Nearest Neighbor Search (3)

Alex Andoni (Columbia University)

MADALGO Summer School on Streaming Algorithms 2015

Time-Space Trade-offs (Euclidean)

Beyond Locality Sensitive Hashing

		-				_
	Space	Time	Exponent	c = 2	Reference	
Hamming	$n^{1+ ho}$	$n^{ ho}$	$\rho = 1/c$	$\rho = 1/2$	[IM'98]	Глен
space			$\rho \ge 1/c$		[MNP'06, OWZ'11]	
	$n^{1+\rho}$	$n^{ ho}$	$\rho \approx \frac{1}{2c-1}$	$\rho = 1/3$	[AINR'14, AR'15]	
						I
Euclidean	$n^{1+\rho}$	$n^{ ho}$	$\rho\approx 1/c^2$	$\rho = 1/4$	[Al'06]	
space			$\rho \ge 1/c^2$		[MNP'06, OWZ'11]	
	$n^{1+\rho}$	$n^{ ho}$	$\rho \approx \frac{1}{2c^2 - 1}$	$\rho = 1/7$	[AINR'14,AR'15]	

New approach?

Data-dependent hashing

- A random hash function, chosen after seeing the given dataset
- Efficiently computable

A look at LSH lower bounds

LSH lower bounds in Hamming space

- Fourier analytic
- [Motwani-Naor Panigrahy'06]
 [O'Donnell-Wu-Zhou'll]
 - *H* distribution over hash functions $h: \{0,1\}^d \rightarrow U$
 - Far pair: p, q random, distance = d/2 ϵd
 - Close pair: p, q random at distance = $\frac{d}{c} \frac{\epsilon d}{c}$
 - Get $\rho \ge 0.5/c$ $\rho \ge 1/c$

5

Why not NNS lower bound?

Suppose we try to apply [OWZ'II] to NNS

- Pick random q
- All the "far point" are concentrated in a small ball of radius $\epsilon d/2$
- Easy to see at preprocessing: actual near neighbor close to the center of the minimum enclosing ball

Construction of hash function

[A.-Indyk-Nguyen-Razenshteyn'14, A.-Razenshteyn'15]

Two components:

- Nice geometric structure
- Reduction to such structure

data-dependent

Like a "Regularity Lemma" for a set of points

Nice geometric structure

Like a random dataset on a sphere

• s.t. random points at distance $\approx cr$

• Lemma:
$$\rho = \frac{1}{2c^2 - 1}$$

- via Cap Carving
- curvature

Reduction to nice structure

Idea:

iteratively decrease the radius of minimum enclosing ball

- Algorithm:
 - find dense clusters
 - with smaller radius
 - large fraction of points
 - recurse on dense clusters
 - apply cap carving on the rest
 - recurse on each "cap"
 - eg, dense clusters might reappear

radius = 99cr

*picture not to scale & dimension

Dense clusters

- Current dataset: radius R
- A dense cluster:
 - Contains $n^{1-\delta}$ points
 - Smaller radius: $(1 \Omega(\epsilon^2))R$
- After we remove all clusters:
 - For any point on the surface, there are at most $n^{1-\delta}$ points within distance $(\sqrt{2} \epsilon)R$ ϵ trade-off δ trade-off

 $(\sqrt{2}-\epsilon)R$

- The other points are essentially orthogonal
- When applying Cap Carving with parameters (P_1, P_2) :
 - Empirical number of far pts colliding with query: $nP_2 + n^{1-\delta}$
 - As long as $nP_2 \gg n^{1-\delta}$, the "impurity" doesn't matter!

Tree recap

- During query:
 - Recurse in all clusters
 - Just in one bucket in CapCarving
- Will look in >1 leaf!
- How much branching?
 - Claim: at most $(n^{\delta} + 1)^{O(1/\epsilon^2)}$
 - Each time we branch
 - at most n^{δ} clusters (+1)
 - ▶ a cluster reduces radius by $\Omega(\epsilon^2)$
 - > cluster-depth at most $100/\Omega(\epsilon^2)$
- Progress in 2 ways:
 - Clusters reduce radius
 - CapCarving nodes reduce the # of far points (empirical P_2)

 δ trade-off

• A tree succeeds with probability $\ge n^{-\frac{1}{2c^2-1}-o(1)}$

Fast preprocessing

How to find the dense clusters fast?

- Step I: reduce to $O(n^2)$ time.
 - Enough to consider centers that are data points
- Step 2: reduce to near-linear time.
 - Down-sample!
 - Ok because we want clusters of size $n^{1-\delta}$
 - After downsampling by a factor of \sqrt{n} , a cluster is still somewhat heavy.

Other details

In the analysis,

- Instead of working with "probability of collision with far point"
 P₂, work with "empirical estimate" (the actual number)
- A little delicate: interplay with "probability of collision with close point", P_1
 - The empirical P_2 important only for the bucket where the query falls into
 - Need to condition on collision with close point in the above empirical estimate
- In dense clusters, points may appear *inside* the balls
 - whereas CapCarving works for points on the sphere
 - need to partition balls into thin shells (introduces more branching)

Data-dependent hashing wrap-up

- Dynamicity?
 - Dynamization techniques [Overmars-van Leeuwen'81]
- Better bounds?
 - [AR]: optimal even for data-dependent hashing!
 - In the right formalization (to rule out Voronoi diagram)
 - Description complexity of the hash function is $n^{1-\Omega(1)}$
 - High dimension
- NNS for ℓ_∞
 - [Indyk'98] gets approximation $O(\log \log d)$ (poly space, sublinear qt)
 - Cf., ℓ_{∞} has no non-trivial sketch!
 - Some matching lower bounds in the relevant model [ACP'08, KP'12]
 - Can be thought of as data-dependent hashing
- NNS for any norm?

Beyond
$$\ell_p$$
's ?

Sketching/NNS for other distances?

- Earth Mover Distance:
 - Given two sets A, B of points in a metric space
 - EMD(A,B) = min cost bipartite matching between A and B
- Applications in image vision

Algorithms via embedding

- Embedding:
 - Map sets into vectors in ℓ_1 preserving the distance (approximately)
 - Then use algorithms for ℓ_1 !
- Say, EMD over $[s]^2$
- Theorem [Cha02, IT03]: Exists a map f mapping all A ⊂
 [s]² into ℓ₁ with distortion O(log s):
 - ▶ i.e., for any $A, B \subset [s]^2$ we have: $EMD(A, B) \leq ||f(A) - f(B)||_1 \leq O(\log s) \cdot EMD(A, B)$
- Sketch: $O(\log s)$ -approximation in $\tilde{O}(1)$ space

Embedda
bility into ℓ_1

Metric	Upper bound
Earth-mover distance	$O(\log s)$
(s-sized sets in 2D plane)	[Cha02, IT03]
Earth-mover distance $(s-sized sets in \{0,1\}^d)$	$O(\log s \cdot \log d)$ [AIK08]
Edit distance over $\{0,1\}^d$	$2^{\tilde{O}(\sqrt{\log d})}$
(#indels to transform x->y)	[OR05]
Ulam (edit distance between permutations)	0(log d) [CK06]
Block edit distance	$\tilde{O}(\log d)$ [MS00, CM07]

```
edit( banana ,
```

ananas) = 2

edit(1234567, 7123456) = 2

Non-embedda
bility into ℓ_1

Metric	Upper bound	Lower bounds
Earth-mover distance	$O(\log s)$	$\Omega(\sqrt{\log s})$
(s-sized sets in 2D plane)		[NS07]
Earth-mover distance	$O(\log s \cdot \log d)$	$\Omega(\log s)$
$(s-sized sets in {0,1}^d)$	[AIK08]	[KN05]
Edit distance over $\{0,1\}^d$	$2^{\tilde{O}(\sqrt{\log d})}$	$\Omega(\log d)$
(#indels to transform x->y)	[OR05]	[KIN05,KR06]
Ulam (edit distance between	$O(\log d)$	$\widetilde{\Omega}(\log d)$
permutations)	[CK06]	[AK07]
Block edit distance	$\tilde{O}(\log d)$	4/3

Other hosts possible, with worse sketching complexity

- EMD: α -approximation in $O(s^{1/\alpha})$ space [ADIW'09]
 - embed into a more complex space, and use Precision Sampling

Theory of sketching

- When is sketching possible?
- [BO'10]: characterize when can sketch for "generalized frequency moments":
 - $\sum_i F(x_i)$ for increasing functions F
- [LNW'14]: in general streams (insertions and deletions), for estimating any f(x), might as well have f which is *linear*
- [AKR'15]: in the case of a norm X
 - > X has very efficient sketch: $\mathcal{O}(1)$ size and approximation (like for ℓ_p for $p\leq 2)$

if and only if X embeds into some ℓ_p for $p \leq 2$!

- Eg, using [NS07], EMD does not admit very efficient sketches
- Characterization in other cases?