Sketching (1)

Alex Andoni (Columbia University)

MADALGO Summer School on Streaming Algorithms 2015

131.107.65.14



- Streaming statistics
- Let x_i = frequency of IP i
- Ist moment (sum): $\sum x_i$
 - Trivial: keep a total counter
- 2nd moment (variance): $\sum x_i^2 = ||x||^2$
 - Trivially: n counters \rightarrow too much space
 - Can't do better
 - Better with small approximation!
 - Via dimension reduction in ℓ_2

IP	Frequency
131.107.65.14	3
18.0.1.12	2
80.97.56.20	2

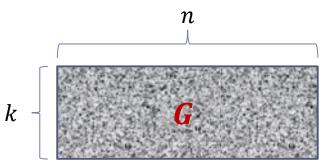
 $\sum x_i = 7$ $\sum x_i^2 = 17$

2nd frequency moment

- Let x_i = frequency of IP i
- 2^{nd} moment: $\sum x_i^2 = ||x||^2$
- Dimension reduction
 - Store a sketch of x
 - $S(x) = (G_1 x, G_2 x, ..., G_k x) = Gx$
 - each G_i is *n*-dimensional Gaussian vector
 - Estimator:

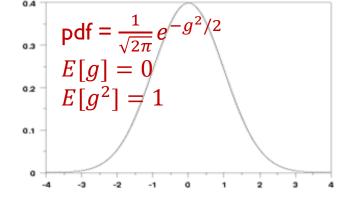
$$\frac{1}{k} ||\mathbf{G}x||^2 = \frac{1}{k} \left((G_1 x)^2 + (G_2 x)^2 + \dots + (G_k x)^2 \right)$$

- Updating the sketch:
 - Use linearity of the sketching function S
 - $G(x + e_i) = Gx + Ge_i$



X

Correctness



Theorem [Johnson-Lindenstrauss]:

• $||Gx||^2 = (1 \pm \epsilon)||x||^2$ with probability $1 - e^{-O(k\epsilon^2)}$

- Why Gaussian?
 - Stability property: $G_i x = \sum_j G_{ij} x_j$ is distributed as $||x|| \cdot g$, where g is also Gaussian
 - Equivalently: G_i is centrally distributed, i.e., has random direction, and projection on random direction depends only on length of x

$$P(a) \cdot P(b) =$$

$$= \frac{1}{\sqrt{2\pi}} e^{-a^2/2} \frac{1}{\sqrt{2\pi}} e^{-b^2/2}$$

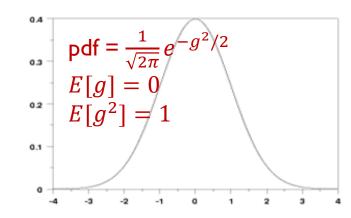
$$= \frac{1}{2\pi} e^{-(a^2 + b^2)/2}$$

Proof [sketch]

- Claim: for any $x \in \Re^n$, we have
 - **Expectation**: $E[|G_i \cdot x|^2] = ||x||^2$
 - Standard deviation: $\sigma[|G_i x|^2] = O(||x||^2)$
- Proof:
 - Expectation = $E[(G_i \cdot x)^2] = E[||x||^2 \cdot g^2]$ = $||x||^2$
- Gx is distributed as

$$\frac{1}{\sqrt{k}}(||x|| \cdot g_1, \dots, ||x|| \cdot g_k)$$

- where each g_i is distributed as 1D Gaussian
- Estimator: $||Gx||^2 = ||x||^2 \cdot \frac{1}{k} \sum_i g_i^2$
 - $\sum_i g_i^2$ is called chi-squared distribution with k degrees
- Fact: chi-squared very well concentrated:
 - Equal to $1 + \epsilon$ with probability $1 e^{-\Omega(\epsilon^2 k)}$
 - Akin to central limit theorem



2nd frequency moment: overall

Correctness:

- $||\mathbf{G}x||^2 = (1 \pm \epsilon)||x||^2$ with probability $1 e^{-O(k\epsilon^2)}$
- Enough to set $k = O(1/\epsilon^2)$ for const probability of success

Space requirement:

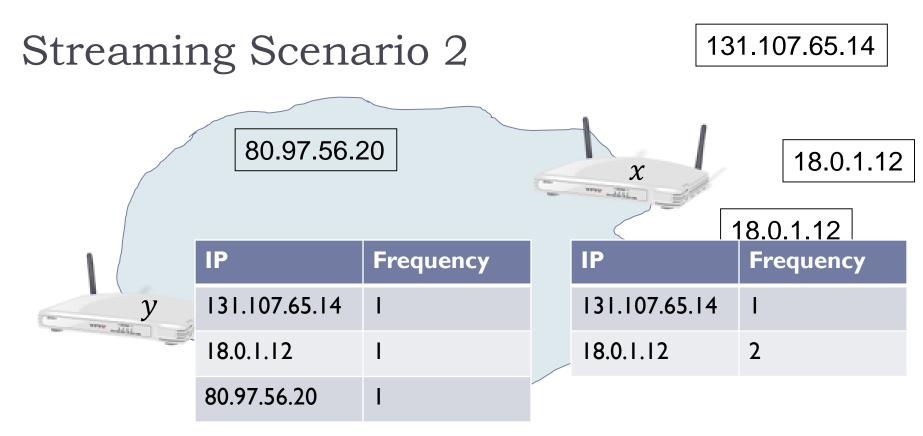
- $k = O(1/\epsilon^2)$ counters of $O(\log n)$ bits
- What about **G**: store O(nk) reals ?

Storing randomness [AMS'96]

- Ok if g_i "less random": choose each of them as 4-wise independent
- Also, ok if g_i is a random ± 1
- Only O(k) counters of $O(\log n)$ bits

More efficient sketches?

- Smaller Space:
 - ► No: $\Omega\left(\frac{1}{\epsilon^2}\log n\right)$ bits [JW'I] \leftarrow David's lecture
- Faster update time:
 - Yes: Jelani's lecture

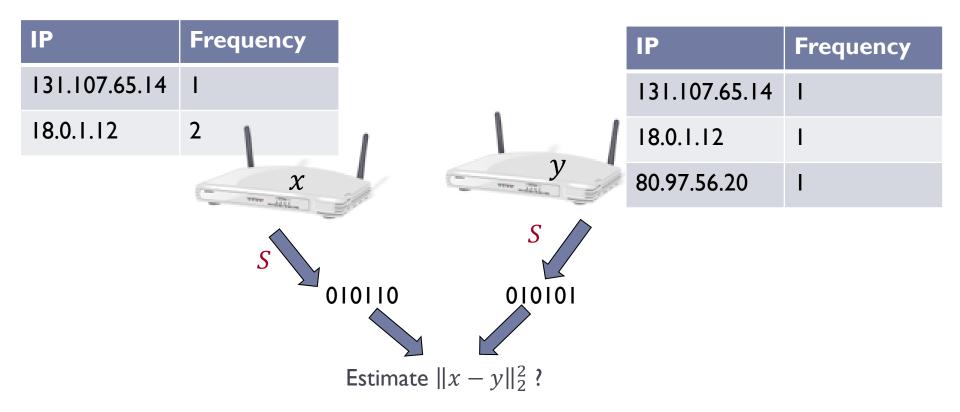


Focus: *difference* in traffic 1st moment: $\sum |x_i - y_i| = ||x - y||_1$ $||x - y||_1 = 2$ 2nd moment: $\sum |x_i - y_i|^2 = ||x - y||_2^2$ $||x - y||_2^2 = 2$

Similar Qs: average delay/variance in a network differential statistics between logs at different servers, etc

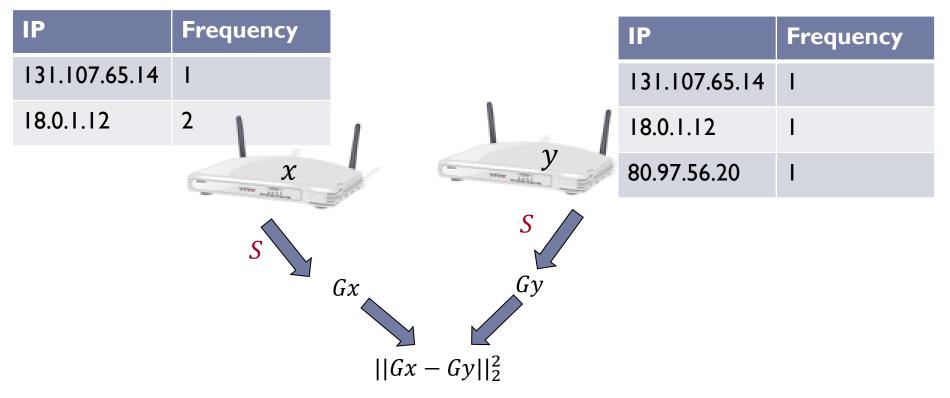
Definition: Sketching

- Sketching:
 - S : objects \rightarrow short bit-strings
 - given S(x) and S(y), should be able to estimate some function of x and y



Sketching for ℓ_2

- As before, dimension reduction
 - Pick G (using common randomness)
 - $S(x) = \mathbf{G}x$
- Estimator: $||S(x) S(y)||_2^2 = ||G(x y)||_2^2$



Sketching for Manhattan distance (ℓ_1)

- Dimension reduction?
 - Essentially no: [CS'02, BC'03, LN'04, JN'10...]
 - For *n* points, *D* approximation: between $n^{\Omega(1/D^2)}$ and O(n/D)[BC03, NR10, ANN10...]
 - even if map depends on the dataset!
 - In contrast: []L] gives $O(\epsilon^{-2} \log n)$
 - No distributional dimension reduction either
 - Weak dimension reduction is the rescue...

Dimension reduction for ℓ_1 ?

- Can we do the "analog" of Euclidean projections?
- For ℓ_2 , we used: Gaussian distribution
 - has stability property:
 - $g_1z_1 + g_2z_2 + \cdots + g_dz_d$ is distributed as $g \cdot ||z||$
- Is there something similar for 1-norm?
 - Yes: Cauchy distribution!
 - I-stable:
 - $c_1 z_1 + c_2 z_2 + \cdots + c_d z_d$ is distributed as $c \cdot ||z||_1$
- What's wrong then?
 - Cauchy are **heavy-tailed**...
 - doesn't even have finite expectation (of abs)

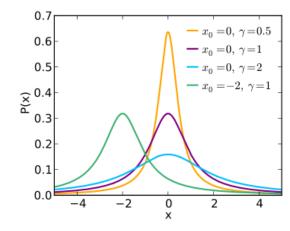
 $pdf(s) = \frac{1}{\pi(s^2 + 1)}$

Sketching for ℓ_1 [Indyk'00]

- Still, can consider map as before
 - $S(x) = (C_1 x, C_2 x, ..., C_k x) = Cx$
- Consider S(x) S(y) = Cx Cy = C(x y) = Cz
 - where z = x y
 - each coordinate distributed as $||z||_1 \times Cauchy$
 - Take I-norm $||Cz||_1$?
 - does not have finite expectation, but...
- Can estimate $||z||_1$ by:
 - Median of absolute values of coordinates of Cz !
- Correctness claim: for each i
 - $\Pr[|C_i z| > ||z||_1 \cdot (1 \epsilon)] > 1/2 + \Omega(\epsilon)$
 - $\Pr[|C_i z| < ||z||_1 \cdot (1 + \epsilon)] > 1/2 + \Omega(\epsilon)$

Estimator for ℓ_1

- Estimator: median($|C_1z|, |C_2z|, \dots |C_kz|$)
- Correctness claim: for each i
 - $\Pr[|C_i z| > ||z||_1 \cdot (1 \epsilon)] > 1/2 + \Omega(\epsilon)$
 - $\Pr[|C_i z| < ||z||_1 \cdot (1 + \epsilon)] > 1/2 + \Omega(\epsilon)$



- Proof:
 - $|C_i z| = abs(C_i z)$ is distributed as $abs(||z||_1 c) = ||z||_1 \cdot |c|$
 - Easy to verify that
 - ► $\Pr[|c| > (1 \epsilon)] > 1/2 + \Omega(\epsilon)$
 - ▶ $\Pr[|c| < (1 + \epsilon)] > 1/2 + \Omega(\epsilon)$
- Hence, if we have $k = O(1/\epsilon^2)$
 - ▶ median($|C_1z|, |C_2z|, ... |C_kz|$) ∈ $(1 \pm \epsilon)||z||_1$ with probability at least 90%

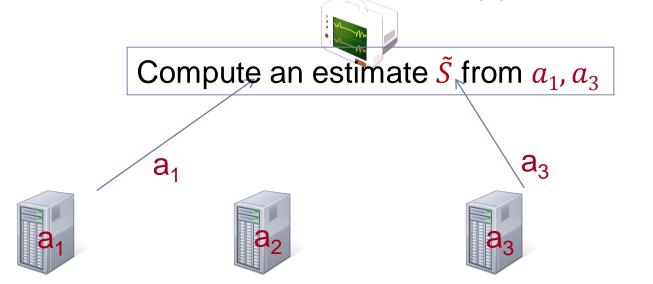
To finish the ℓ_p norms...

- *p*-moment: $\Sigma x_i^p = ||x||_p^p$
- ▶ p ≤ 2
 - works via p-stable distributions [Indyk'00]
- ▶ *p* > 2
 - Can do (and need) $\tilde{O}(n^{1-2/p})$ counters [AMS'96, SS'02, BYJKS'02, CKS'03, IW'05, BGKS'06, BO10, AKO'11, G'11, BKSV'14]
 - Will see a construction via Precision Sampling

A task: estimate sum

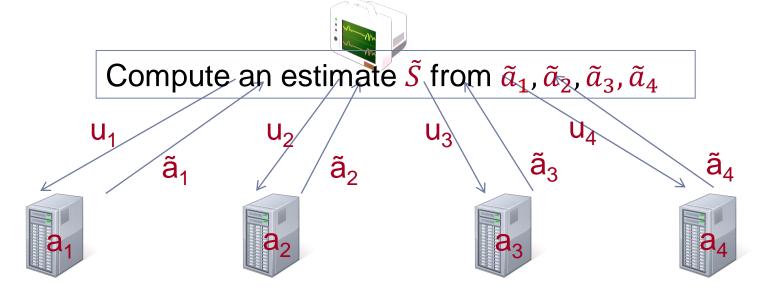
- Given: *n* quantities $a_1, a_2, \dots a_n$ in the range [0,1]
- Goal: estimate $S = a_1 + a_2 + \cdots + a_n$ "cheaply"
- Standard sampling: pick random set $J = \{j_1, \dots, j_m\}$ of size m
 - Estimator: $\tilde{S} = \frac{n}{m} \cdot (a_{j_1} + a_{j_2} + \cdots + a_{j_m})$
- Chebyshev bound: with 90% success probability $\frac{1}{2}S - O(n/m) < \tilde{S} < 2S + O(n/m)$

For constant additive error, need $m = \Omega(n)$



Precision Sampling Framework

- Alternative "access" to a_i 's:
 - For each term a_i , we get a (rough) estimate \tilde{a}_i
 - up to some precision u_i , chosen in advance: $|a_i \tilde{a}_i| < u_i$
- Challenge: achieve good trade-off between
 - quality of approximation to S
 - use only weak precisions u_i (minimize "cost" of estimating \tilde{a})

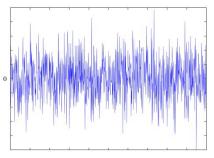


Formalization

Sum Estimator

1. fix precisions u_i

1. fix $a_1, a_2, \dots a_n$



- 2. fix $\tilde{a}_1, \tilde{a}_2, \dots \tilde{a}_n$ s.t. $|a_i \tilde{a}_i| < u_i$
- 3. given $\tilde{a}_1, \tilde{a}_2, \dots \tilde{a}_n$, output \tilde{S} s.t. $\left|\sum_i a_i - \gamma \tilde{S}\right| < 1$ (for some small γ)

What is cost?

- Here, average cost = $1/n \cdot \sum 1/u_i$
- to achieve precision u_i , use $1/u_i$ "resources": e.g., if a_i is itself a sum $a_i = \sum_j a_{ij}$ computed by subsampling, then one needs $\Theta(1/u_i)$ samples
- For example, can choose all $u_i = 1/n$
 - Average cost $\approx n$

Precision Sampling Lemma [A-Krauthgamer-Onak'11]

• Goal: estimate $\sum a_i$ from $\{\tilde{a}_i\}$ satisfying $|a_i - \tilde{a}_i| < u_i$.

Precision Sampling Lemma: can get, with 90% success:

 ϵ additive error a $1 + \epsilon$ multiplicative error: $S - \epsilon < \tilde{S} < (1 + \epsilon)S + \epsilon$

 $S - \epsilon < \tilde{S} < (1 + \epsilon)S + \epsilon$ with average cost equal to $O(\epsilon^{-3}\log n)$

- Example: distinguish $\Sigma a_i = 3$ vs $\Sigma a_i = 0$
 - Consider two extreme cases:
 - if three $a_i = 1$: enough to have crude approx for all $(u_i = 0.1)$ if all $a_i = 3/n$: only few with good approx $u_i = 1/n$, and the rest with $u_i = 1$

Precision Sampling Algorithm

- Precision Sampling Lemma: can get, with 90% success:
 - ϵ additive error and $1 + \epsilon$ ultiplicative error:

 $S - \epsilon < \tilde{S} < (1 + \epsilon) \cdot S + O(1)$

- with average cost equal to $O(\epsilon^{-3}\log n)$
- Algorithm:
 - Choose each $u_i \in$ concrete distrib. = minimum of $O(\epsilon^{-3})$ u.r.v.
 - Estimator: \tilde{S} = function of $[\tilde{a}_i/u_i 4/\epsilon]^+$ and u_i 's normalization constant)
- Proof of correctness:
 - we use only \tilde{a}_i which are 1.5-approximation to a_i
 - $E[\tilde{S}] \approx \sum \Pr[a_i / u_i > 6] = \sum a_i / 6.$
 - $E[1/u_i] = O(\log n)$ w.h.p.

ℓ_p via precision sampling

- Theorem: linear sketch for l_p with O(1) approximation, and O(n^{1-2/p} log n) space (90% succ. prob.).
- Sketch:
 - Pick random $r_i \in \{\pm 1\}$, and u_i as exponential r.v.

$$u \sim e^{-u}$$

$$| let y_i = x_i \cdot r_i / u_i^{1/p}$$

throw into one hash table H,

•
$$k = O(n^{1-2/p} \log n)$$
 cells

- Estimator:
 - $\max_{c} |H[c]|^{p}$
- Linear: works for difference as well
- Randomness: bounded independence suffices

$$x = x_{1} \quad x_{2} \quad x_{3} \quad x_{4} \quad x_{5} \quad x_{6}$$

$$H = \begin{cases} y_{1} & y_{4} & y_{2} \\ + y_{3} & + y_{5} \\ + y_{6} & + y_{6} \end{cases}$$

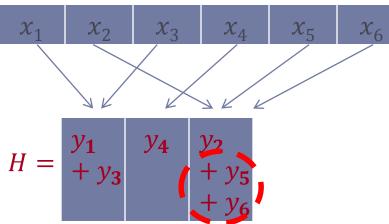
Correctness of ℓ_p estimation

Sketch:

- $y_i = x_i \cdot r_i / u_i^{1/p}$ where $r_i \in \{\pm 1\}$, and u_i exponential r.v.
- Throw into hash table H
- Theorem: $\max_{c} |H[c]|^{p}$ is O(1) approximation with 90% probability, for $k = O(n^{1-2/p} \log^{O(1)} n)$ cells
- Claim I: $\max_i |y_i|$ is a const approx to $||x||_p$
 - $\max_{i} |y_i|^p = \max_{i} |x_i|^p / u_i$
 - Fact [max-stability]: $\max \lambda_i / u_i$ distributed as $\sum \lambda_i / u$
 - $\max_{i} |y_i|^p$ is distributed as $||x||_p^p/u$
 - u is $\Theta(1)$ with const probability

Correctness (cont)

- Claim 2:
 - $\max |H[c]| = \Theta(1) \cdot ||x||_p$
- Consider a hash table H, and the cell c where y_{i^*} falls into • for i^* which maximizes $|y_{i^*}|$ $y_i = x_i \cdot r_i / u_i^{1/p}$
- How much "extra stuff" is there?
 - $\delta^2 = (H[c] y_{i^*})^2 = (\sum_{j \neq i^*} y_j \cdot \chi[j \rightarrow c])^2$
 - $E[\delta^2] = \sum_{j \neq i^*} y_j^2 \cdot \chi[j \rightarrow c] = \sum_{j \neq i^*} y_j^2 / k \le ||y||^2 / k$
 - We have: $E_u ||y||^2 \le ||x||^2 \cdot E[1/u^{1/p}] = O(\log n) \cdot ||x||^2$
 - $||x||^2 \le n^{1-2/p} ||x||_n^2$
 - By Markov's: $\delta^2 \leq ||x||_p^2 |n^{1-2/p} \cdot O(\log n)/k|$ with prob 0.9.
 - Then: $H[c] = y_{i^*} + \delta = \Theta(1) \cdot ||x||_p$.
- Need to argue about other cells too \rightarrow concentration



where $r_i \in \{\pm 1\}$

 u_i exponential r.v.