
MORTEN KROGH-JESPERSEN
PHD-STUDENT, LOGIC AND SEMANTICS GROUP

WHAT IS IT THAT YOU DO?
MORTEN KROGH-JESPERSEN

MODULAR REASONING ABOUT CONCURRENT
HIGHER-ORDER IMPERATIVE PROGRAMS

MODULAR REASONING ABOUT CONCURRENT HIGHER-ORDER IMPERATIVE PROGRAMS
 MORTEN KROGH-JESPERSEN

3. JANUAR 2011

THE LOGIC AND SEMANTICS GROUP

2

Lars Birkedal
Professor

Ranald Clouston
Postdoc

Thomas Dinsdale-Young
Postdoc

Filip Sieczkowski
Postdoc

Kasper Svendsen
Postdoc

Aleš Bizjak
PhD student

Hans Bugge Grathwohl
PhD student

Morten Krogh-Jespersen
PhD student

Yannick Zakowski
Intern

MODULAR REASONING ABOUT CONCURRENT HIGHER-ORDER IMPERATIVE PROGRAMS
 MORTEN KROGH-JESPERSEN

3. JANUAR 2011
3

Lars Birkedal
Professor

Ranald Clouston
Postdoc

Thomas Dinsdale-Young
Postdoc

Filip Sieczkowski
Postdoc

Kasper Svendsen
Postdoc

Aleš Bizjak
PhD student

Hans Bugge Grathwohl
PhD student

Morten Krogh-Jespersen
PhD student

Yannick Zakowski
Intern

MODULAR REASONING ABOUT CONCURRENT HIGHER-ORDER IMPERATIVE PROGRAMS
 MORTEN KROGH-JESPERSEN

3. JANUAR 2011
4

Lars Birkedal
Professor

Ranald Clouston
Postdoc

Thomas Dinsdale-Young
Postdoc

Filip Sieczkowski
Postdoc

Kasper Svendsen
Postdoc

Aleš Bizjak
PhD student

Hans Bugge Grathwohl
PhD student

Morten Krogh-Jespersen
PhD student

Yannick Zakowski
Intern

MODULAR REASONING ABOUT CONCURRENT HIGHER-ORDER IMPERATIVE PROGRAMS
 MORTEN KROGH-JESPERSEN

3. JANUAR 2011
5

Lars Birkedal
Professor

Ranald Clouston
Postdoc

Thomas Dinsdale-Young
Postdoc

Filip Sieczkowski
Postdoc

Kasper Svendsen
Postdoc

Aleš Bizjak
PhD student

Hans Bugge Grathwohl
PhD student

Morten Krogh-Jespersen
PhD student

Yannick Zakowski
Intern

MODULAR REASONING ABOUT CONCURRENT HIGHER-ORDER IMPERATIVE PROGRAMS
 MORTEN KROGH-JESPERSEN

3. JANUAR 2011

INTRODUCTION TO OUR WORK
› Software is a key part of infrastructure

› We rely on software to be bug-free

› We want more ’efficient’ programs

› Scientifically rigorous evidence is expensive

› Tools to help software developers

6

MODULAR REASONING ABOUT CONCURRENT HIGHER-ORDER IMPERATIVE PROGRAMS
 MORTEN KROGH-JESPERSEN

3. JANUAR 2011

MODURES
› Modern programming languages are imperative and
higher-order (function pointers, interfaces, libraries,
type-parametricity)

› Some of them are even concurrent

› Develop new mathematical models for modular
reasoning for such modern programming languages

7

MODULAR REASONING ABOUT CONCURRENT HIGHER-ORDER IMPERATIVE PROGRAMS
 MORTEN KROGH-JESPERSEN

3. JANUAR 2011

APPROACH
› Look at the operational semantics of a programming
language

› Develop mathematical models and logic / type
systems

› Not your ordinary math

› Experiment by testing on challenging case studies
› Specify and prove correctness by hand
› Develop tool support (Coq, Aqda) for larger studies

8

MODULAR REASONING ABOUT CONCURRENT HIGHER-ORDER IMPERATIVE PROGRAMS
 MORTEN KROGH-JESPERSEN

3. JANUAR 2011

EXTENDING THE MATH TOOL-BOX

› The guard is pronounced ’later’

› Without it, no non-trivial sets exists satisfying the
isomorphism

› New model that uses category theory / domain
theory / metric spaces

9

MODULAR REASONING ABOUT CONCURRENT HIGHER-ORDER IMPERATIVE PROGRAMS
 MORTEN KROGH-JESPERSEN

3. JANUAR 2011

A SIMPLE EXAMPLE
› Imagine a counter-module in C

tmp = *C; *C = tmp+1; return tmp;

› Some interleavings will compute the wrong result
› One could use locks - prevents all bad interleavings by

preventing all interleavings
› A fine-grained concurrent pattern without locks using CAS

while (true) { tmp = *C; if (CAS(C, tmp, tmp+1)) return tmp; }

10

MODULAR REASONING ABOUT CONCURRENT HIGHER-ORDER IMPERATIVE PROGRAMS
 MORTEN KROGH-JESPERSEN

3. JANUAR 2011

FINE-GRAINED CONCURRENT DATA
STRUCTURES EXAMPLE (FGCDS)

› Stack and queues are simple
data-structures. What about
concurrent versions?

› FGCDS refrains from using locks and requires all
clients to make progress. FGCDS are challenging!

11

MODULAR REASONING ABOUT CONCURRENT HIGHER-ORDER IMPERATIVE PROGRAMS
 MORTEN KROGH-JESPERSEN

3. JANUAR 2011

MICHAEL-SCOTT QUEUE

12

MODULAR REASONING ABOUT CONCURRENT HIGHER-ORDER IMPERATIVE PROGRAMS
 MORTEN KROGH-JESPERSEN

3. JANUAR 2011

CURRENT RESEARCH
› Ranald Clouston & Hans Bugge Grathwohl –
Programming languages with guarded recursion

› Thomas Dinsdale-Young – Semi-automated
verification of programs

› Filip Sieczkowski – Formalizing in Coq + Coq tutorial

13

MODULAR REASONING ABOUT CONCURRENT HIGHER-ORDER IMPERATIVE PROGRAMS
 MORTEN KROGH-JESPERSEN

3. JANUAR 2011

CURRENT RESEARCH
› Kasper Svendsen – iCAP

› Aleš Bizjak – Models of probabilistic programming
languages

› Morten Krogh-Jespersen – Verifying concurrent data
structures in iCAP

14

MODULAR REASONING ABOUT CONCURRENT HIGHER-ORDER IMPERATIVE PROGRAMS
 MORTEN KROGH-JESPERSEN

3. JANUAR 2011

HOW TO GET INVOLVED
› Opportunity to do interesting projects (PREP)

› Look at the Coq-tutorial

› Take the Semantics of Programming Language
course (WARNING: Advanced!)

› Talk to us – 2nd floor of the Turing building

15

