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Time-Space Trade-offs (Euclidean)

𝜎 = 𝑂(1/𝑐2) [AI’06]

𝑛4/𝜖
2 𝑂(𝑑 log 𝑛) 𝑐 = 1 + 𝜖 [KOR’98, IM’98, Pan’06]

≈ 𝑛 𝑛𝜎 𝜎 = 2.09/𝑐 [Ind’01, Pan’06]

Space Time Comment Reference

𝜌 = 1/𝑐2 [AI’06]

𝑛1+𝜌 𝑛𝜌 𝜌 = 1/𝑐 [IM’98, DIIM’04]
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𝑛𝑜(1/𝜖
2) ω(1) memory lookups [AIP’06]

𝑛1+𝑜(1/𝑐
2) ω(1) memory lookups [PTW’08, PTW’10]

𝜌 ≥ 1/𝑐2 [MNP’06, OWZ’11]



Beyond Locality Sensitive Hashing

Space Time Exponent 𝒄 = 𝟐 Reference

𝑛1+𝜌 𝑛𝜌 𝜌 = 1/𝑐 𝜌 = 𝟏/𝟐 [IM’98]

𝑛1+𝜌 𝑛𝜌 𝜌 ≈ 1/𝑐2 𝜌 = 𝟏/𝟒 [AI’06]

Hamming

space

Euclidean

space

𝜌 ≥ 1/𝑐 [MNP’06, OWZ’11]

𝜌 ≥ 1/𝑐2 [MNP’06, OWZ’11]

𝑛1+𝜌 𝑛𝜌
𝜌 ≈

1

2𝑐 − 1

𝜌 = 𝟏/𝟑 [AINR’14,  AR’15]

𝑛1+𝜌 𝑛𝜌
𝜌 ≈

1

2𝑐2 − 1

𝜌 = 𝟏/𝟕 [AINR’14, AR’15]

LSH

LSH
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New approach?
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 A random hash function, 

chosen after seeing the given 

dataset

 Efficiently computable

Data-dependent hashing



A look at LSH lower bounds

 LSH lower bounds in Hamming space

 Fourier analytic

 [Motwani-Naor-Panigrahy’06]

 𝐻 distribution over hash functions ℎ: 0,1 𝑑 → 𝑈

 Far pair: 𝑝, 𝑞 random, distance = 𝑑/2

 Close pair: 𝑝, 𝑞 random at distance =  
𝑑/2

𝑐

 Get 𝜌 ≥ 0.5/𝑐
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[O’Donnell-Wu-Zhou’11]

𝜖𝑑

𝜖𝑑

𝑐

𝜌 ≥ 1/𝑐



Why not NNS lower bound?

 Suppose we try to apply [OWZ’11] to NNS

 Pick random 𝑞

 All the “far point” are concentrated in a small ball of radius 

𝜖𝑑/2

 Easy to see at preprocessing: actual near neighbor close to the 

center of the minimum enclosing ball
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Construction of hash function
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 Two components:

 Nice geometric structure

 Reduction to such structure

 Like a “Regularity Lemma” for a set of points

has better LSH

data-dependent

[A.-Indyk-Nguyen-Razenshteyn’14, A.-Razenshteyn’15]



Nice geometric structure
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 Like a random dataset on a sphere

 s.t. random points at distance ≈ 𝑐𝑟

 Lemma: 𝜌 =
1

2𝑐2−1

 via Cap Carving

 curvature
𝑐𝑟

𝑐𝑟/ 2



Reduction to nice structure
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 Idea: 

iteratively decrease the radius of 

minimum enclosing ball

 Algorithm:

 find dense clusters

 with smaller radius

 large fraction of points

 recurse on dense clusters

 apply cap carving on the rest

 recurse on each “cap”

 eg, dense clusters might reappear
radius = 99𝑐𝑟

*picture not to scale & dimension

radius = 100𝑐𝑟

Why ok?Why ok?

• no dense clusters

• like “random dataset” 

with radius=100𝑐𝑟

• even better!



Hash function

10

 Described by a tree (like a hash table)

radius = 100𝑐𝑟

*picture not to scale&dimension



Dense clusters

 Current dataset: radius 𝑅

 A dense cluster:

 Contains 𝑛1−𝛿 points

 Smaller radius: 1 − Ω 𝜖2 𝑅

 After we remove all clusters:

 For any point on the surface, there are at most 𝑛1−𝛿 points 

within distance 2 − 𝜖 𝑅

 The other points are essentially orthogonal !

 When applying Cap Carving with parameters (𝑃1, 𝑃2):

 Empirical number of far pts colliding with query: 𝑛𝑃2 + 𝑛1−𝛿

 As long as 𝑛𝑃2 ≫ 𝑛1−𝛿, the “impurity” doesn’t matter!

2 − 𝜖 𝑅

𝜖 trade-off 𝛿 trade-off

?



Tree recap
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 During query:
 Recurse in all clusters

 Just in one bucket in CapCarving

 Will look in >1 leaf!

 How much branching?

 Claim: at most 𝑛𝛿 + 1
𝑂(1/𝜖2)

 Each time we branch

 at most 𝑛𝛿 clusters (+1)

 a cluster reduces radius by Ω(𝜖2)
 cluster-depth at most 100/Ω 𝜖2

 Progress in 2 ways:
 Clusters reduce radius

 CapCarving nodes reduce the # of far points (empirical 𝑃2)

 A tree succeeds with probability ≥ 𝑛
−

1

2𝑐2−1
−𝑜(1)

𝛿 trade-off



Fast preprocessing
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 How to find the dense clusters fast?

 Step 1: reduce to 𝑂(𝑛2) time.

 Enough to consider centers that 

are data points

 Step 2: reduce to near-linear time.

 Down-sample!

 Ok because we want clusters of size 𝑛1−𝛿

 After downsampling by a factor of 𝑛, a cluster is still 

somewhat heavy.

2 − 𝜖 𝑅



Other details
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 In the analysis,

 Instead of working with “probability of collision with far point” 

𝑃2, work with “empirical estimate” (the actual number)

 A little delicate: interplay with “probability of collision with 

close point”, 𝑃1
 The empirical 𝑃2 important only for the bucket where the query falls 

into

 Need to condition on collision with close point in the above empirical 

estimate

 In dense clusters, points may appear inside the balls

 whereas CapCarving works for points on the sphere

 need to partition balls into thin shells (introduces more branching)



Data-dependent hashing wrap-up
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 Dynamicity?

 Dynamization techniques [Overmars-van Leeuwen’81]

 Better bounds?

 [AR]: optimal even for data-dependent hashing!

 In the right formalization (to rule out  Voronoi diagram)

 Description complexity of the hash function is 𝑛1−Ω(1)

 High dimension

 NNS for ℓ∞
 [Indyk’98] gets approximation 𝑂(log log𝑑) (poly space, sublinear qt)

 Cf., ℓ∞ has no non-trivial sketch!

 Some matching lower bounds in the relevant model [ACP’08, KP’12]

 Can be thought of as data-dependent hashing

 NNS for any norm?
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Beyond ℓ𝑝’s ?



Sketching/NNS for other distances?

 Earth Mover Distance:

 Given two sets A, B of points in a metric space

 EMD(A,B) = min cost bipartite matching between A and B

 Applications in image vision

𝑆

𝑆

010110

010101

𝐸𝑀𝐷(𝐴, 𝐵) small or large?



Algorithms via embedding

 Embedding:

 Map sets into vectors in ℓ1 preserving the distance 

(approximately)

 Then use algorithms for ℓ1 !

 Say, EMD over 𝑠 2

 Theorem [Cha02, IT03]: Exists a map 𝑓 mapping all 𝐴 ⊂
𝑠 2 into ℓ1 with distortion 𝑂(log 𝑠): 

 i.e., for any 𝐴,𝐵 ⊂ 𝑠 2 we have:

𝐸𝑀𝐷 𝐴, 𝐵 ≤ ||𝑓 𝐴 − 𝑓 𝐵 ||1 ≤ 𝑂(log 𝑠) ⋅ 𝐸𝑀𝐷(𝐴, 𝐵)

 Sketch: 𝑂 log 𝑠 -approximation in  𝑂(1) space



Metric Upper bound

Earth-mover distance

(𝑠-sized sets in 2D plane)

𝑂 log 𝑠
[Cha02, IT03]

Earth-mover distance

(𝑠-sized sets in 0,1 𝑑)

𝑂(log 𝑠 ⋅ log 𝑑)
[AIK08]

Edit distance over 0,1 𝑑

(#indels to transform x->y)

2  𝑂 log 𝑑

[OR05]

Ulam (edit distance between 

permutations)

𝑂 log 𝑑
[CK06]

Block edit distance  𝑂 log 𝑑
[MS00, CM07]

edit(1234567,

7123456) = 2

edit(  banana  ,

ananas ) = 2

Embeddability into ℓ1



Metric Upper bound

Earth-mover distance

(𝑠-sized sets in 2D plane)

𝑂 log 𝑠
[Cha02, IT03]

Earth-mover distance

(𝑠-sized sets in 0,1 𝑑)

𝑂(log 𝑠 ⋅ log 𝑑)
[AIK08]

Edit distance over 0,1 𝑑

(#indels to transform x->y)

2  𝑂 log 𝑑

[OR05]

Ulam (edit distance between 

permutations)

𝑂 log 𝑑
[CK06]

Block edit distance  𝑂 log 𝑑
[MS00, CM07]

Lower bounds

Ω log 𝑠

[NS07]

Ω log 𝑠
[KN05]

Ω log 𝑑
[KN05,KR06]

 Ω log 𝑑
[AK07]

4/3

[Cor03]

Non-embeddability into ℓ1

 Other hosts possible, with worse sketching complexity

 EMD: 𝛼-approximation in 𝑂 𝑠1/𝛼 space [ADIW’09]

 embed into a more complex space, and use Precision Sampling



Theory of sketching

 When is sketching possible?

 [BO’10]: characterize when can sketch for “generalized 
frequency moments”:

  𝑖 𝐹(𝑥𝑖) for increasing functions 𝐹

 [LNW’14]: in general streams (insertions and deletions), for 
estimating any 𝑓(𝑥), might as well have 𝑓 which is linear

 [AKR’15]: in the case of a norm 𝑋
 𝑋 has very efficient sketch: 𝑂(1) size and approximation (like for ℓ𝑝

for 𝑝 ≤ 2)

if and only if 𝑋 embeds into some ℓ𝑝 for 𝑝 ≤ 2 !

 Eg, using [NS07], EMD does not admit very efficient sketches

 Characterization in other cases?


