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Beyond Locality Sensitive Hashing
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New approach?

‘ Data-dependent hashing |

» A random hash function, , -
chosen after seeing the given §§’4’
dataset . i\a\_‘

» Efficiently computable , AQ'A\"
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A look at LSH lower bounds

» LSH lower bounds in Hamming space

Fourier analytic

—[Motwani-NaerPanigraty'06T— [O’Donnell-Wu-Zhou'’l |]
H distribution over hash functions h:{0,1}¢ - U
Far pair: p, g random, distance = d#Z ed

Close pair: p, ¢ random at distance = }CZ ﬂ

Getw ¢

p=1/c



Why not NNS lower bound?
» Suppose we try to apply [OWZ’1 1] to NNS

Pick random ¢

All the “far point” are concentrated in a small ball of radius
ed/2

Easy to see at preprocessing: actual near neighbor close to the
center of the minimum enclosing ball



Construction of hash function
[A.-Indyk-Nguyen-Razenshteyn’ 4, A.-Razenshteyn’| 5]

» Two components:
Nice geometric structure ¢==m has better LSH
Reduction to such structure <=mmsm data-dependent

» Like a “Regularity Lemma” for a set of points



Nice geometric structure

» Like a random dataset on a sphere

s.t. random points at distance = cr

1
2c%-1
via Cap Carving

» Lemma: p =

curvature




Reduction to nice structure

» ldea:

iteratively decrease the radius of
minimum enclosing ball

. ?
» Algorithm: WA @l
. * no dense clusters
find dense clusters ‘
with smaller radius * |ike “random dataset”
large fraction of points with radius=100cr
recurse on dense clusters ‘ ver
apply cap carving on the rest | k even better! /

recurse on each “cap”

eg, dense clusters might reappear :
& & PP radius = 99c¢r

*picture not to scale & dimension



Hash function

» Described by a tree (like a hash table)

ragius = 100cr

*picture not to scale&dimensior



Dense clusters

» Current dataset: radius R

» A dense cluster:

Contains n'~9 points
Smaller radius: (1 — Q(€2))R

» After we remove all clusters:

For any point on the surface, there are at most n1 =% points
within distance (\/E — E)R € trade-off ] trade-off ]

The other points are essentially orthogonal! \
» When applying Cap Carving with pdrameters (P;, P;):

?

Empirical number of far pts iding with query: nP, + nl-o

1-6

As long as nP, > n*~°, the “impurity” doesn’t matter!



Tree recap
» During query:

Recurse in all clusters
Just in one bucket in CapCarving

» Will look in >1 leaf!
» How much branching?

2
Claim: at most (n5 + 1)0(1/6 )

Each time we branch
at most n® clusters (+1)
a cluster reduces radius by Q(e?)

cluster-depth at most 100/Q(e2) .
» Progress in 2 ways: § trade-off ]

Clusters reduce radius
CapCarving nodes reduce the # of far points (empirical P5)

» A tree succeeds with probability > n"zez-1 °@W
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Fast preprocessing

» How to find the dense clusters fast!?

» Step |:reduce to 0(n?) time.
Enough to consider centers that

are data points

» Step 2: reduce to near-linear time.
Down-sample!
Ok because we want clusters of size n1=9

After downsampling by a factor of \/n, a cluster is still
somewhat heavy.
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Other details

» In the analysis,
Instead of working with “probability of collision with far point”
P,, work with “empirical estimate” (the actual number)
A little delicate: interplay with “probability of collision with
close point”, P;
The empirical P, important only for the bucket where the query falls
into
Need to condition on collision with close point in the above empirical
estimate
In dense clusters, points may appear inside the balls

whereas CapCarving works for points on the sphere
need to partition balls into thin shells (introduces more branching)
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Data-dependent hashing wrap-up

» Dynamicity!?

Dynamization techniques [Overmars-van Leeuwen’81]
» Better bounds!

[AR]: optimal even for data-dependent hashing!

In the right formalization (to rule out Voronoi diagram)

Description complexity of the hash function is nl—01)

High dimension

» NNS for £,
[Indyk’98] gets approximation O (loglogd) (poly space, sublinear qt)

Cf., £, has no non-trivial sketch!
Some matching lower bounds in the relevant model [ACP’08, KP’12]

Can be thought of as data-dependent hashing
» NNS for any norm!?
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Sketching/NNS for other distances?

» Earth Mover Distance:
Given two sets A, B of points in a metric space
EMD(A,B) = min cost bipartite matching between A and B

» Applications in image vision .

L
!

") EMD (A, B) small or large?



Algorithms via embedding
» Embedding:

Map sets into vectors in £ preserving the distance
(approximately)

Then use algorithms for £ !

» Say, EMD over [s]?

» Theorem [Cha02, ITO3]: Exists a map f mapping all A C
[s]? into £, with distortion O(logs):

i.e., for any A, B C [s]? we have:
EMD(A,B) < [|f(A) — f(B)|l. < O(logs) - EMD(A, B)

» Sketch: O (log s)-approximation in O (1) space



Embeddability into £,

Metric | Upper boun edit( banana ,

Earth-mover distance

(s-sized sets in 2D plane)
Earth-mover distance
(s-sized sets in {0,1}%)

Edit distance over {0,1}¢
(#indels to transform x->y)

Ulam (edit distance between
permutations)

Block edit distance

O(log s)
[Cha02, ITO3]

O(logs - logd)

[AIKO8]
20(/log d)

[ORO5]
O(log d)

[CKO6]
0(log d)

[MS00, CM07]

ananas ) =12

edit(1234567,
7123456) = 2



Non-embeddability into #4
Mewic  |Upperbouna |

Earth-mover distance O(logs) Q(\/@)

(s-sized sets in 2D plane) (S5 LD [NSO7]
Earth-mover distance O(logs - logd) Q(log s)

(s-sized sets in {0,1}%) [AINOE [KNO3]
Edit distance over {0,1}¢ 20(;/log d) Q(log d)

(#indels to transform x->y) [ORO5] [KNOS,KRO6]
Ulam (edit distance between 0(logd) A(logd)
permutations) [CKO6] [AKO7]
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» Other hosts possible, with worse sketching complexity
» EMD: a-approximation in 0(s1/#) space [ADIW’09]

embed into a more complex space, and use Precision Sampling



Theory of sketching

» When is sketching possible!?

» [BO’10]: characterize when can sketch for “generalized
frequency moments’”:

2.; F(x;) for increasing functions F
» [LNW’14]:in general streams (insertions and deletions), for
estimating any f (x), might as well have f which is linear
» [AKR’I5]:in the case of a norm X

X has very efficient sketch: O (1) size and approximation (like for ¢,
forp < 2)

if and only if X embeds into some ¢, forp < 2!

Eg, using [NSO7], EMD does not admit very efficient sketches
» Characterization in other cases?



