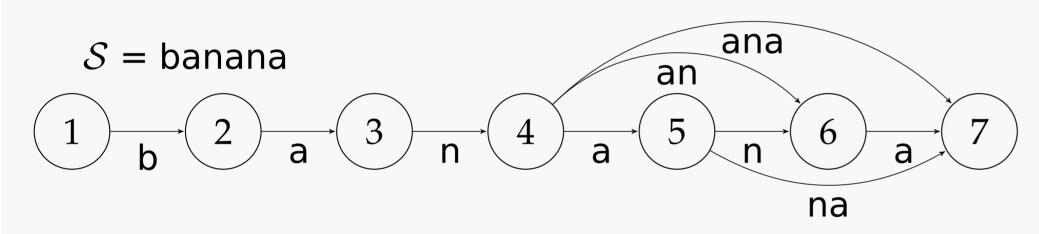
Bicriteria LZ77 Compression

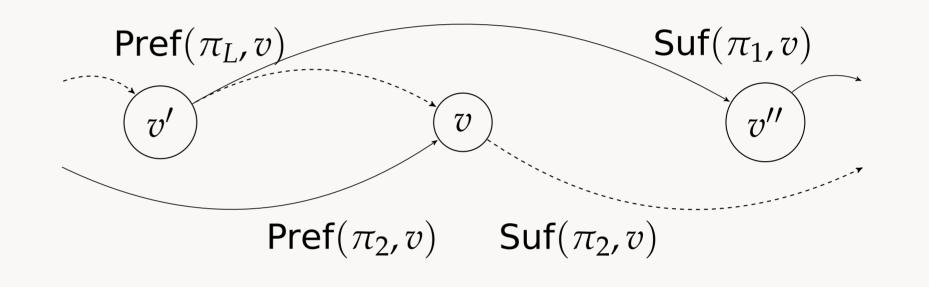
The Bicriteria LZ77 Parsing Problem


- More than just compression ratio The advent of massive datasets and high-performing storage systems have reignited the interest towards the design of lossless data compressors which achieve effective compression ratio and very efficient decompression speed.
- LZ77 Lempel-Ziv's LZ77 algorithm is the *de facto* choice due to its decompression performance and its algorithmic flexibility, which allow to trade decompression speed for compression ratio.
- Picking between different trade-offs Each existing implementation offers a *single* trade-off between space occupancy and decompression speed, so software engineers have to content themselves by picking the one which comes closer to the requirements of the application in their hands.
- The Bicriteria LZ77 Parsing Problem Find a parsing which minimize the consumption of one resource (decompression time, compressed size) given a bound on the consumption of the other one.

Our solution

- Our solution can be decomposed in four steps.
- **Pruning** Under some broad assumptions about the encoding functions and the memory hierarchy, the number of edges may be reduced from $O(n^2)$ to just $O(n \log n)$ in an implicit fashion.
- Forward Star Generation Each edge is dynamically generated when needed in O(1) amortized time, in order to achieve O(n) space complexity.
- **Lagrangian Relaxation** We solve the Lagrangian Dual relaxation of the WCSPP in $O(n \log^2 n)$ time through the Cutting Plane algorithm. This phase yields a lower and upper-bound on the cost of the optimal solution, plus a pair of paths (π_L, π_R) which constitute an *optimal basis* of the dual problem.
- **Approximate Gap-closing** We obtain an additive $(O(\log n), O(\log n))$ -approximation by combining together the paths π_L and π_R in O(n) time and space. The resulting path is composed by a prefix of π_L and a suffix of π_R starting from a carefully-picked vertex v, plus a *swapping bridge* connecting the two sub-paths.

Modeling as a WCSPP


- The set of LZ77 parsings of a string S of length n may be expressed as the source-destination paths over a graph $\mathcal{G}(S)$ with $O(n^2)$ edges, such that:
- there is a vertex v_i for each character $\mathcal{S}[i]$;
- there is an edge (v_i, v_j) for each substring $\mathcal{S}[i, j-1]$ in the dictionary.

- each edge, which correspond to a phrase, is weighted with a *time* and *space* weight.
 - the space weight is the codeword length in bits, while its time weight is given by an experimental, scan-based time model.
- ▶ The Bicriteria LZ77 Parsing Problem is thus reduced to a **Weight-Constrained Shortest Path Problem** over $\mathcal{G}(S)$.

Solving the WCSPP on $\mathcal{G}(\mathcal{S})$

- General-purpose WCSPP resolution algorithms are not appropriate in this context.
- the graph may be very huge: the number of edges of the graph induced by a one-gigabyte file can be up to $2^{32\cdot 2} = 2^{64}$ edges, which make storing it unfeasible.
- state-of-the-art algorithms for WCSPP, when applied to the Bicriteria LZ77 Parsing problem, have a complexity of at least Ω(n²), which is unacceptable in practice.
 Our algorithm exploits some peculiar structural properties of G(S) to achieve O(n log² n) time and O(n) auxiliary space complexity.
 The algorithm is an **additive** (O(log n), O(log n))-approximation algorithm.
 Assuming that the optimal solution has compressed size s and the decompression time bound is T, the algorithm finds a solution with compressed space and decompression time bounded by s + O(log n) and T + O(log n).
 Very close to the optimum, even on small files.

Experimental Results (DBLP, 1GB)

Parsing	Compressed size	Decompression time
	(MB)	(seconds)
BC-ZIP - 1	129.8	2.95
BC-ZIP - 0.8	131.4	2.77
BC-ZIP - 0.6	134.6	2.56
BC-ZIP - 0.4	139.3	2.32
BC-ZIP - 0.2	148.5	1.96
Snappy	323.4	2.13
LZ4	214.7	1.98
zlib	190.5	11.65
bzip2	121.4	48.98

Experimental results show that our approach allows to effectively control the time-space trade-off in a practical yet principled manner. Moreover, it leads to parsings which are faster to decode and more space-succinct than those generated by highly tuned and engineered parsing heuristics, like those of Google Snappy and LZ4

References

 Andrea Farruggia, Paolo Ferragina, Antonio Frangioni, and Rossano Venturini.
 Bicriteria data compression.
 ArXiv e-prints, July 2013.

Paolo Ferragina, Igor Nitto, and Rossano Venturini. On the bit-complexity of lempel-ziv compression. In SODA, pages 768–777, 2009.

