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Challenge: log statistics of the data, using small space
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Streaming statistics \ [
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» Let x; = frequency of IP i

» 1 moment (sum): ) x;
Trivial: keep a total counter

nd : . 2 _ 2
» 2" moment (variance): ), x; = ||x]|| T, =
Trivially: n counters — too much space yx? =17
Can’t do better
Better with small approximation!

Via dimension reduction in £,



2nd frequency moment

» Let x; = frequency of IP i

» 2" moment: Yx? = ||x||? |
» Dimension reduction |

Store a sketch of x
S(x) = (Gyx,Gyx, ...Gix) = Gx

each G; is n-dimensional Gaussian vector

Estimator:
1612 = £ ((G12)? + (G50)% + -+ + (Gx)?)
Updating the sketch:

Use linearity of the sketching function S
G(x +e) =Gx + Ge;




0s N
Correctness Elg] = 0

Y E[g*]F1
» Theorem [Johnson-Lindenstrauss]: N IELEEr

1|1Gx||? = (1 £ €)||x]||? with probability 1 — g0 (ke®)

» Why Gaussian!?
Stability property: G;x = }.; G;;x; is distributed as ||x]|| - g,
where g is also Gaussian

Equivalently: G; is centrally distributed, i.e., has random
direction, and projection on random direction depends only
on length of x

P(a)-P(b) =
— 1 e—az/z 1 e—bz/z
XZn V21

_ e—(a2+b2)/2

2T




Proof [sketch]| .

» Claim: for any x € R", we have

>

v

v

Expectation: E[|G; - x|?] = [|x]|?
Standard deviation: o[|G;x|?] = O(||x||?) "
Proof:
Expectation = E[(G; - x)*] = E[||x]|% - g*]
= ||x|[?

Gx is distributed as

=1xl - g1, - 1] - g2

where each g; is distributed as 1D Gaussian
Estimator: ||Gx||2 = ||x||? - 3; g7

> g7 is called chi-squared distribution with k degrees
Fact: chi-squared very well concentrated:

Equal to 1 + € with probability 1 — e ~2(€*1)
Akin to central limit theorem

T
Elg] =0
E[g*] 51



2nd frequency moment: overall

» Correctness:
1|1Gx||? = (1 + €)||x]||? with probability 1 — e ~0(ke*)
Enough to set k = 0(1/€?) for const probability of success
» Space requirement:
k = 0(1/€?) counters of 0(logn) bits
What about G: store O(nk) reals ?
» Storing randomness [AMS’96]

Ok if g; “less random”: choose each of them as 4-wise
independent

Also, ok if g; is a random *1
Only O (k) counters of O(logn) bits



More efficient sketches?

» Smaller Space:

No: 0 (;logn) bits [JW'11] < David’s lecture
» Faster update time:

Yes: Jelani’s lecture
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Focus: difference in traffic
1t moment: 3 |x;- y;| = |lx — yll1 x = yll1 =2
2d moment: Y |x;- ;|2 = llx—vyl2  llx—yll3=2

Similar Qs: average delay/variance in a network
differential statistics between logs at different servers, etc



Definition: Sketching

» Sketching:
S :objects — short bit-strings
given S(x) and S(y), should be able to estimate some function

of x and y
- T
131.107.65.14 | 131.107.65.14 |
18.0.1.12 ) ‘ l \ ll8.0.|.|2 |
— ~ = 80975620 |
- S
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Estimate ||x — y||5 ?



Sketching for ¥,

» As before, dimension reduction

Pick G (using common randomness)
S(x) = Gx
» Estimator: [|S(x) — SO = [1G(x — )13
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Sketching for Manhattan distance (¢4)

» Dimension reduction?
Essentially no: [CS’02, BC’03,LN’04, N’ 10...]

For n points, D approximation: between n™1/D?) and O(n/D)
[BCO3, NRI10,ANNIO...]

even if map depends on the dataset!
In contrast: [JL] gives O(e~%logn)

No distributional dimension reduction either

Weak dimension reduction is the rescue...



Dimension reduction for #; ?

» Can we do the “analog” of Euclidean projections!?

» For ¥,, we used: Gaussian distribution

has stability property:

J1Z1 + 9275 + - g42,4 is distributed as g - ||z]]
» Is there something similar for |-norm!?

Yes: Cauchy distribution!

| -stable: pdf(s) = m(s?+1)
C1Z1 + Cyz, + -+ c4z, is distributed as ¢ - ||z]|4

» What's wrong then? N T
Cauchy are heavy-tailed... 03 ; igz—il

— 0.4}

doesn’t even have finite expectation (of abs) =/ :
0.2
MA
0.0 ' . .




Sketching for ¢; [Indyk’00]

» Still, can consider map as before
S(x) = (Cyx,Cyx, ..., Chx) = Cx

» Consider S(x) —S(y) =Cx—Cy=C(x—y) =Cz
wherez =x —y
each coordinate distributed as ||z||; XCauchy

Take |-norm ||Cz]||; ?
does not have finite expectation, but...

» Can estimate ||z]||; by:
Median of absolute values of coordinates of Cz !

» Correctness claim: for each i
Pr[|Ciz| > |lz||, - (1 —€)] > 1/2 + Q(e)
Pr[|Ciz| <|lz||, - (1 +€)] > 1/2 + Q(e)



Estimator for ¢4

» Estimator: median(|C;z|, |Cyz|, ... |Ci2|)
» Correctness claim: for each i
Pr(|Ciz| > [|z||; - (1 —€)] > 1/2 + Q(e)
Pr{|Ciz| <||z||; - (1 +€)] > 1/2 + Q(e)
» Proof:

0.7
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0.0

|C;z| = abs(C;z) is distributed as abs(||z||;c) = ||z]|{ - |c]|

Easy to verify that
Prilc] > (1 —¢€)] >1/2+ Q(¢)
Prilc] < (1+¢€)] >1/2 + Q(e)
» Hence, if we have k = 0(1/€%?)
median(|C;z|, |C,z|, ... |C,z|) € (1 £ €)]|z]|4
with probability at least 90%



To finish the fp norms...

» p-moment: leP = ||x||§
»p <2

works via p-stable distributions [Indyk’00]
»p > 2

Can do (and need) O(n'~?/P) counters

[AMS'96, SS°02, BYJKS'02, CKS'03, IW’05, BGKS'06, BO10,AKO’I I, G'l I,
BKSV’14]

Will see a construction via Precision Sampling



A task: estimate sum

» Given: n quantities a4, a,, ... a, in the range [0,1]
» Goal: estimate S = a, + a, + -~ a,, “cheaply”

» Standard sampling: pick random set | = {j, ... J,,,} of size m
Estimator: S = % (a, +a;, +--a; )
» Chebyshev bound: with 90% success probability
~S- 0(n/m) <$§ < 28 + O(n/m)
» For constant additive error,need m = (l(n)

Compute an estimate S fromay, a,




Precision Sampling Framework

» Alternative “access” to a;’s:

For each term a;, we get a (rough) estimate d;

up to some precision u;, chosen in advance: |a; - d;| < u;
» Challenge: achieve good trade-off between

quality of approximation to S
use only weak precisions u; (minimize “cost” of estimating )

Compute an esti/tﬁ;ﬁé S.from a,, Gy, ds, d,




Formalization

Sum Estimator 2520 Adversary ° i n M 4 f«tlj hw ‘ LIH
TN
1. fix precisions u; 1. fix ay, a,, ...ay

2. fix dl,dz, dn S.1. |ai — c'il| < Uu;
3. given dy, d,, ... d,, output S s.t.
I¥; a; —¥S| < 1 (for some small y)

» What is cost!
Here, average cost = 1/n- ), 1/u;,

to achieve precision u;, use 1/u; “resources’: e.g., if a; is itself a sum a; =
2.;a;; computed by subsampling, then one needs ©(1/u;) samples

» For example, can choose all u; = 1/n
Average cost = n



Precision Sampling Lemma
[A-Krauthgamer-Onak’11]

» Goal: estimate ) a; from {d;} satisfying |a; — a;| < u;.
| Precision Sampling Lemma: can get, with 90% success:

€ additive error ai 1 + € multiplicative error:
S—e<S <(1+e)S+e

with average cost equal to 0 (e 3logn)

» Example: distinguish Xa; = 3 vs Xa; = 0
Consider two extreme cases:

if three a; = 1: enough to have crude approx for all (u; = 0.1)

if all a; = 3 /n: only few with good approx u; = 1/n,and the rest with
u, =1



Precision Sampling Algorithm

» Precision Sampling Lemma: can get, with 90% success:

€ additive error and 1 + € ultiplicative error:
S—e<S<(1+e)-S+001)
with average cost equal to (e 3log n)

» Algorithm:
Choose each u;e concrete distrib. = minimum of 0(e~3) u.r.v.

. = : - + :
Estimator: S = function of [@;/u;, — 4/€] and u;’s
normalization constant)

» Proof of correctness:
we use only d; which are 1.5-approximation to a;
E[S] = X Pr[a; /u; > 6] = ¥ a;/6.
E[1/u,] = O(logn) w.h.p.



¢, via precision sampling

» Theorem: linear sketch for £, with O(1) approximation,
and 0(n'~2/? logn) space (90% succ. prob.).
» Sketch:

Pick random r;e{+1}, and u; as exponential r.v. u~=e

1
let y; = x; - 1;/u; /p

throw into one hash table H, * —-

k = 0(n'=%/P logn) cells I>< QI //I
» Estimator:

max|H|c]|?

C lll
» Llnear works for difference as well

» Randomness: bounded independence suffices




Correctness of fp estimation
» Sketch:

Yi = X ri/uil/p where r,e{11},and u; exponential r.v.
Throw into hash table H
» Theorem: max|H|c]||P is O(1) approximation with 90%
C

probability, for k = 0(n*~2/? log?™M n) cells

» Claim I:max [y;]| is a const approx to ||x|]|,
l
max|y;|P = max|x;|? /u;
l l
Fact [max-stability]: max A; /u; distributed as )4, /u

max|y;|P is distributed as ||x||g/u
l

u is ©(1) with const probability




Correctness (cont) \M//
g

» Claim 2:
mCaX|H[C]| = O(1) - |[x|],

» Consider a hash table H, and the cell ¢ where y;- falls into
for i* which maximizes |y;|

yi = x;1i/u;’”
. where 1;€{+1}
6* = (H[c] —y)* = Qjeir vy - A—c))? u; exponential r.v.

E[82] = X vi - ali—cl =X vi/k < |lylI*/k
We have: E, ||y||? < ||x]|? - E[1/u'/P] = O(logn) - ||x||?
||| |? < n' =27 |x| |3
By Markov’s: 3% < ||x]|3 n'=2/P . 0(logn)/k|with prob 0.9.
» Then:H[c] = y;- + 6 = O(1) - |[x]].
» Need to argue about other cells too — concentration

» How much “extra stuff”’ is there!?




