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INTRODUCTION TO OUR WORK 
› Software is a key part of infrastructure 

› We rely on software to be bug-free 

› We want more ’efficient’ programs 

› Scientifically rigorous evidence is expensive 

› Tools to help software developers 
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MODURES 
› Modern programming languages are imperative and 
higher-order (function pointers, interfaces, libraries, 
type-parametricity) 

› Some of them are even concurrent 

› Develop new mathematical models for modular 
reasoning for such modern programming languages 
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APPROACH 
› Look at the operational semantics of a programming 
language 

› Develop mathematical models and logic / type 
systems  

› Not your ordinary math 

› Experiment by testing on challenging case studies 
› Specify and prove correctness by hand 
› Develop tool support (Coq, Aqda) for larger studies 
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EXTENDING THE MATH TOOL-BOX 

› The guard is pronounced ’later’ 

› Without it, no non-trivial sets exists satisfying the 
isomorphism 

› New model that uses category theory / domain 
theory / metric spaces 
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A SIMPLE EXAMPLE 
› Imagine a counter-module in C 

tmp = *C; *C = tmp+1; return tmp; 

› Some interleavings will compute the wrong result 
› One could use locks - prevents all bad interleavings by 

preventing all interleavings 
› A fine-grained concurrent pattern without locks using CAS 

while (true) { tmp = *C; if (CAS(C, tmp, tmp+1)) return tmp; } 
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FINE-GRAINED CONCURRENT DATA 
STRUCTURES EXAMPLE (FGCDS) 

› Stack and queues are simple 
data-structures. What about  
concurrent versions? 

› FGCDS refrains from using locks and requires all 
clients to make progress. FGCDS are challenging! 
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MICHAEL-SCOTT QUEUE 
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CURRENT RESEARCH 
› Ranald Clouston & Hans Bugge Grathwohl – 
Programming languages with guarded recursion 

› Thomas Dinsdale-Young – Semi-automated 
verification of programs 

› Filip Sieczkowski – Formalizing in Coq + Coq tutorial 
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CURRENT RESEARCH 
› Kasper Svendsen – iCAP 

› Aleš Bizjak – Models of probabilistic programming 
languages 

› Morten Krogh-Jespersen – Verifying concurrent data 
structures in iCAP 
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HOW TO GET INVOLVED 
› Opportunity to do interesting projects (PREP) 

› Look at the Coq-tutorial 

› Take the Semantics of Programming Language 
course (WARNING: Advanced!) 

› Talk to us – 2nd floor of the Turing building 
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