
Sketching and

Nearest Neighbor Search (2)

Alex Andoni
(Columbia University)

MADALGO Summer School on Streaming Algorithms 2015

Sketching

 𝑆:ℜ𝑑 → short bit-strings

 given 𝑆(𝑥) and 𝑆(𝑦), should be able to estimate some function
of 𝑥 and 𝑦

 ℓ2, ℓ1 norm: 𝑂(𝜖−2) words

 Decision version: given 𝑟 in advance…

 ℓ2, ℓ1 norm: 𝑂(𝜖−2) bits

𝑆
𝑆

010110 010101

𝑦𝑥

Estimate ||𝑥 − 𝑦||2Distinguish between

||𝑥 − 𝑦|| ≤ 𝑟
||𝑥 − 𝑦|| > 1 + 𝜖 𝑟

Sketching: decision version

3

 Consider Hamming space: 𝑥, 𝑦 ∈ 0,1 𝑑

 Lemma: for any 𝑟, can achieve 𝑂(1/𝜖2) bit sketch.

Nearest Neighbor Search (NNS)

 Preprocess: a set 𝐷 of points

 Query: given a query point 𝑞, report a

point 𝑝 ∈ 𝐷 with the smallest distance

to 𝑞

𝑞

𝑝

Motivation

 Generic setup:

 Points model objects (e.g. images)

 Distance models (dis)similarity measure

 Application areas:

 machine learning: k-NN rule

 image/video/music recognition, deduplication,

bioinformatics, etc…

 Distance can be:

 Hamming, Euclidean, …

 Primitive for other problems:

 find the similar pairs, clustering…

000000

011100

010100

000100

010100

011111

000000

001100

000100

000100

110100

111111 𝑞

𝑝

Curse of Dimensionality

 All exact algorithms degrade rapidly with the

dimension 𝑑

6

Algorithm Query time Space

Voronoi diagram 𝑑 ⋅ log 𝑛 𝑂 1 𝑛𝑂(𝑑)

Linear scan 𝑂(𝑛 ⋅ 𝑑) 𝑂(𝑛 ⋅ 𝑑)

Approximate NNS

 𝑟-near neighbor: given a query point 𝑞,

report a point 𝑝′ ∈ 𝑃 s.t. 𝑝′ − 𝑞 ≤ 𝑟

 assuming there is a point within distance 𝑟

 Practice: use for exact NNS

 Filtering: gives a set of candidates (hopefully

small)

𝑟

𝑞

𝑝∗

𝑝′

𝑐𝑟

𝑐𝑟

7

NNS algorithms

8

Dependence on dimension:

 Exponential

[Arya-Mount’93], [Clarkson’94], [Arya-Mount-Netanyahu-Silverman-

We’98], [Kleinberg’97], [Har-Peled’02],[Arya-Fonseca-Mount’11],…

 Linear/polynomial

[Kushilevitz-Ostrovsky-Rabani’98], [Indyk-Motwani’98], [Indyk’98, ‘01],

[Gionis-Indyk-Motwani’99], [Charikar’02], [Datar-Immorlica-Indyk-

Mirrokni’04], [Chakrabarti-Regev’04], [Panigrahy’06], [Ailon-Chazelle’06],

[A.-Indyk’06], [A.-Indyk-Nguyen-Razenshteyn’14], [A.-Razenshteyn’15]

NNS via sketching: Approach 1

9

 Boosted sketch:

 Let 𝑆 = sketch for the decision version (90% success prob)

 new sketch 𝑊 : 𝑘 = 𝑂(log 𝑛) copies of 𝑆

estimator is the median of the 𝑘 estimators

 Sketch size: 𝑂(𝜖−2 log 𝑛)

 Success probability: 1 − 𝑛−2

 Preprocess: compute sketches 𝑊(𝑝) for all the points
𝑝 ∈ 𝐷

 Query: compute sketch 𝑊(𝑞), and compute distance to
all points using sketch

 Time: improved from 𝑂(𝑛𝑑) to 𝑂(𝑛𝜖−2 log 𝑛)

NNS via sketching: Approach 2

10

 Query time below 𝑛 ?

 Theorem [KOR98]: 𝑂(𝑑𝜖−2log 𝑛) query time and 𝑛𝑂 1/𝜖2

space for 1 + 𝜖 approximation.

 Proof:

 Note that 𝑊(𝑞) has 𝑤 = 𝑂 𝜖−2 log 𝑛 bits

 Only 2𝑤 possible sketches!

 Store an answer for each of 2𝑤 = 𝑛𝑂 𝜖−2 possible inputs

 If a distance has constant-size sketch, admits a poly-space NNS
data structure!

 Space closer to linear?

 approach 3 will require more specialized sketches…

3: Locality Sensitive Hashing

Random hash function ℎ on 𝑅𝑑

satisfying:

 for close pair (when 𝑞 − 𝑝 ≤ 𝑟)

Pr[ℎ(𝑞) = ℎ(𝑝)] is “high”

 for far pair (when 𝑞 − 𝑝′ > 𝑐𝑟)

Pr[ℎ(𝑞) = ℎ(𝑝′)] is “small”

Use several hash tables

𝑞

𝑝

𝑞 − 𝑝

Pr[ℎ(𝑞) = ℎ(𝑝)]

𝑟 𝑐𝑟

1

𝑃1

𝑃2

𝑛𝜌, where

[Indyk-Motwani’98]

𝑞

“not-so-small”𝑃1 =

𝑃2 =

𝜌 =
log 1/𝑃1
log 1/𝑃2

11

𝑝′

Locality sensitive hash functions

12

 Hash function 𝑔 is usually a concatenation of “primitive”
functions:

 𝑔 𝑝 = ℎ1(𝑝), ℎ2(𝑝),… , ℎ𝑘(𝑝)

 Example: Hamming space 0,1 𝑑

 ℎ 𝑝 = 𝑝𝑗 , i.e., choose 𝑗𝑡ℎ bit for a random 𝑗

 𝑔(𝑝) chooses 𝑘 bits at random

 Pr ℎ 𝑝 = ℎ 𝑞 = 1 –
𝐻𝑎𝑚 𝑝,𝑞

𝑑

 𝑃1 = 1−
𝑟

𝑑
≈ 𝑒−𝑟/𝑑

 𝑃2 = 1 −
𝑐𝑟

𝑑
≈ 𝑒−𝑐𝑟/𝑑

 𝜌 =
log 1/𝑃1

log 1/𝑃2
=

𝑟/𝑑

𝑐𝑟/𝑑
=

1

𝑐

Full algorithm

13

 Data structure is just 𝐿 = 𝑛𝜌 hash tables:

 Each hash table uses a fresh random function

𝑔𝑖 𝑝 = ℎ𝑖,1(𝑝), … , ℎ𝑖,𝑘(𝑝)

 Hash all dataset points into the table

 Query:

 Check for collisions in each of the hash tables

 until we encounter a point within distance 𝑐𝑟

 Guarantees:

 Space: 𝑂 𝑛𝐿 = 𝑂(𝑛1+𝜌), plus space to store points

 Query time: 𝑂 𝐿 ⋅ (𝑘 + 𝑑) = 𝑂(𝑛𝜌 ⋅ 𝑑) (in expectation)

 50% probability of success.

Analysis of LSH Scheme

14

 Choice of parameters 𝑘, 𝐿 ?

 𝐿 hash tables with 𝑔 𝑝 = ℎ1(𝑝),… , ℎ𝑘(𝑝)

 Pr[collision of far pair] = 𝑃2
𝑘

 Pr[collision of close pair] = 𝑃1
𝑘

 Hence 𝐿 = 𝑂(𝑛𝜌) “repetitions” (tables) suffice!

co
lli

si
o
n
 p

ro
b
ab

ili
ty

distance

𝑟 𝑐𝑟

𝑃1

𝑃2

𝑃1
2

𝑃2
2

set 𝑘 s.t.

= 1/𝑛

= 𝑃2
𝜌 𝑘

= 1/𝑛𝜌

𝑘 = 1
𝑘 = 2

Analysis: Correctness

15

 Let 𝑝∗ be an 𝑟-near neighbor

 If does not exists, algorithm can output anything

 Algorithm fails when:

 near neighbor 𝑝∗ is not in the searched buckets

𝑔1 𝑞 , 𝑔2 𝑞 ,… , 𝑔𝐿 𝑞

 Probability of failure:

 Probability 𝑞, 𝑝∗ do not collide in a hash table: ≤ 1 − 𝑃1
𝑘

 Probability they do not collide in 𝐿 hash tables at most

1 − 𝑃1
𝑘 𝐿

= 1 −
1

𝑛𝜌

𝑛𝜌

≤ 1/𝑒

Analysis: Runtime

16

 Runtime dominated by:

 Hash function evaluation: 𝑂(𝐿 ⋅ 𝑘) time

 Distance computations to points in buckets

 Distance computations:

 Care only about far points, at distance > 𝑐𝑅

 In one hash table, we have

 Probability a far point collides is at most 𝑃2
𝑘 = 1/𝑛

 Expected number of far points in a bucket: 𝑛 ⋅
1

𝑛
= 1

 Over 𝐿 hash tables, expected number of far points is 𝐿

 Total: 𝑂 𝐿𝑘 + 𝑂 𝐿𝑑 = 𝑂(𝑛𝜌 log 𝑛 + 𝑑) in

expectation

NNS for Euclidean space

17

 Hash function 𝑔 is a concatenation of “primitive”

functions:

 𝑔 𝑝 = ℎ1(𝑝), ℎ2(𝑝), … , ℎ𝑘(𝑝)

 LSH function ℎ(𝑝):

 pick a random line ℓ, and quantize

 project point into ℓ

 ℎ 𝑝 =
𝑝⋅ℓ

𝑤
+ 𝑏

 ℓ is a random Gaussian vector

 𝑏 random in [0,1]

 𝑤 is a parameter (e.g., 4)

 𝜌 = 1/𝑐

[Datar-Immorlica-Indyk-Mirrokni’04]

𝑝

ℓ

 Regular grid → grid of balls
 p can hit empty space, so take more

such grids until p is in a ball

 Need (too) many grids of balls
 Start by projecting in dimension t

 Analysis gives

 Choice of reduced dimension t?
 Tradeoff between

 # hash tables, n, and

 Time to hash, tO(t)

 Total query time: dn1/c2+o(1)

Optimal Euclidean LSH

2D

p

p
Rt

[A-Indyk’06]

x

Proof idea

 Claim: , i.e.,

 P(r)=probability of collision when ||p-q||=r

 Intuitive proof:

 Projection approx preserves distances [JL]

 P(r) = intersection / union

 P(r)≈random point u beyond the dashed line

 Fact (high dimensions): the x-coordinate of u has a

nearly Gaussian distribution

→ P(r)  exp(-A·r2)

pq
r

q

P(r)

u

p

𝑃 𝑟 = exp −𝐴𝑟2 = exp(−𝐴(𝑐𝑟)2 1/𝑐2 = 𝑃(𝑐𝑟)1/𝑐
2

Open question:

 More practical variant of above hashing?

 Design space partitioning of ℜ𝑡 that is

 efficient: point location in poly(t) time

 qualitative: regions are “sphere-like”

[Prob. needle of length 1 is not cut]

[Prob needle of length c is not cut]

≥

c2

𝑝

LSH Zoo

 Hamming distance [IM’98]

 ℎ: pick a random coordinate(s)

 Manhattan distance [AI’06]

 ℎ: cell in a randomly shifted grid

 Jaccard distance between sets:

 𝐽 𝐴, 𝐵 =
𝐴∩𝐵

𝐴∪𝐵

 ℎ: pick a random permutation 𝜋 on the
universe

ℎ 𝐴 = min
𝑎∈𝐴

𝜋(𝑎)

min-wise hashing [Bro’97]

…

21

To be or

not to be

To sketch or

not to sketch

…21102…

b
e too
r

n
o

t

s
k
e

tc
h

…01122…

b
e too
r

n
o

t

s
k
e

tc
h

…11101… …01111…

{be,not,or,to} {not,or,to,

sketch}

1 1

n
o

t

n
o

t

𝜋=be,to,sketch,or,not

be to

LSH in practice

 If want exact NNS, what is 𝑐?

 Can choose any parameters 𝐿, 𝑘

 Correct as long as 1 − 𝑃1
𝑘 𝐿

≤ 0.1

 Performance:

 trade-off between # tables and false positives

 will depend on dataset “quality”

22

𝐿

𝑘
safety not

guaranteed

fewer tables
fewer false

positives

