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Time-Space Trade-offs (Euclidean)

𝜎 = 𝑂(1/𝑐2) [AI’06]

𝑛4/𝜖
2 𝑂(𝑑 log 𝑛) 𝑐 = 1 + 𝜖 [KOR’98, IM’98, Pan’06]

≈ 𝑛 𝑛𝜎 𝜎 = 2.09/𝑐 [Ind’01, Pan’06]

Space Time Comment Reference

𝜌 = 1/𝑐2 [AI’06]

𝑛1+𝜌 𝑛𝜌 𝜌 = 1/𝑐 [IM’98, DIIM’04]
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𝑛𝑜(1/𝜖
2) ω(1) memory lookups [AIP’06]

𝑛1+𝑜(1/𝑐
2) ω(1) memory lookups [PTW’08, PTW’10]

𝜌 ≥ 1/𝑐2 [MNP’06, OWZ’11]



Beyond Locality Sensitive Hashing

Space Time Exponent 𝒄 = 𝟐 Reference

𝑛1+𝜌 𝑛𝜌 𝜌 = 1/𝑐 𝜌 = 𝟏/𝟐 [IM’98]

𝑛1+𝜌 𝑛𝜌 𝜌 ≈ 1/𝑐2 𝜌 = 𝟏/𝟒 [AI’06]

Hamming

space

Euclidean

space

𝜌 ≥ 1/𝑐 [MNP’06, OWZ’11]

𝜌 ≥ 1/𝑐2 [MNP’06, OWZ’11]

𝑛1+𝜌 𝑛𝜌
𝜌 ≈

1

2𝑐 − 1

𝜌 = 𝟏/𝟑 [AINR’14,  AR’15]

𝑛1+𝜌 𝑛𝜌
𝜌 ≈

1

2𝑐2 − 1

𝜌 = 𝟏/𝟕 [AINR’14, AR’15]

LSH

LSH
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New approach?
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 A random hash function, 

chosen after seeing the given 

dataset

 Efficiently computable

Data-dependent hashing



A look at LSH lower bounds

 LSH lower bounds in Hamming space

 Fourier analytic

 [Motwani-Naor-Panigrahy’06]

 𝐻 distribution over hash functions ℎ: 0,1 𝑑 → 𝑈

 Far pair: 𝑝, 𝑞 random, distance = 𝑑/2

 Close pair: 𝑝, 𝑞 random at distance =  
𝑑/2

𝑐

 Get 𝜌 ≥ 0.5/𝑐
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[O’Donnell-Wu-Zhou’11]

𝜖𝑑

𝜖𝑑

𝑐

𝜌 ≥ 1/𝑐



Why not NNS lower bound?

 Suppose we try to apply [OWZ’11] to NNS

 Pick random 𝑞

 All the “far point” are concentrated in a small ball of radius 

𝜖𝑑/2

 Easy to see at preprocessing: actual near neighbor close to the 

center of the minimum enclosing ball
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Construction of hash function
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 Two components:

 Nice geometric structure

 Reduction to such structure

 Like a “Regularity Lemma” for a set of points

has better LSH

data-dependent

[A.-Indyk-Nguyen-Razenshteyn’14, A.-Razenshteyn’15]



Nice geometric structure
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 Like a random dataset on a sphere

 s.t. random points at distance ≈ 𝑐𝑟

 Lemma: 𝜌 =
1

2𝑐2−1

 via Cap Carving

 curvature
𝑐𝑟

𝑐𝑟/ 2



Reduction to nice structure
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 Idea: 

iteratively decrease the radius of 

minimum enclosing ball

 Algorithm:

 find dense clusters

 with smaller radius

 large fraction of points

 recurse on dense clusters

 apply cap carving on the rest

 recurse on each “cap”

 eg, dense clusters might reappear
radius = 99𝑐𝑟

*picture not to scale & dimension

radius = 100𝑐𝑟

Why ok?Why ok?

• no dense clusters

• like “random dataset” 

with radius=100𝑐𝑟

• even better!



Hash function
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 Described by a tree (like a hash table)

radius = 100𝑐𝑟

*picture not to scale&dimension



Dense clusters

 Current dataset: radius 𝑅

 A dense cluster:

 Contains 𝑛1−𝛿 points

 Smaller radius: 1 − Ω 𝜖2 𝑅

 After we remove all clusters:

 For any point on the surface, there are at most 𝑛1−𝛿 points 

within distance 2 − 𝜖 𝑅

 The other points are essentially orthogonal !

 When applying Cap Carving with parameters (𝑃1, 𝑃2):

 Empirical number of far pts colliding with query: 𝑛𝑃2 + 𝑛1−𝛿

 As long as 𝑛𝑃2 ≫ 𝑛1−𝛿, the “impurity” doesn’t matter!

2 − 𝜖 𝑅

𝜖 trade-off 𝛿 trade-off

?



Tree recap
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 During query:
 Recurse in all clusters

 Just in one bucket in CapCarving

 Will look in >1 leaf!

 How much branching?

 Claim: at most 𝑛𝛿 + 1
𝑂(1/𝜖2)

 Each time we branch

 at most 𝑛𝛿 clusters (+1)

 a cluster reduces radius by Ω(𝜖2)
 cluster-depth at most 100/Ω 𝜖2

 Progress in 2 ways:
 Clusters reduce radius

 CapCarving nodes reduce the # of far points (empirical 𝑃2)

 A tree succeeds with probability ≥ 𝑛
−

1

2𝑐2−1
−𝑜(1)

𝛿 trade-off



Fast preprocessing
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 How to find the dense clusters fast?

 Step 1: reduce to 𝑂(𝑛2) time.

 Enough to consider centers that 

are data points

 Step 2: reduce to near-linear time.

 Down-sample!

 Ok because we want clusters of size 𝑛1−𝛿

 After downsampling by a factor of 𝑛, a cluster is still 

somewhat heavy.

2 − 𝜖 𝑅



Other details
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 In the analysis,

 Instead of working with “probability of collision with far point” 

𝑃2, work with “empirical estimate” (the actual number)

 A little delicate: interplay with “probability of collision with 

close point”, 𝑃1
 The empirical 𝑃2 important only for the bucket where the query falls 

into

 Need to condition on collision with close point in the above empirical 

estimate

 In dense clusters, points may appear inside the balls

 whereas CapCarving works for points on the sphere

 need to partition balls into thin shells (introduces more branching)



Data-dependent hashing wrap-up
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 Dynamicity?

 Dynamization techniques [Overmars-van Leeuwen’81]

 Better bounds?

 [AR]: optimal even for data-dependent hashing!

 In the right formalization (to rule out  Voronoi diagram)

 Description complexity of the hash function is 𝑛1−Ω(1)

 High dimension

 NNS for ℓ∞
 [Indyk’98] gets approximation 𝑂(log log𝑑) (poly space, sublinear qt)

 Cf., ℓ∞ has no non-trivial sketch!

 Some matching lower bounds in the relevant model [ACP’08, KP’12]

 Can be thought of as data-dependent hashing

 NNS for any norm?
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Beyond ℓ𝑝’s ?



Sketching/NNS for other distances?

 Earth Mover Distance:

 Given two sets A, B of points in a metric space

 EMD(A,B) = min cost bipartite matching between A and B

 Applications in image vision

𝑆

𝑆

010110

010101

𝐸𝑀𝐷(𝐴, 𝐵) small or large?



Algorithms via embedding

 Embedding:

 Map sets into vectors in ℓ1 preserving the distance 

(approximately)

 Then use algorithms for ℓ1 !

 Say, EMD over 𝑠 2

 Theorem [Cha02, IT03]: Exists a map 𝑓 mapping all 𝐴 ⊂
𝑠 2 into ℓ1 with distortion 𝑂(log 𝑠): 

 i.e., for any 𝐴,𝐵 ⊂ 𝑠 2 we have:

𝐸𝑀𝐷 𝐴, 𝐵 ≤ ||𝑓 𝐴 − 𝑓 𝐵 ||1 ≤ 𝑂(log 𝑠) ⋅ 𝐸𝑀𝐷(𝐴, 𝐵)

 Sketch: 𝑂 log 𝑠 -approximation in  𝑂(1) space



Metric Upper bound

Earth-mover distance

(𝑠-sized sets in 2D plane)

𝑂 log 𝑠
[Cha02, IT03]

Earth-mover distance

(𝑠-sized sets in 0,1 𝑑)

𝑂(log 𝑠 ⋅ log 𝑑)
[AIK08]

Edit distance over 0,1 𝑑

(#indels to transform x->y)

2  𝑂 log 𝑑

[OR05]

Ulam (edit distance between 

permutations)

𝑂 log 𝑑
[CK06]

Block edit distance  𝑂 log 𝑑
[MS00, CM07]

edit(1234567,

7123456) = 2

edit(  banana  ,

ananas ) = 2

Embeddability into ℓ1



Metric Upper bound

Earth-mover distance

(𝑠-sized sets in 2D plane)

𝑂 log 𝑠
[Cha02, IT03]

Earth-mover distance

(𝑠-sized sets in 0,1 𝑑)

𝑂(log 𝑠 ⋅ log 𝑑)
[AIK08]

Edit distance over 0,1 𝑑

(#indels to transform x->y)

2  𝑂 log 𝑑

[OR05]

Ulam (edit distance between 

permutations)

𝑂 log 𝑑
[CK06]

Block edit distance  𝑂 log 𝑑
[MS00, CM07]

Lower bounds

Ω log 𝑠

[NS07]

Ω log 𝑠
[KN05]

Ω log 𝑑
[KN05,KR06]

 Ω log 𝑑
[AK07]

4/3

[Cor03]

Non-embeddability into ℓ1

 Other hosts possible, with worse sketching complexity

 EMD: 𝛼-approximation in 𝑂 𝑠1/𝛼 space [ADIW’09]

 embed into a more complex space, and use Precision Sampling



Theory of sketching

 When is sketching possible?

 [BO’10]: characterize when can sketch for “generalized 
frequency moments”:

  𝑖 𝐹(𝑥𝑖) for increasing functions 𝐹

 [LNW’14]: in general streams (insertions and deletions), for 
estimating any 𝑓(𝑥), might as well have 𝑓 which is linear

 [AKR’15]: in the case of a norm 𝑋
 𝑋 has very efficient sketch: 𝑂(1) size and approximation (like for ℓ𝑝

for 𝑝 ≤ 2)

if and only if 𝑋 embeds into some ℓ𝑝 for 𝑝 ≤ 2 !

 Eg, using [NS07], EMD does not admit very efficient sketches

 Characterization in other cases?


