
J k b TJakob True
Aarhus UnivAarhus Univ

A Cache-Oblivious Implicit DictionA Cache-Oblivious Implicit Diction
The Implicit Model A MoveableThe Implicit Model A Moveable

The implicit model is the RAM model but with some restrictions: you are To make the working set dictionary wee p c t ode s t e ode but t so e est ct o s you a e
only allowed to store exactly the n elements that you are to build the data

To make the working set dictionary we
dictionary (a FG dict) from [FG 2003]only allowed to store exactly the n elements that you are to build the data

structure over, nothing more. That means that the n elements are laid out in
dictionary (a FG dict) from [FG 2003],
happen at both ends of the array Westructure over, nothing more. That means that the n elements are laid out in

an array of n elements. So we cannot e.g. leave some of the entries empty,
happen at both ends of the array. We
the FG dict In its basic form the movean array of n elements. So we cannot e.g. leave some of the entries empty,

as they would still occupy space.
the FG dict. In its basic form the move
C and R growing to the left left/right aas they would still occupy space. C and R, growing to the left, left/right a
growing in either way depending whicgrowing in either way depending whic

n
While performing operations you are allowed to store O(1) words of
memory, i.e. O(log n) bits of memory. When an operation finishes we forget
the O(1) words of memory we could use during the operation.

It is easy to move this dictionary one eIt is easy to move this dictionary one e
element from R and putting it into L liThe Fundamental Trick element from R and putting it into L, li
The tro ble comes if L or R becomesThe trouble comes if L or R becomes
h t i j b t ith

The fundamental trick to do anything in this models is to encode bits using
hence we trigger a job to either grow opermutations of elements. That is say we want to encode k bits, then we

can encode them into 2k elements where we for the first two elements x
and y encode a 0 iff x = min(x,y) and a 1 iff x = max(x,y). We encode the y (y) (y)
remaining k-1 bits the same way using the other k-1 pairs of elements.g y g p

2k2k
0 iff x = min(x y) x y0 iff x = min(x,y) y
1 iff x = max(x,y)(,y)

The Working Set PropertyThe Working Set Property
The orking set distance l of a ke is the n mber of ke s e ha eThe working set distance l of a key x is the number of keys we have

d i l t h d f A di ti h th ki taccessed since we last searched for x. A dictionary has the working set
t if th h ti f k i d i t f l iproperty if the search time for a key x is expressesed in terms of l, in our

lt th h t i O(l l)result the search cost is O(log l).

Previous WorkPrevious Work
Our result is the first implicit dictionary with the working set property and itOur result is the first implicit dictionary with the working set property, and it
is in fact also cache-oblivious which is a property we inherent from theis in fact also cache oblivious, which is a property we inherent from the
dictionary of [FG 2003] which we use as a black boxdictionary of [FG 2003] which we use as a black box.

Predecessor / Additional
Reference Insert / Delete Search Predecessor /

Successor space
A job simply performs its task by exec

Successor p
(words) A job simply performs its task by exec

during each insert, delete, search or p[I 2001] O(log n) O(log l) O(log l) O(n) during each insert, delete, search or p
grow L when it becomes to small we u

[I 2001] O(log n) O(log l) O(log l) O(n)
[FG 2003] O(log n) O(log n) O(log n) None grow L when it becomes to small we u

mapping to split one of the FG dicts in
[FG 2003] O(log n) O(log n) O(log n) None

[BHM 2009] O(l) O(l l) O(l) O(l l) mapping to split one of the FG dicts in
L’ in shrink-left – that way we can take

[BHM 2009] O(log n) O(log l) exp. O(log n) O(loglog n)
L in shrink left that way we can take
we shrink L further and when L’ grows[BHM 2009] O(log n) O(log l) exp. O(log l) exp. O(√n) we shrink L further, and when L grows
We do simlar for shrink-left see the rig[BKT 2010] O(log n) O(log l) O(log n) None We do simlar for shrink left, see the rig[BKT 2010] O(log n) O(log l) O(log n) None

MADALGO – Center for Massive Data Algorithmics aMADALGO – Center for Massive Data Algorithmics, a

C K jlb Rl Casper Kejlberg-Rasmussenlsen p j g
Aarhus Universityversity Aarhus Universityversity

nary with the Working Set Propertynary with the Working Set Property
e Dictionary A Working Set Dictionarye Dictionary A Working Set Dictionary
e will need a moveable version of the The working set dictionary is now constructed from moveable dictionaries e will need a moveable version of the
i e insertions and deletions can

e o g set d ct o a y s o co st ucted o o eab e d ct o a es
of double exponentially increasing size. The working set dictionary isi.e. insertions and deletions can

obtain it using at most 4 instances of
of double exponentially increasing size. The working set dictionary is
divided into blocks where the i’th block is of size Θ(22i). The i’th blockobtain it using at most 4 instances of

eable dictionary consists of FG dicts L
divided into blocks where the i th block is of size Θ(2). The i th block
further consists of a set of elements Di, and three moveable dictionaries Li,eable dictionary consists of FG dicts L,

and right respectively C can be
further consists of a set of elements Di, and three moveable dictionaries Li,
Ci and Ri. Here elements in Ri are ready to move to Di+1 or Li+1 in block Bi+1and right, respectively. C can be

ch time we look at it
Ci and Ri. Here elements in Ri are ready to move to Di+1 or Li+1 in block Bi+1
and elements in Ci are waiting to be promoted to be in Rich time we look at it. and elements in Ci are waiting to be promoted to be in Ri.

element to the left by taking anelement to the left by taking an
kewise it is simple to move it rightkewise it is simple to move it right.
empt or too large compared to Cempty or too large compared to C,

h i k L R It is now easy to make a search in O(log l) time: for an element we firstor shrink L or R. It is now easy to make a search in O(log l) time: for an element, we first
search in B then B and so until we find the element we are searching forsearch in B0 then B1 and so until we find the element we are searching for
or nothing In each block B we search in D by a scan and in L C and Ror nothing. In each block Bi we search in Di by a scan and in Li, Ci and Ri
using the search function of the moveable dictionary We then remove theusing the search function of the moveable dictionary. We then remove the
found element e of block B where j = log l and insert it into block B andfound element e of block Bj, where j = log l, and insert it into block B0 and
move a element from R to L for i = 0 j 1 If R runs out of elements wemove a element from Ri to Li+1 for i = 0,…,j-1. If Ri runs out of elements we
rename C to R L to C and make a new empty L This way we spend timerename Ci to Ri, Li to Ci and make a new empty Li. This way we spend time

ll ll () loglog
2

l
i

l
i

∑∑ ())(log22log 2 lOii

∑∑ ==())(log22log lO∑∑
00 ii ==

Future / Current WorkFuture / Current Work

We are currently working on doing the predecessor and successor search y g g p
in the working set time also, that is we get search and predecessor/ g , g p
successor in O(log l) time and insert and delete in O(log n) time, using no (g) (g) , g
space. This will still be cache-oblivious because we again use the p g
moveable dictionary that again uses the FG dict.moveable dictionary that again uses the FG dict.

ReferencesReferences
[I 2001] Iacono Alternatives to splay trees with O(log(n)) worst case[I 2001] Iacono - Alternatives to splay trees with O(log(n)) worst-case

access times SODA 2001
cuting a constant number of steps

access times. SODA 2001.
cuting a constant number of steps
predecessor/successor operation. To [FG 2003] Franceschini, Grossi - Optimal worst-case operations for implicit predecessor/successor operation. To
use the simple trick of address- cache-oblivious search trees. WADS 2003.use the simple trick of address
nto two parts – see L in grow-left and [BHM 2009] Bose, Howat, Morin - A distribution-sensitive dictionary with nto two parts see L in grow left and
e elements from C and put into L’ while

[] , , y
low space overhead. WADS 2009.e elements from C and put into L while

s enough it takes over the role of L
p

[BKT 2010] Brodal Kejlberg-Rasmussen Truelsen - A Cache-Obliviouss enough it takes over the role of L.
ght of the above figure

[BKT 2010] Brodal, Kejlberg-Rasmussen, Truelsen - A Cache-Oblivious
Implicit Dictionary with the Working Set Property ISAAC 2010ght of the above figure. Implicit Dictionary with the Working Set Property. ISAAC 2010.

a Center of the Danish National Research Foundationa Center of the Danish National Research Foundation

