
Problem Previous Results Upper Bound

We consider a very natural range searching variant with categorical data
in the pointer machine model.

Data structure input:

 ݊ coloured points on the axis-ݔ
 colours taken from ऍ ൌ 1,… , ݐ

Query input:

 an range-ݔ ܽ, ܾ
 a set of colours ܥ ⊆ ऍ, such that ܥ ൌ ݎ

Query output:

 all ݇ points in ܽ, ܾ with a colour in ܥ

All previous categorical range searching data structures support a different
type of query:

“Which colours are represented by at least one point within
this range?”

For example, in one dimension, Janardan and Lopez [1] give a solution in
optimal ߍ ݊ space and optimal ߍ log ݊ ൅ ݇ query time, where ݇ is the
number of colours reported.

Standard range searching is a special case of our problem that arises
when there is only one colour. The binary tree solves this special case in
optimal Ο ݊ space and optimal Ο log ݊ ൅ ݇ query time, where ݇ is the
number of points reported.

It is sufficient to find the predecessor of ܾ for each query colour, as we can
then find the other points by iterating through linked lists built for each
colour in ߍ ݎ ൅ ݇ time.

Strategy 1: Separate binary searches.

We simply perform predecessor search at ܾ in separate point sets for each
query colour. This requires ߍ ݊ space and ߍ ∑ log ݊௜௥

௜ୀଵ ൌ ߍ ݎ log ೙
ೝ

query time.

Strategy 2: Divide into blocks.

For each block, we store in the data structure of Strategy 1 all points in the
block as well as predecessors for all ݐ colours. For example, we store the
following points in the data structure for block 3:

Each such data structure requires ߍ ݐ space, for a total of ߍ ݊ space.

Given a query, we find the block containing ܾ via binary search in ߍ log ݊
time and then we forward the query on to the Strategy 1 data structure for
this block, which requires ߍ ݎ log ೟

ೝ time.

New Results

We give a pointer machine data structure that requires:

 ߍ ݊ space
 ߍ log ݊ ൅ ݎ log ೟

ೝ ൅ ݇ query time if the query colours are sorted
 ߍ log ݊ ൅ ݎ log ݐ ൅ ݇ query time if the query colours are unsorted

We also give matching lower bounds for both query variants, showing that
our bounds are optimal for all parameters: ݊, ,ݎ ,ݐ and ݇.Motivation

Our problem is motivated by the fact that databases often contain both
ordinal (numerical) and nominal (categorical) data.

Consider a company with many employees. Each employee has a salary,
which is an integer, and belongs to a department, which is one of
marketing, engineering, finance, human resources, etc… Consider the
following mapping:

				employee → point
											salary → െvalueݔ
department → colour

Now, our data structure can answer natural questions such as:

“Which employees in marketing or finance have salaries
between 40.000 kr and 50.000 kr ?”

Future Work

As we are tackling a new problem that is quite simple to describe, there
are many interesting variants to consider:

 dynamic point set: support insertions and deletions of points
 higher dimensional points: e.g., 2-D points and orthogonal ranges
 multiple categorical attributes: more complex query language

Lower Bound

We first reduce the problem of searching for ݎ keys in a set of size ݐ to our
original problem. Any pointer machine data structure for the former
problem must be able to reach at least ௧

௥ different combinations of ݎ
nodes during a query, since there are ௧

௥ different queries which must
each locate a different combination of ݎ keys in the data structure.
However, we show that if the data structure’s query time is ߪ ݎ log ೟

ೝ , then
it cannot reach ௧

௥ different combinations of ݎ nodes.

References

[1] R. Janardan, M. Lopez. Generalized intersection searching problems.
International Journal of Computational Geometry & Applications, 2013.

Range Searching in Query-Dependent Categories

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

Bryan T. Wilkinson
Aarhus University

௡
௧

blocks

ݐ points

ܾ


