madalgo ----**CENTER FOR MASSIVE DATA ALGORITHMICS**

Introduction

Problem

Preprocessing an input array such that the given query asking for the index of the minimum element in a rectangular range within the array is solved efficiently.

Succinct Models

- Indexing: Probes into the input.
- Encoding: No access to the input.

10	4	13	9	12
65	14	6	11	30
7	28	9	16	52
17	48	19	(2)	23

In 2D version, the input array has N=m×n elements (*m*≤*n*)

Minimum

Applications

Databases, geographic information systems, graphics, computing lowest common ancestors in trees, pattern matching, document retrieval queries, maximum segment queries and more.

One Dimensional Data Structure

• A Cartesian Tree encodes the input 1D array of size *n* elements in 4*n*+o(*n*) bits s.t. the query can be solved without accessing the input in O(1) time (Sadakane'07).

• The best indexing and encoding data structures have size 2*n*+o(*n*) bits matching the lower bound of 2n- $\Theta(\log n)$ bits (Fischer and Heun'03, Fischer'07).

Results

No.	Query time	Space (bits)	Preprocessing time
1	Ω(<i>c</i>)	O(<i>N</i> / <i>c</i>)+ <i>A</i>	-
2	O(1)	O(<i>N</i>)+ <i>A</i>	O(<i>N</i>)
3	O(clog ² c)	O(<i>N</i> /c)+ <i>A</i>	O(<i>N</i>)
4	-	$\Omega(N \log m)$	-
5	O(1)	O(N log n)	O(<i>N</i>)

Space Efficient Range Minimum Queries

Indexing Lower Bound (1D and 2D)⁽¹⁾

Theorem

Any RMQ algorithm using n/c bits additional space, requires $\Omega(c)$ probes into the input.

Proof

• Consider n/c queries for $c^{n/c}$ different {0,1} inputs with exactly one zero in each block.

- $c^{n/c} / 2^{n/c}$ inputs share some data structure.
- Fix the data structure.
- Every query is a decision tree of height $\leq d$.

Indexing 2D Data Structure: Linear Space⁽²⁾

- Partition the input recursively.
- Construct a binary tree in each level of the recursion.
- Solve the queries spanning over the blocks.

- the input matching with the probes of the path is *j*.
- Combine queries to a decision tree. Prune non-reachable branches for the inputs sharing the data structure. • # zeroes on any path $\leq n/c$.

- $\frac{c^{n/c}}{2^{n/c}} \leq \#$ inputs =#
- Query time $d = \Omega(c)$.

Indexing 2D Data Structure: Time-space Trade-off⁽³⁾

- the compressed matrix.

Use Four-Russians trick in the last level where the block size is $O(\log N).$

Bits required is at least:

 $\log(\frac{m}{2}!)^{\frac{n}{2}-\frac{m}{4}} = \Theta(N\log m)$

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

eleaves
$$\leq \begin{pmatrix} d+n/c \\ n/c \end{pmatrix}$$
.

• Divide the input to blocks of size $2^i \times c/2^i$ in log c steps. • In each step, construct an indexing data structure of size O(N/c) bits for

Encoding 2D Lower Bound⁽⁴⁾

• Define a set of $\left(\frac{m}{2}!\right)^{\frac{n}{2}-\frac{m}{4}}$ different matrices.

