Sketching and Nearest Neighbor Search (2)

Alex Andoni (Columbia University)

MADALGO Summer School on Streaming Algorithms 2015

Sketching

- $S: \mathfrak{R}^d \rightarrow \text{short bit-strings}$
 - given S(x) and S(y), should be able to estimate some function of x and y
- ℓ_2, ℓ_1 norm: $O(\epsilon^{-2})$ words
- Decision version: given r in advance...
 - ℓ_2, ℓ_1 norm: $O(\epsilon^{-2})$ bits

Sketching: decision version

- Consider Hamming space: $x, y \in \{0,1\}^d$
- Lemma: for any r, can achieve $O(1/\epsilon^2)$ bit sketch.

Nearest Neighbor Search (NNS)

- Preprocess: a set D of points
- Query: given a query point q, report a point p ∈ D with the smallest distance to q

Motivation

Generic setup:

- Points model objects (e.g. images)
- Distance models (dis)similarity measure

Application areas:

- machine learning: k-NN rule
- image/video/music recognition, deduplication, bioinformatics, etc...

Distance can be:

- Hamming, Euclidean, ...
- Primitive for other problems:
 - find the similar pairs, clustering...

2

7

Curse of Dimensionality

All exact algorithms degrade rapidly with the dimension d

Approximate NNS

c-approximate *r*-near neighbor: given a query point *q*, report a point $p' \in P$ s.t. ||p' - q|| ≤ cr

assuming there is a point within distance r

Practice: use for exact NNS

Filtering: gives a set of candidates (hopefully small)

NNS algorithms

Dependence on dimension:

Exponential

[Arya-Mount'93], [Clarkson'94], [Arya-Mount-Netanyahu-Silverman-We'98], [Kleinberg'97], [Har-Peled'02], [Arya-Fonseca-Mount'11],...

Linear/polynomial

[Kushilevitz-Ostrovsky-Rabani'98], [Indyk-Motwani'98], [Indyk'98, '01], [Gionis-Indyk-Motwani'99], [Charikar'02], [Datar-Immorlica-Indyk-Mirrokni'04], [Chakrabarti-Regev'04], [Panigrahy'06], [Ailon-Chazelle'06], [A.-Indyk'06], [A.-Indyk-Nguyen-Razenshteyn'14], [A.-Razenshteyn'15]

NNS via sketching: Approach 1

- Boosted sketch:
 - Let S = sketch for the decision version (90% success prob)
 - new sketch $W: k = O(\log n)$ copies of S

estimator is the median of the k estimators

- Sketch size: $O(\epsilon^{-2} \log n)$
- Success probability: $1 n^{-2}$
- Preprocess: compute sketches W(p) for all the points $p \in D$
- Query: compute sketch W(q), and compute distance to all points using sketch

• Time: improved from O(nd) to $O(n\epsilon^{-2}\log n)$

NNS via sketching: Approach 2

- Query time below n ?
- Theorem [KOR98]: $O(d\epsilon^{-2}\log n)$ query time and $n^{O(1/\epsilon^2)}$ space for $1 + \epsilon$ approximation.
- Proof:
 - Note that W(q) has $w = O(e^{-2} \log n)$ bits
 - Only 2^w possible sketches!
 - Store an answer for each of $2^w = n^{O(e^{-2})}$ possible inputs
- If a distance has constant-size sketch, admits a poly-space NNS data structure!
- Space closer to linear?
 - approach 3 will require more specialized sketches...

3: Locality Sensitive Hashing [Indyk-Motwani '98]

Random hash function h on R^d satisfying:

• for close pair (when $||q - p|| \le r$)

$$P_1 = \Pr[h(q) = h(p)]$$
 is "not-so-small"

• for far pair (when ||q - p'|| > cr)

$$P_2 = \Pr[h(q) = h(p')]$$
 is "small"

Use several hash tables
$$n^{\rho}$$
, where $\rho = \frac{\log 1/P_1}{\log 1/P_2}$

Locality sensitive hash functions

Hash function g is usually a concatenation of "primitive" functions:

•
$$g(p) = \langle h_1(p), h_2(p), \dots, h_k(p) \rangle$$

• Example: Hamming space $\{0,1\}^d$ • $h(p) = p_j$, i.e., choose j^{th} bit for a random j• g(p) chooses k bits at random • $\Pr[h(p) = h(q)] = 1 - \frac{Ham(p,q)}{d}$ • $P_1 = 1 - \frac{r}{d} \approx e^{-r/d}$ • $P_2 = 1 - \frac{cr}{d} \approx e^{-cr/d}$ • $\rho = \frac{\log 1/P_1}{\log 1/P_2} = \frac{r/d}{cr/d} = \frac{1}{c}$

Full algorithm

• **Data structure** is just $L = n^{\rho}$ hash tables:

- Each hash table uses a fresh random function $g_i(p) = \langle h_{i,1}(p), \dots, h_{i,k}(p) \rangle$
- Hash all dataset points into the table

• Query:

- Check for collisions in each of the hash tables
- until we encounter a point within distance *cr*

Guarantees:

- Space: $O(nL) = O(n^{1+\rho})$, plus space to store points
- Query time: $O(L \cdot (k + d)) = O(n^{\rho} \cdot d)$ (in expectation)
- ▶ 50% probability of success.

Analysis of LSH Scheme

- Choice of parameters k, L ?
 - L hash tables with $g(p) = \langle h_1(p), \dots, h_k(p) \rangle$
- Pr[collision of far pair] = $P_2^k = 1/n$
- Pr[collision of close pair] = $P_1^k = (P_2^\rho)^k = 1/n^\rho$
- Hence $L = O(n^{\rho})$ "repetitions" (tables) suffice!

set k s.t.

• Let p^* be an r-near neighbor

If does not exists, algorithm can output anything

Algorithm fails when:

• near neighbor p^* is not in the searched buckets $g_1(q), g_2(q), \dots, g_L(q)$

Probability of failure:

- ▶ Probability q, p^* do not collide in a hash table: $\leq 1 P_1^k$
- Probability they do not collide in L hash tables at most

$$\left(1-P_1^k\right)^L = \left(1-\frac{1}{n^\rho}\right)^{n^\rho} \le 1/e$$

Analysis: Runtime

- Runtime dominated by:
 - Hash function evaluation: $O(L \cdot k)$ time
 - Distance computations to points in buckets
- Distance computations:
 - Care only about far points, at distance > cR
 - In one hash table, we have
 - Probability a far point collides is at most $P_2^k = 1/n$
 - Expected number of far points in a bucket: $n \cdot \frac{1}{n} = 1$
 - Over L hash tables, expected number of far points is L
- Total: $O(Lk) + O(Ld) = O(n^{\rho}(\log n + d))$ in expectation

NNS for Euclidean space

[Datar-Immorlica-Indyk-Mirrokni'04]

- Hash function g is a concatenation of "primitive" functions:
 - $g(p) = \langle h_1(p), h_2(p), \dots, h_k(p) \rangle$
- LSH function h(p):
 - pick a random line ℓ , and quantize
 - project point into ℓ
 - $h(p) = \left\lfloor \frac{p \cdot \ell}{w} + b \right\rfloor$
 - ℓ is a random Gaussian vector
 - b random in [0,1]
 - ▶ w is a parameter (e.g., 4)

• $\rho = 1/c$

Optimal Euclidean LSH

[A-Indyk'06]

• Regular grid \rightarrow grid of balls

- p can hit empty space, so take more such grids until p is in a ball
- Need (too) many grids of balls

Start by projecting in dimension t

Proof idea

- Claim: $\rho \approx 1/c^2$, i.e.,
 - $P(r) \ge P(cr)^{1/c^2}$
 - P(r)=probability of collision when ||p-q||=r
- Intuitive proof:
 - Projection approx preserves distances [JL]
 - P(r) = intersection / union
 - ▶ P(r)≈random point u beyond the dashed line
 - Fact (high dimensions): the x-coordinate of u has a nearly Gaussian distribution
 - \rightarrow P(r) \approx exp(-A ·r²)

 $P(r) = \exp(-Ar^2) = [\exp(-A(cr)^2]^{1/c^2} = P(cr)^{1/c^2}$

Open question:

More practical variant of above hashing?

p

- Design space partitioning of \Re^t that is/
 - efficient: point location in poly(t) time
 - qualitative: regions are "sphere-like"

[Prob. needle of length 1 is not cut]^{C²} ≥

[Prob needle of length c is not cut]

LSH Zoo

- Hamming distance [IM'98]
 - h: pick a random coordinate(s)
- Manhattan distance [Al'06]
 - h: cell in a randomly shifted grid
- Jaccard distance between sets:

$$J(A,B) = \frac{A \cap B}{A \cup B}$$

• *h*: pick a random permutation π on the universe

 $h(A) = \min_{a \in A} \pi(a)$ min-wise hashing [Bro'97]

LSH in practice

If want exact NNS, what is c?

- Can choose any parameters L, k
- Correct as long as $(1 P_1^k)^L \le 0.1$
- Performance:
 - trade-off between # tables and false positives
 - will depend on dataset "quality"

