Efficient Algorithms for Graph Problems in the Verification and Synthesis of Systems

Krishnendu Chatterjee¹, Wolfgang Dvořák², Monika Henzinger², and *Veronika Loitzenbauer*² ¹IST Austria ²University of Vienna MADALGO summer school 2015, Aarhus, Denmark

Game Graphs and MDPs

Results

We developed algorithms with improved asymptotic upper bounds on the running time for the following problems:

Problem	old	new
Disj. Reach. on MDPs	$O(k \cdot MEC)$	O(<i>km</i> + MEC) [7]
Streett on graphs ¹	O(min{ <i>m</i> ^{1,5} , <i>mn</i> }) [4] O(min{m^{1.5}, n²}) [2]
Streett on MDPs ¹	$O(n \cdot MEC)$	O(min{ $m^{1.5}, n^2$ }) [7]

- 2 types of vertices: player 1 owns circles, player 2 owns triangles
- Game: token moved along edges, owner chooses outgoing edge
- \rightarrow forms infinite path
- Standard graph: no player 2 vertices
- Markov Decision Process (MDP): player 2 chooses edge randomly

Verification and Synthesis of Systems

Graphs model closed systems or open systems with uncontrollable inputs

MDPs additionally model probabilistic behavior

Game Graphs model open systems with both controllable and uncontrollable inputs

Verification Does the system satisfy its specification? **Synthesis** Generate a system according to the specification. The specification can be expressed (e.g.) as Streett objective. Parity games with d = 3 O(m)General Parity Games¹ O(m)

O(mn) [5] $O(mn^{d/3})$ [6]

 $O(n^{2.5})$ [2] $O(n^{(4+d)/3})$ [2]

¹simplified running time

- runtimes for input graph with m edges and n vertices
- MEC denotes the best running time of O(min{m^{1.5}, n²}) for computing the maximal end-component decomposition of an MDP
- results from [2] are improvements for dense graphs only
- parity games with 3 priorities are equivalent to 1-pair Streett games

Important Techniques

Sparse graphs local graph exploration "in parallel"Dense graphs degree-based hierarchical graph decompositionone of few sparsification techniques for directed graphs

Hierarchical Graph Decomposition [3, 1]

Objectives

Objective a set of infinite paths; is satisfied when one of the paths contained in the objective is played (MDPs: with probability 1)
Winning Set set of vertices from which a player can ensure that her objective is satisfied, no matter how the second player plays
Zero-sum Game the objective of player 2 is the complement of the player 1 objective

Objectives considered here:

Reachability Is some vertex of the set *U* reached at least once? **Disjunctive Reachability** Does Reachability hold for at least one of the sets U_1, \ldots, U_k ?

Büchi Is some vertex of the set *U* reached infinitely often?

Streett Does it hold for all pairs $(L_1, U_1), \ldots, (L_k, U_k)$ that whenever some vertex of L_i is reached infinitely often, then some vertex of U_i is reached infinitely often?

Parity For parity each vertex is assigned some natural number $\leq d$, its priority. Is the lowest priority that is visited infinitely often even?

graph G_i contains O(n · 2ⁱ) edges, i ∈ {0, 1, ..., log n}
→ e.g. first 2ⁱ outgoing edges of each vertex
find winning parts of size 2ⁱ in G_i and increase i if nothing found
→ if e.g. time in G_i proportional to edges, then O(n) time per vertex

Open Questions

- Parity games are in UP \cap coUP. Is there a polynomial time algorithm?
- Can reachability (and MEC) in MDPs be solved in linear time (like reachability and strongly connected components in graphs)?
- Are Streett objectives easier on graphs than on MDPs?

References

Example A parity game with 3 different priorities:

Player 1, the "even player", wins when the game starts at an orange vertex; player 2, the "odd player", wins from blue vertices. The colored edges represent optimal strategies of the two players.

- [1] K. Chatterjee and M. Henzinger. Efficient and Dynamic Algorithms for Alternating Büchi Games and Maximal End-component Decomposition, Journal of the ACM 61(3), 15:1–15:40 (2014), announced at SODA'11 and SODA'12.
- [2] K. Chatterjee, M. Henzinger, and V. Loitzenbauer. *Improved Algorithms for One-Pair and k-Pair Streett Objectives*, LICS 2015.
- [3] M. Henzinger, V. King, and T. Warnow. Constructing a Tree from Homeomorphic Subtrees, with Applications to Computational Evolutionary Biology, Algorithmica 24, 1–13 (1999), announced at SODA'96.
- [4] M. Henzinger and J. Telle. Faster Algorithms for the Nonemptiness of Streett Automata and for Communication Protocol Pruning, SWAT 1996, 16–27.
- [5] M. Jurdziński. *Small Progress Measures for Solving Parity Games*, STACS 2000, 290–301.
- [6] S. Schewe. Solving Parity Games in Big Steps, FSTTCS 2007, 449–460.
- [7] K. Chatterjee, W. Dvořák, M. Henzinger, and V. Loitzenbauer. Unpublished manuscript, 2015.