Supervised Sentiment Extraction from Greek tweets

Konstantina Makrynioti, Vasilis Vassalos Athens University of Economics and Business

What is Twitter sentiment analysis?

The task of classifying tweets into categories depending on the sentiment they express.

3 categories (classes):

➤ Positive: if the tweet conveys a positive sentiment

➤ Negative: if the tweet conveys a negative sentiment

➤ Neutral: if the tweet encloses no sentiment at all

Focus on tweets in Greek language, but compare also with English and Chinese methods, and English datasets.

Preprocessing and Features

Training set:

- ➤ Removal of url links, mentions (@user), hashtags (#hashtag), abbreviation RT, stop words.
- Repetitive characters at the end of words reduced to one.
- ➤ Replacement of positive/negative emoticons and hashtags with the emoticons ②/③ respectively.
- ➤ Capitalization
- ➤ Stemming

Test set:

- Same steps as above.
- ➤ Part-of-speech tagging as an auxiliary step for negation identification that follows.

Feature engineering:

- 1.Bag-of-Words representation, unigrams.
- 2.Feature selection, experiments with Mutual Information and Chi Squared.

Negation Identification

Based on patterns of part-of-speech tags combined with negation words. Identify these patterns and store the token that is negated.

"I don't like tv"

Word "don't" followed by a verb → negation pattern

Word "like" → negated token

Following classification, if the negated token, e.g. the word "like", is one of the classification features, the polarity is reversed.

- ➤ Positive to Negative
- ➤ Negative to Positive
- ➤ Neutral no change

Experiments

Data Sets:

➤GR-train: 3191 Greek tweets, 973 positive, 1450 negative, 768 neutral

➤GR-test: 598 Greek tweets, 155 positive, 186 negative, 255 neutral

➤ GRNEG-test: 17% more Greek tweets containing negation

For experiments in English, the corpus of SemEval 2013* is used.

➤ EN-train: 9070 English tweets, 3280 positive, 1629 negative, 4161 neutral.

➤ EN-test: 3813 English tweets, 1572 positive, 601 negative, 1640 neutral

*SemEval 2013, task of Sentiment Analysis in Twitter, subtask of Message Polarity Classification.

Algorithms:

- ➤ Support Vector Machines
- ➤ Logistic Regression

Results:

Metric/CI	Positive	Negative	Neutral
ass			
Precision	0.783 /	0.783 /	0.723 /
	0.77	0.759	0.724
Recall	0.793 /	0.623 /	0.831 /
	0.78	0.629	0.815
F1	0.788 /	0.694 /	0.773 /
	0.775	0.688	0.767
Accuracy		75.4	1% / 74.5%

SVMs / Logistic Regression for GR-test

Metric/CI	Positive	Negative	Neutral
ass			
Precision	0.791 /	0.709 /	0.61 /
	0.784	0.618	0.594
Recall	0.597 /	0.329 /	0.873 /
	0.561	0.331	0.857
F1	0.68 /	0.45 /	0.718 /
	0.654	0.431	0.701
Accuracy		67.4	% / 65.2%

SVMs / Logistic Regression for EN-test

Also the methods by Go et al. and by Zhao et al. for two classes (positive, negative) were applied to GR-test and achieved 66.2% and 53.7% accuracy respectively.

Step	Accuracy on Greek	Accuracy on English
No step ommited	75.4%	67.4%
Without feature selection	54.3%	62.1%
Without stemming	62.3%	66%
Without negation identification	73%	67.3%

Sensitivity analysis

Feedback Loop

Correction of mistaken predictions by users to improve overall performance. A feedback loop is performed in two ways.

First way: the user provides the correct class and select one word from the tweet that indicates best its sentiment.

Second way: as stemming is applied to tweets, if two unigrams have the same stem, but different part-of-speech tags and different polarities, they will be handled incorrectly. The user provides the right polarity for a particular stem and part-of-speech tag.

After 82 feedback loops → 4% improvement in accuracy for GR-test.

Conclusion and Future Work

Conclusion:

- 1.Performance close to other methods proposed for English.
- 2. Specific characteristics of Greek language, such as tense, genus, intonation, affect the task of sentiment analysis.

Future Work:

- 1.Collection of a larger training set in Greek. Examine if the differences in performance with English and Chinese methods are due to this.
- 2.Dictionaries of subjective terms, antonyms/ synonyms.
- 3.Examination of other approaches for negation identification.
- 4. Assignment of sentiment to an entity and recognition of specific feeling concerning a person or a nation.