The *k*-mismatch problem revisited

R. Clifford¹, A. Fontaine¹, E. Porat², B.Sach¹ and T. Starikovskaya¹

¹University of Bristol, Department of Computer Science, Bristol, U.K. (@bristolcstheory)

²Bar-Ilan University, Department of Computer Science, Israel

The *k*-mismatch problem

The Hamming distance

The Hamming distance between two strings of the same length is the number of mismatches between them.

Let Ham(P, T)[i] be the Hamming distance between a *m*-length pattern *P* and a subtext T[i - m, i].

Algorithm

Approximate period

The 3k/2-period of P is the smallest integer ℓ , such that HAM($P[\ell, m-1], P[0, m-1-\ell]$) $\leq 3k/2$.

3k/2-period example

Let P = abcabaacabcaccacca and k = 4.

allyx.fontaine@bristol.ac.uk

The *k*-mismatch problem

Input: $\begin{cases} A \text{ pattern } P \text{ of length } m \\ A \text{ streaming text } T \text{ of length } n \end{cases}$

Output: For all positions $m \le i < n$, $\begin{cases}
Ham(P, T[i]) & \text{if } Ham(P, T[i]) \le k \\
No & \text{otherwise}
\end{cases}$ The 3k/2-period of P is $\ell = 3$.

1 shift a b c a b a a c a b c a c c a c c a a b c a b a a c a b c a c a c a c a c a c a c a c a c a c a

3 shifts a b c a b a a c a b c a c c a c c a c c a c c a b c a c c a c c a c c a c c a c c a c c a c c a b c a c c a c c a b c a c c a c c a b c a c c a c c a b c a c c a c c a c c a b c a c c a c c a c c a c c a b c a c a c a c a c a c a c a c a c a c a c a c a c a c a c a

3-mismatch example

T bbaccbcabac... ||||||||||||| P abcab||||| abcab|||| abcab||||

Case 1: Small approximate period ($\ell \leq k$ **)**

- 1. Identify a compressible region of the text which contains all the *k*-mismatches.
- 2. Partition this region into O(k) subtexts and the pattern

a b c a b | | a b c a b | a b c a b a b c a b

x: 3-mismatch position - x: No 3-mismatch - x: Mismatch

Faster solutions using less space

Space complexity

Problem	Previous	Ours
Deterministic online	$\widetilde{\Theta}(m)$	
Randomised online	_	$\widetilde{O}(k^2)$
$(1 + \varepsilon)$ -approximation	$\widetilde{O}(m/\epsilon^2)$	$\widetilde{O}(k^2/\epsilon^2)$
Randomised online worst case	$\widetilde{O}(k^3)$	$\widetilde{O}(k^2)$

into O(k) subpatterns.

3. Run length encode all the subpatterns and subtexts.

- 4. Compute run length encoded Hamming distances for each subpattern/subtext pair.
- 5. Sum the Hamming distances from Step 4.

Run-length encoding example

Let *P* = *abcabaacabcaccacca*.

Partition	Encoding
$P^0 = aaabcc$	(a, 3)(b, 1)(c, 2)
$P^1 = bbcccc$	(b, 2)(c, 4)
$P^2 = caaaaaa$	(<i>c</i> , 1)(<i>a</i> , 5)

All required information from P and Tencoded in only O(k) space!

Time complexity

Case 2: Large approximate period ($\ell > k$ **)**

1. Filter out all alignments of the pattern and text with Hamming distance greater than 3k/2.

2. Verify whether the Hamming distance is at most k at those positions.

Engineering and Physical Sciences Research Council