Sketching and
Nearest Neighbor Search (2)

Alex Andoni

(Columbia University)

MADALGO Summer School on Streaming Algorithms 2015

Sketching

» S:R? > short bit-strings

given S(x) and S(y), should be able to estimate some function
of x and y

» £, €1 norm: 0(e~4) words
» Decision version: given r in advance...
£,,%, norm: 0(e~?) bits

X y
\ 5/
S
010110 010101

Ny

Distinguish between
x =yl =7
[Ix =yl > @ +e)r

Sketching: decision version

» Consider Hamming space: x,y € {0,1}¢
» Lemma: for any 7, can achieve 0(1/€2) bit sketch.

Nearest Neighbor Search (NNS)

» Preprocess:a set D of points

» Query: given a query point ¢, report a
point p € D with the smallest distance
to ¢

Motivation

» Generic setup: 3
. : . 000000 '
Points model objects (e.g. images) 011100
010100
Distance models (dis)similarity measure o
011111
» Application areas: 400000 S 3
. . 001100
machine learning: k-NN rule 000100

000100

. . . P : 1 110100
image/video/music recognition, deduplication, 11919

bioinformatics, etc... q

» Distance can be:

Hamming, Euclidean, ...

» Primitive for other problems:

find the similar pairs, clustering...

Curse of Dimensionality

» All exact algorithms degrade rapidly with the
dimension d

Algorithm Query time Space

Voronoi diagram | (d - log n)0@) n0(@)

Linear scan O(n-d)

Approximate NNS

99‘0*‘“\6‘6
;ar near neighbor: glven a query point q, =
reportapointp’ EPst|p'—qll <er
assuming there is a point within distance /# _____
» Practice: use for exact NNS - \:ﬁbq
Filtering: gives a set of candidates (hopefully \x {\ o,
small) RN (e

-
S~ ="

NNS algorithms

Dependence on dimension:

» Exponential

[Arya-Mount’93], [Clarkson’94], [Arya-Mount-Netanyahu-Silverman-
We’98], [Kleinberg’97], [Har-Peled’02],[Arya-Fonseca-Mount’| 1],...

» Linear/polynomial

[Kushilevitz-Ostrovsky-Rabani’98], [Indyk-Motwani’98], [Indyk’98,‘01],
[Gionis-Indyk-Motwani’99], [Charikar’02], [Datar-lmmorlica-Indyk-
Mirrokni’04], [Chakrabarti-Regev’04], [Panigrahy’06], [Ailon-Chazelle’06],
[A.-Indyk’06], [A.-Indyk-Nguyen-Razenshteyn’14], [A.-Razenshteyn’ | 5]

NNS via sketching: Approach 1

» Boosted sketch:
Let S = sketch for the decision version (90% success prob)
new sketch W : k = O(logn) copies of S
estimator is the median of the k estimators
Sketch size: 0(e ™% logn)
Success probability: 1 —n~
» Preprocess: compute sketches W (p) for all the points
p €D

» Query: compute sketch W (q), and compute distance to
all points using sketch

2

» Time: improved from 0(nd) to 0(ne~*logn)

9

NNS via sketching: Approach 2

» Query time below n ?
» Theorem [KOR98]: O(de~“log n) query time and no(1/€*)
space for 1 + € approximation.

» Proof:
Note that W (q) has w = 0(e~%logn) bits
Only 2% possible sketches!

-2 G
Store an answer for each of 2% = n0(€™) possible inputs

» If a distance has constant-size sketch, admits a poly-space NINS
data structure!

» Space closer to linear?
approach 3 will require more specialized sketches...

10

3: Locality Sensitive Hashing

[Indyk-Motwani’98]

Random hash function h on R¢

satisfying:
for close pair (when ||g — p|| < 1)
P, = Pr[h(q) = h(p)] is “not-so-small” %[[o
for far pair (when ||q — p’|| > cr) ® 0g ©
P, = Pprih(q) = h(p")] is “small” of [%°
WO o P
Use several hash tables tPri(g) = h(p)]
log1/P; 1

p —
nr, where p log 1/P, P

bo--- lq — pll
11] 1 >
r

Locality sensitive hash functions

» Hash function g is usually a concatenation of “primitive”
functions:

g() = (hy(p), ho (), ..., h (P))

» Example: Hamming space {0,1}¢
h(p) = p; ,i.e., choose jt" bit for a random j
g(p) chooses k bits at random

Prlh(p) = h(@)] = 1 _Hamd(p,q)

r —
P1=1——%€ T'/d
d
Py=1-=re /d
d

__log1/p; r/d 1
- log 1/P,

cr/d Cc

12

Full algorithm

» Data structure is just L = n” hash tables:

Each hash table uses a fresh random function

9:(®) = (hi1 (@), -, hi ()
Hash all dataset points into the table

» Query:
Check for collisions in each of the hash tables

until we encounter a point within distance cr

» Guarantees:
Space: 0(nL) = 0(n'*P), plus space to store points
Query time: O(L - (k+d)) = O(n® - d) (in expectation)
50% probability of success.

13

Analysis of LSH Scheme

» Choice of parameters k, L ?

L hash tables with g(p) = (h{(p), ..., hi(p))
set k s.t.
» Pr[collision of far pair] =PX |=1/n

» Pr[collision of close pair] = P{f = (pzp)k = 1/n”
» Hence L = 0(nP) “repetitions” (tables) suffice!

[EEN
N
N -
)
ﬁ

Analysis: Correctness

» Let p* be an r-near neighbor
If does not exists, algorithm can output anything
» Algorithm fails when:

near neighbor p™ is not in the searched buckets
91(2), 92(a), ..., 9.(q)
» Probability of failure:

Probability g, p* do not collide in a hash table: < 1 — Pf
Probability they do not collide in L hash tables at most

(1-PK)" = (1—%) <1/e

n

15

Analysis: Runtime

» Runtime dominated by:
Hash function evaluation: O(L - k) time
Distance computations to points in buckets
» Distance computations:

Care only about far points, at distance > cR
In one hash table, we have

Probability a far point collides is at most PX = 1/n

Expected number of far points in a bucket: n - % =1

Over L hash tables, expected number of far points is L

» Total: O(Lk) + O(Ld) = O(nP(logn + d)) in
expectation

16

NNS for Euclidean space

[Datar-Immorlica-Indyk-Mirrokni04]

» Hash function g is a concatenation of “primitive”
functions:

g(@) = (hi (D), ha(p), ... i (P))
» LSH function h(p):
pick a random line £, and quantize
project point into ¢
£
h(p) = |E-+ b|
£ is a random Gaussian vector

b random in [0,1]

w is a parameter (e.g., 4)

» p=1/c

17

Optimal Euclidean LSH

[A-Indyk 06]
» Regular grid — grid of balls L1113

p can hit empty space, so take more

OO0

such grids until p is in a ball | O O
» Need (too) many grids of balls OO
Start by projecting in dimension t

Proof idea

» Claim: P~ 1/02,i.e.,

P(r) = P(cr)Y/¢

P(r)=probability of collision when ||p-q||=r
» Intuitive proof:

Projection approx preserves distances [JL]

P(r) = intersection / union

P(r)=random point u beyond the dashed line

Fact (high dimensions): the x-coordinate of u has a
nearly Gaussian distribution

— P(r) = exp(-A 1?)

P(r) = exp(—Ar?) = [exp(—A(cr)2]Y/¢” = P(cr)/c”

Open question:

» More practical variant of above hashing!?

» Design space partitioning of R’ that is
efficient: point location in poly(t) time (
qualitative: regions are “sphere-like”

2
[Prob. needle of length 1 is not cut]C

>

[Prob needle of length c is not cut]

To be or To sketch or

LSH Zoo not to be not to sketch
L
» Hamming distance [IM'98] - 5 ”
- bick d di L5 e L5 e
-pick a random coordinate(s) .11101.. ..01111..
» Manhattan distance [AI'06]
h: cell in a randomly shifted grid ..21102.. ..01122..
» Jaccard distance between sets:
J(A,B) = 4AnB {be,not,or,to} {not,or,to,
’ AUB sketch}
h: pick a random permutation 1 on the
universe be ©

h(A) = min (a)
acA
min-wise hashing [Bro’97]

t=be,to0,sketch,or,not

21

k
LSH in practice

» If want exact NNS, what is c?

Can choose any parameters L, k

Correct as long as (1 — P]'_‘)L <0.1

Performance:
trade-off between # tables and false positives

will depend on dataset “quality”

22

A

safety not
guaranteed

ewer tables

