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Edit Distance to Monotonicity in Sliding Windows

Motivations Upper Bound for ED in Sliding Window Model Lower Bound for LIS in Out-of-order Stream

Network Quality Monitoring: Suppose a sender sends a sequence of packets to a We extend the results to the sliding window model: Reduction from the t-players communication problem DISJ:
receiver through a network, where the packets have increasing sequence number. = Motivation: In network quality monitoring, since network traffic is = tplayers: P, P, ..., P,
often bursty, network quality is better measured based on recent data. = |nput: t X n bit matrix x
= Letw be a positive integer denoting the window size. = Player P; has the i-th row of x: (X; 1, X5, ---, Xip), X;; € {0, 1}.
[ Sender } ‘ ‘ [Receiver] We are interested in estimating ED of the latest w |te_n;s. ; =  Communication:
" (4+¢)-approximate deterministic algorithm using O(e™~ log”(ew)) space P,, P,, ..., P,sends a message to the next player in turn.
1,2,3,4,5 1,4,3,2,5 Algorithm: Consider stream a,, a,, ..., a, . = Objective: P, outputs

Network congestion can distort the order of packets, and thus more distortions * disjoint, ifeach column of X contains at most one 1-entry.

would imply a lower network quality. Therefore, it is desirable to answer: } A 4-approximate estimator _of_EI? - . * uniquely intersecting, if one column has all 1-entries and other
| | | For eac_h item !ndex_l, letinv(i) ={j | J<I t_)ut ;> ai}. column has at most one 1-entry.
How close is the sequence received (at the receiver) to the sorted sequence? = The estimator in [5] is a subset R of bad indices:
V badindex i, 3 j<is.t. more than half of {a, a,s, ..., .4} € inv(i). = Total communication between all players is €2(n /t) bits for
Relational Database: Operations are best performed when the relations are sorted = Index jis called the witness of the bad index |i. randomized protocols.

or nearly sorted over the relevant attributes. Yet, sorting relations is expensive. = Propertyof R: ED/2< |R| £ 2 ED (4-approximation of ED)

. : . n Use algorithm for LIS to solve DISJ:
Keeping an estimate on the sortedness help determining when sorting is needed .

= P, P, ..., P, create items in an out-of-order stream in turn.

= Each item is a tuple <timestamp, value>.

= Player P; has the i-th row of x: (X; 1, X5, ---, Xjp), X;; € {0, 1}.
* If x;; =1, create an item <(j-1) t + 1, (n-]) t + I>.
* If X;; = 0, no item Is created.

2. Approximating the estimator
Webpage Ranking (e.g., PageRank™), Sorting Algorithms, etc. = If (median of {a;, a;,,, ..., &4} ) > &, then i is a bad index.
= \We use the data structure in [6] to approximate the median, and
make sure that the witness of each bad index is the largest possible.

Problems and Data Stream Model

Problem: How close is a length-n sequence to monotonicity? " The size of this set R’ of bad indices Is 4 + ©(¢)-approximation of ED. Column j
Eg.,<1,4,3,2, 5> to <1,2, 3, 4,5> | | . . L el |
3. Handling expiry of witnesses in the sliding window model o il Xt
= Edit Distance (ED): Each step involves removing & reinserting an item. = Abad index is no longer bad when its largest withess expires.
E.g.,EDfor<1,4,3,2,5>=2:<1,4,3,2,5>><1,2,4,3,5>> <1, 2,3,4,5> = |R’| =the number of non-expired largest witnesses. — X
. = Every time we find a bad index, we put its largest witness into a 3,
= Length of Longest Increasing Subsequence (LIS) : : . . N
E.g. LIS for <1, 4, 3,2, 5> = 3 witness stream. Note that withesses can be in arbitrary order. 2.]
= S = We use the data structure in [2] for basic counting in out-of-order Column n X1 |
Note that LIS = n - ED. stream to give an (1+¢€)-approximate of |R’|. _ > ’
= The estimate is 4+ ©(e)-approximation of ED in sliding window. - HIESED
Data Stream Model: The sequence is a stream of n items from the universe [1, m]. = Ifx isdisjoint, each column has =< 1 item, and thus LIS < 1.

. . : e = If X IS uniguely intersecting, one column has t items, and thus LIS = t.
= ltems are accessed sequentially in one pass. Lower Bound for ED in Out-of-order Stream = An t/2-approximate randomized algorithm for LIS can distinguish the

= Since volume of data is massive, and exact Computation of LIS and ED requires Reduction from the 2-p|ayer communication prOblem INDEX: two cases, and thus its Space = Q(n/t . %) = Q(n/tQ) bits .

Q2(n) bits even for randomized algorithms [5]. Only approximation is possible. = Alice has a bit string x = (X1, X, ..., X), X; € {0, 1}. _
= Bobhasanindexi€{1, 2, ..., k}. References
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