

Data Structure Rebuilding
Naively trying to make many data

structures reversible leads to a space
blow up dependent on the total number
of operations. Intuitively, we should only

need to get rid of the things actually in
the data structure. By periodically
unwinding and rebuilding our data

structure, we can get the space needed
to scale only with the number of

insertions.

Pointer Swapping
Creating a new pointer takes O(w)

energy. Swapping them around is free.
Thus if we can augment a data structure
to enable swapping instead we can save

energy.

References
[1] C. Bennett. Time/space trade-offs for reversible computation. SIAM J.

Computing, 1989.
[2] M. Frank. Reversibility for efficient computing. PhD Thesis MIT,1999.
[3] T. Tooli, E. Fredkin. Conservative logic. 1982.
[4] R. Landauer. Irreversibility and heat generation in the computing

process. IBM Journal of Research and Development, 1961.
[5] G. Kissin. Measuring energy consumption in VLSI circuits: A

foundation. STOC 1982.
[6] J. Koomey, S. Berard, M. Sanchez, H. Wong. Assessing trends in the

electrical efficiency of computation over time. Annals of the History of
Computing, 2009.

[7] J. Koomey. Growth in Data center electricity use 2005 to 2010.
Analytics Press, 2011.

Faster, Cheaper, Cooler, Longer: Energy Efficient Algorithms

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

Erik Demaine
MIT CSAIL

Jayson Lynch
MIT CSAIL

2

Single rail logic gate Dual rail logic gate

[Uyemura: CMOS Logic Circuit Design, 1999]

Michael Frank, 1999. [2]

