Discovering dynamic communities in interaction networks

Polina Rozenshtein · Nikolaj Tatti · Aristides Gionis HIIT, Aalto University

INTERACTION NETWORKS

Social interaction network:

- an edge between people represents some interaction: phone call, email, retweet, etc.
- multiple edges are annotated with time sequence of interactions

PROBLEM

Problem 1 *Given numbers K and B. Find a set* of intervals \mathcal{T} and a set of nodes $W \in V$:

> maximize $q(G(\mathcal{T}, W))$ s.t. $|\mathcal{T}| \leq K$ and $span(\mathcal{T}) \leq B$

PROPOSED ALGORITHM

Iterate until convergence:

Aalto University

OPTIMAL INTERVALS: GREEDY

Generalized Maximum Coverage:

For each set S_i item $e_i \in S_i$ has weight $w_i(e_i)$ and cost $c_i(e_i)$. Each set has a cost $c(S_i)$.

Given total cost budget B, find set of sets S, s.t.:

maximize
$$Q(S) = \sum_{S_i \in S} w_i(e_j)$$

Standard approach [2]: add next set *R*:

MODEL

Given: a graph G = (V, E), *m* timestamps Model: time series of edges $E = \{(u_i, v_i, t_i)\}$ with i = 1, ..., m and $u_i, v_i \in V$.

- 1. Solve Densest subgraph subproblem: Given fixed set of intervals \mathcal{T} , find optimal set of nodes W
- 2. Solve Optimal intervals subproblem: Given fixed set of nodes *W*, find optimal set of intervals \mathcal{T}

Densest subgraph subproblem is $O(n^3 \log n)$. Optimal intervals subproblem is NP-hard

Consider: set of nodes $W \subseteq V$ and set of time intervals $\mathcal{T} = \{[t_{j_1}, t_{j_2}], [t_{j_3}, t_{j_4}], ...\}$

Measure:

- cardinality $|\mathcal{T}| = k$ and total length of time intervals $span(\mathcal{T})$
- quality of induced subgraph $G(\mathcal{T}, W)$ average degree (density):

DENSEST SUBGRAPH

Algorithm by Charikar [1] has $\frac{1}{2}$ approximation guarantee and time complexity O(n).

- **input** : Fixed \mathcal{T} 1 start with induced graph $G(\mathcal{T}, V)$; 2 while graph is not empty do Delete node with the smallest 3
 - degree;

4 **return** densest seen subgraph

$$R = \arg \max \frac{Q(S \cup R) - Q(S)}{c(R)}$$

We combine two budgets.

 $R = \arg \max \frac{q(G(\mathcal{T} \cup R, W)) - q(G(\mathcal{T}, W))}{\max(x, y)}$ where $x = \frac{1}{K - T}$ and $y = \frac{span(R)}{B - span(T)}$

Greedy heuristics algorithm:

input : Fixed W 1 $\mathcal{T} \leftarrow \emptyset$; 2 for K times do Find *R*; 4 $\mathcal{T} = \mathcal{T} \cup R;$ 5 return \mathcal{T}

OPTIMAL INTERVALS:BINARY

Example: $G(\{[1, 2], [5, 10]\}, \{B, C, D, E\}))$

 $\bullet |\mathcal{T}| = 2, \quad span(\mathcal{T}) = 6$ $q(G(\mathcal{T}, W)) = 2.5$

EXPERIMENTS

OPTIMAL INTERVALS

- Greedy heuristics based on Maximal Coverage: edges — elements; intervals — sets
- Binary search for parameter α : $\max_{\mathcal{T}} q(G(\mathcal{T}, W)) - \alpha span(\mathcal{T}), \quad \text{s.t.} |\mathcal{T}| \le K$

Transform the problem:

 $\max_{\mathcal{T}} q(G(\mathcal{T}, W)) - \alpha span(\mathcal{T})$ s.t. $|\mathcal{T}| \leq K$

Note that for $\alpha = 0$ optimal \mathcal{T} equals to whole interval.

Additionally, $span(\mathcal{T})$ decreases with α . Thus, we can use binary search for α to fit the budget B.

However, the problem remains NP-hard for each fixed α .

Binary Search based algorithm:

input : Fixed W

- 1 $\mathcal{T} \leftarrow \emptyset$;
- 2 while not converged do
- Check budget *B*; 3
- Update α by binary search rule; 4
- With fixed α greedily find *K* 5 intervals to maximize the cost

Dataset	u(n(O))		D	11	UII	DU		UII	DU	DIIOL
Facebook	2.498	5.292	1	5	3.666	3.666	2.4	6	6	5
				10	3.75	3.75	2.4	8	8	5
			7	5	3.875	4	3	16	9	6
				10	4.285	4.47	3	14	17	6
Twitter	2.608	10.119	1	5	5.111	5.333	4	9	9	6
				10	6.4	6.4	4	10	10	6
			7	5	6	6.222	4.666	14	9	9
				10	6.923	7.2	4.666	13	15	9

REFERENCES

[1] M. Charikar. Greedy approximation algorithms for finding dense components in a graph. *APPROX*, 2000. [2] R. Cohen and L. Katzir. The generalized maximum coverage problem. *Information Processing Letters*, 108, 2008. function $q(G, (W\mathcal{T}))$;

6 return best solution that fits budget B

TWITTER EXAMPLE

Twitter dataset: 3 months of tweets from Helsinki region. Discovered community: 8 Twitter users with density = 6.0Among these users: Aalto Entrepreneurship Society aaltoes and Aalto Venture Garage Retrieved hash-tags: summerofstartups, startup, entrepreneur, slush10, aaltoes, me310, vc, churchillclub