
Problem definition

We are given an array, A, of n integers using w bits each where w is the
word size of the Random Access Machine (RAM) and we want to sort them.

There are two parameters for this problem: the input size and the word size.
The problem has been extensively studied but there are still many venues
to be explored. The following table summarizes the state of art.

Question

The primary question is, can we sort in linear time for all word sizes?
Our contribution is a step towards this goal.

One may ask whether sorting integers is too restrictive. However any
sorting algorithm on integers will also work for floating point numbers due to
the way they are represented in memory [1].

Idea

Our idea is to sort the integers using a compressed trie of the input where
letters are w/2 bits long. In a compressed trie we only care about the
branching nodes, so we will find these by hashing the w/2 most significant
bits. With high probability if two elements hash to the same value, then they
share the same w/2 most significant bits – in which case we have a
branching node.

Note, that to determine the order between two elements that share the
same w/2 most significant bits, we need only look at their w/2 least
significant bits, thus we can essentially shrink the original integers.

Finding branching nodes Sorting packed integers (continued)
We start with our input, and we take out the w/2 most significant bits of each
integer. Let Ai be the i’th input and Ui be its w/2 most significant bits.

Next we hash each element in this array to log n bits and pack all the
hashes tightly into nlog n/w words. Let b be the number of hashes pr word.

Note that we now use n/b words – and it turns out it that we can sort n/b
words packed with integers fast as explained below. We sort the hashes to
find out which elements had the same w/2 most significant bits.

We know from the sorted hashes that the first child of the root is branching.
The second and third child will have a unique hash with high probability, so
their order is totally given by the w/2 most significant bits therefore We can
throw away the least significant bits for those two elements. The procedure
can be applied recursively. Now we just need to sort log n bit integers
packed in words.

To do this we implement a sorting network that works in parallel on the b
tracks. A sorting network is a fixed sequence of comparisons and swaps
where the comparison determines whether or not to swap the two compared
elements. Our input is N=n/b words where there are b integers pr word.

 Construct a network C for input size N
 When C needs to compare index i and j, we use bit parallelism to

compare xi,k with xj,k for 1≤ k ≤ b in constant time.
 Based on comparison output we can swap individual elements

Implementing sorting networks in RAM
Suppose each element has an extra most significant bit. If we want to
compare word i and j, then set all these extra bits to 1 in word i and subtract
the two words:

Then zk = 0 if and only if xi,k < xi,k. Based on the result word we can mask
out the elements that are larger and swap the smaller elements and vice
versa.

Considering the image on the bottom to the left: we do not have any order
inside words. Consider b consecutive words as a b×b matrix. If we
transpose this matrix, we get b words that are internally sorted. Do this
transposition on every consecutive block of b words. To get b sorted lists
where each word is sorted, we concatenate the first word of every block in
order, then the second word of every block in order and so on.

We have b sorted sequences and the last step is to merge them. We merge
by applying bitonic sorting and merging. This takes log2b time pr word.
There are initially b lists thus there will be O(log b) rounds of merging.

Sorting packed integers
In the first phase of our algorithm we want to permute elements such that
the first element in the first word is less than the first element in the second
word which is less than the first element in the third word and so on.
Equivalently we want this for the second element in each word, third
element and so on:

References
[1] Arne Andersson, Torben Hagerup, Stefan Nilsson, Rajeev Raman.

Sorting in Linear Time? J. Comput. Syst. Sci. 57(1), 1998.
[2] Mikkel Thorup. Randomized sorting in O(n log log n) time and linear

space using addition, shift, and bit-wise boolean operations. J.
Algorithms . 42(2), 2002.

[3] Michael T. Goodrich. Randomized Shellsort: A Simple Data-Oblivious
Sorting Algorithm. J. ACM 58(6), 2011.

[4] Yijie Han. Deterministic sorting in O(n log log n) time and linear
space. STOC 2002.

[5] Yijie Han, Mikkel Thorup. Integer Sorting in 0(n √log log n) Expected
Time and Linear Space. FOCS 2002.

Integer Sorting

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation

Jesper Sindahl Nielsen
Aarhus University

X1,1

X1,1

X1,b X2,b

X2,1

X2,1 X3,1

X3,2

X3,b

.

.

.

.

.

.

.

.

.

…
…

…

Xn/b,1

Xn/b,2

Xn/b,b

.

.

.

≤

≤

≤

≤

≤

≤

≤ ≤

≤ ≤

≤ ≤

X1 X2 X3 Xn/b

1 xi,11 xi,2
…1 xi,b 1 xi,b-1

…

0 xj,b 0 xj,b-1 0 xj,2 0 xj,1−
= zb zb-1 z2 z1

A
1 2 3 … n-1 n

w bits w w w w

Word size Space usage Running time Algorithm
O(log n) O(n) words O(n) Radix sort,

deterministic

Any O(2w) = O(n)
if w = log n

O(n log w+2w) = O(n log log n)
If w = log n

van Emde Boas
tree, deterministic

≥ O(log2+ε n) O(n) O(n) [1] randomized
Any O(n) O(n log log n) [4] deterministic
Any O(n) O(n √log log n) expected [5] randomized
≥ O(log2 n log log n) O(n) O(n) expected Our contribution

A1 A2 A3  An-1 An

U1 U2 U3  Un-1 Un

h(U1) h(U2) h(Ub+1) h(Ub+2) h(U2b+1) h(U2b+2)  h(Un-b+1)h(Un)

