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Challenge: log statistics of the data, using small space



Streaming statistics

 Let 𝑥𝑖 = frequency of IP 𝑖

 1st moment (sum): ∑𝑥𝑖

 Trivial: keep a total counter

 2nd moment (variance): ∑𝑥𝑖
2 = ||𝑥||2

 Trivially: 𝑛 counters → too much space

 Can’t do better

 Better with small approximation!

 Via dimension reduction in ℓ2
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2nd frequency moment

 Let 𝑥𝑖 = frequency of IP 𝑖

 2nd moment: ∑𝑥𝑖
2 = ||𝑥||2

 Dimension reduction

 Store a sketch of 𝑥

 𝑆 𝑥 = 𝐺1𝑥, 𝐺2𝑥, … 𝐺𝑘𝑥 = 𝑮𝑥

 each 𝐺𝑖 is n-dimensional Gaussian vector

 Estimator:



1

𝑘
||𝑮𝑥||2 =

1

𝑘
𝐺1𝑥 2 + 𝐺2𝑥 2 + ⋯ + 𝐺𝑘𝑥 2

 Updating the sketch:

 Use linearity of the sketching function 𝑆

 𝑮 𝑥 + 𝑒𝑖 = 𝑮𝑥 + 𝑮𝑒𝑖

𝑮

𝑥

𝑘

𝑛



Correctness

 Theorem [Johnson-Lindenstrauss]: 

 ||𝑮𝑥||2 = 1 ± 𝜖 ||𝑥||2 with probability 1 − 𝑒−𝑂(𝑘𝜖2)

 Why Gaussian?

 Stability property: 𝐺𝑖𝑥 = ∑𝑗 𝐺𝑖𝑗𝑥𝑗 is distributed as | 𝑥| ⋅ 𝑔, 

where 𝑔 is also Gaussian

 Equivalently: 𝐺𝑖 is centrally distributed, i.e., has random 

direction, and projection on random direction depends only 

on length of 𝑥

𝑃 𝑎 ∙ 𝑃 𝑏 =

=
1

2𝜋
𝑒−𝑎2/2

1

2𝜋
𝑒−𝑏2/2

=
1

2𝜋
𝑒−(𝑎2+𝑏2)/2

pdf = 
1

2𝜋
𝑒−𝑔2/2

𝐸[𝑔] = 0
𝐸[𝑔2] = 1



Proof [sketch]

 Claim: for any 𝑥 ∈ ℜ𝑛, we have 
 Expectation:  𝐺𝑖 ⋅ 𝑥 2 = 𝑥 2

 Standard deviation:  [|𝐺𝑖𝑥|2] = 𝑂( 𝑥 2)

 Proof:
 Expectation =  𝐺𝑖 ⋅ 𝑥 2 =  𝑥 2 ⋅ 𝑔2

= 𝑥 2

 𝑮𝑥 is distributed as 



1

𝑘
||𝑥|| ⋅ 𝑔1, … , ||𝑥|| ⋅ 𝑔𝑘

 where each 𝑔𝑖 is distributed as 1D Gaussian

 Estimator: ||𝐺𝑥||2 = ||𝑥||2 ⋅
1

𝑘
∑𝑖 𝑔𝑖

2

 ∑𝑖 𝑔𝑖
2 is called chi-squared distribution with 𝑘 degrees

 Fact: chi-squared very well concentrated: 

 Equal to 1 + 𝜖 with probability 1 − 𝑒−Ω(𝜖2𝑘)

 Akin to central limit theorem

pdf = 
1

2𝜋
𝑒−𝑔2/2

𝐸[𝑔] = 0
𝐸[𝑔2] = 1



2nd frequency moment: overall

 Correctness:

 ||𝑮𝑥||2 = 1 ± 𝜖 ||𝑥||2 with probability 1 − 𝑒−𝑂(𝑘𝜖2)

 Enough to set 𝑘 = 𝑂(1/𝜖2) for const probability of success

 Space requirement:

 𝑘 = 𝑂(1/𝜖2) counters of 𝑂(log 𝑛) bits

 What about 𝑮: store 𝑂(𝑛𝑘) reals ?

 Storing randomness [AMS’96]

 Ok if 𝑔𝑖 “less random”: choose each of them as 4-wise 

independent

 Also, ok if 𝑔𝑖 is a random ±1

 Only 𝑂(𝑘) counters of 𝑂 log 𝑛 bits



More efficient sketches?

 Smaller Space:

 No: Ω
1

𝜖2 log 𝑛 bits [JW’11] ← David’s lecture

 Faster update time:

 Yes: Jelani’s lecture
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Focus: difference in traffic

1st moment: ∑ |𝑥𝑖– 𝑦𝑖| = 𝑥 − 𝑦 1

2nd moment: ∑ |𝑥𝑖– 𝑦𝑖|
2 = 𝑥 − 𝑦 2

2

𝑥 − 𝑦 1 = 2

𝑥 − 𝑦 2
2 = 2

𝑦

𝑥

Similar Qs: average delay/variance in a network

differential statistics between logs at different servers, etc
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Definition: Sketching

 Sketching:

 𝑆 : objects → short bit-strings

 given 𝑆(𝑥) and 𝑆(𝑦), should be able to estimate some function 

of 𝑥 and 𝑦

𝑆
𝑆

010110 010101

Estimate 𝑥 − 𝑦 2
2 ?
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Sketching for ℓ2

 As before, dimension reduction

 Pick 𝑮 (using common randomness)

 𝑆(𝑥) = 𝑮𝑥

 Estimator: ||𝑆(𝑥) − 𝑆(𝑦)||2
2 = ||𝑮 𝑥 − 𝑦 ||2

2

010110 010101

||𝐺𝑥 − 𝐺𝑦||2
2
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Sketching for Manhattan distance (ℓ1)

 Dimension reduction?

 Essentially no: [CS’02, BC’03, LN’04, JN’10…]

 For 𝑛 points, 𝐷 approximation: between 𝑛Ω 1/𝐷2
and 𝑂(𝑛/𝐷)

[BC03, NR10, ANN10…]

 even if map depends on the dataset!

 In contrast: [JL] gives 𝑂(𝜖−2 log 𝑛)

 No distributional dimension reduction either

 Weak dimension reduction is the rescue…



Dimension reduction for ℓ1 ?

 Can we do the “analog” of Euclidean projections?

 For ℓ2, we used: Gaussian distribution

 has stability property:

 𝑔1𝑧1 + 𝑔2𝑧2 + ⋯ 𝑔𝑑𝑧𝑑 is distributed as 𝑔 ⋅ ||𝑧||

 Is there something similar for 1-norm?

 Yes: Cauchy distribution!

 1-stable:

 𝑐1𝑧1 + 𝑐2𝑧2 + ⋯ 𝑐𝑑𝑧𝑑 is distributed as 𝑐 ⋅ ||𝑧||1

 What’s wrong then?

 Cauchy are heavy-tailed…

 doesn’t even have finite expectation (of abs)

𝑝𝑑𝑓 𝑠 =
1

𝜋(𝑠2 + 1)



Sketching for ℓ1 [Indyk’00]

14

 Still, can consider map as before

 𝑆 𝑥 = 𝐶1𝑥, 𝐶2𝑥, … , 𝐶𝑘𝑥 = 𝑪𝑥

 Consider 𝑆 𝑥 − 𝑆 𝑦 = 𝑪𝑥 − 𝑪𝑦 = 𝑪 𝑥 − 𝑦 = 𝑪𝑧
 where 𝑧 = 𝑥 − 𝑦

 each coordinate distributed as ||𝑧||1 ×Cauchy

 Take 1-norm ||𝑪𝑧||1 ?

 does not have finite expectation, but…

 Can estimate ||𝑧||1 by:

 Median of absolute values of coordinates of 𝑪𝑧 !

 Correctness claim: for each 𝑖

 Pr 𝐶𝑖𝑧 > ||𝑧||1 ⋅ (1 − 𝜖) > 1/2 + Ω(𝜖)

 Pr 𝐶𝑖𝑧 < ||𝑧||1 ⋅ (1 + 𝜖) > 1/2 + Ω(𝜖)



Estimator for ℓ1

 Estimator: median 𝐶1𝑧 , 𝐶2𝑧 , … 𝐶𝑘𝑧

 Correctness claim: for each 𝑖

 Pr 𝐶𝑖𝑧 > ||𝑧||1 ⋅ (1 − 𝜖) > 1/2 + Ω(𝜖)

 Pr 𝐶𝑖𝑧 < ||𝑧||1 ⋅ (1 + 𝜖) > 1/2 + Ω(𝜖)

 Proof:

 𝐶𝑖𝑧 = 𝑎𝑏𝑠(𝐶𝑖𝑧) is distributed as abs ||𝑧||1𝑐 = ||𝑧||1 ⋅ |𝑐|

 Easy to verify that 

 Pr 𝑐 > 1 − 𝜖 > 1/2 + Ω 𝜖

 Pr 𝑐 < 1 + 𝜖 > 1/2 + Ω 𝜖

 Hence, if we have 𝑘 = 𝑂 1/𝜖2

 median 𝐶1𝑧 , 𝐶2𝑧 , … 𝐶𝑘𝑧 ∈ 1 ± 𝜖 ||𝑧||1
with probability at least 90%



To finish the ℓ𝑝 norms…

 𝑝-moment: Σ𝑥𝑖
𝑝

= 𝑥 𝑝
𝑝

 𝑝 ≤ 2

 works via 𝑝-stable distributions [Indyk’00]

 𝑝 > 2

 Can do (and need)  𝑂(𝑛1−2/𝑝) counters

[AMS’96, SS’02, BYJKS’02, CKS’03, IW’05, BGKS’06, BO10, AKO’11, G’11, 

BKSV’14]

 Will see a construction via Precision Sampling



A task: estimate sum
 Given: 𝑛 quantities 𝑎1, 𝑎2, … 𝑎𝑛 in the range [0,1]
 Goal: estimate 𝑆 = 𝑎1 + 𝑎2 + ⋯𝑎𝑛 “cheaply”

 Standard sampling: pick random set 𝐽 = {𝑗1, … 𝑗𝑚} of size 𝑚
 Estimator:  𝑆 =

𝑛

𝑚
⋅ (𝑎𝑗1

+ 𝑎𝑗2
+ ⋯ 𝑎𝑗𝑚

)

 Chebyshev bound: with 90% success probability
1

2
𝑆 – 𝑂(𝑛/𝑚) <  𝑆 < 2𝑆 + 𝑂(𝑛/𝑚)

 For constant additive error, need 𝑚 = Ω(𝑛)

a1 a2 a3 a4

a1
a3

Compute an estimate  𝑆 from 𝑎1, 𝑎3



Precision Sampling Framework

 Alternative “access” to 𝑎𝑖’s:

 For each term 𝑎𝑖, we get a (rough) estimate  𝑎𝑖

 up to some precision 𝑢𝑖, chosen in advance: |𝑎𝑖 –  𝑎𝑖| < 𝑢𝑖

 Challenge: achieve good trade-off between

 quality of approximation to 𝑆

 use only weak precisions 𝑢𝑖 (minimize “cost” of estimating  𝑎)

a1 a2 a3 a4

u1 u2 u3 u4

ã1 ã2
ã3 ã4

Compute an estimate  𝑆 from  𝑎1,  𝑎2,  𝑎3,  𝑎4



Formalization 

Sum Estimator Adversary

1. fix 𝑎1, 𝑎2, … 𝑎𝑛1. fix precisions 𝑢𝑖

2. fix  𝑎1,  𝑎2, …  𝑎𝑛 s.t. |𝑎𝑖 −  𝑎𝑖| < 𝑢𝑖

3. given  𝑎1,  𝑎2, …  𝑎𝑛, output  𝑆 s.t.

∑𝑖 𝑎𝑖 − 𝛾  𝑆 < 1 (for some small 𝛾)

 What is cost? 

 Here, average cost = 1/𝑛 ⋅ ∑ 1/𝑢𝑖

 to achieve precision 𝑢𝑖, use 1/𝑢𝑖 “resources”: e.g., if 𝑎𝑖 is itself a sum 𝑎𝑖 =
∑𝑗𝑎𝑖𝑗 computed by subsampling, then one needs Θ(1/𝑢𝑖) samples

 For example, can choose all 𝑢𝑖 = 1/𝑛
 Average cost ≈ 𝑛



Precision Sampling Lemma

 Goal: estimate ∑𝑎𝑖 from {  𝑎𝑖} satisfying |𝑎𝑖 −  𝑎𝑖| < 𝑢𝑖.

 Precision Sampling Lemma: can get, with 90% success:
 O(1) additive error and 1.5  multiplicative error: 

𝑆 − 𝑂 1 <  𝑆 < 1.5 ⋅ 𝑆 + 𝑂(1)

 with average cost equal to O(log n) 

 Example: distinguish Σ𝑎𝑖 = 3 vs Σ𝑎𝑖 = 0
 Consider two extreme cases:

 if three 𝑎𝑖 = 1: enough to have crude approx for all (𝑢𝑖 = 0.1)

if all 𝑎𝑖 = 3/𝑛: only few with good approx 𝑢𝑖 = 1/𝑛, and the rest with 
𝑢𝑖 = 1

𝜖 1 + 𝜖

𝑆 − 𝜖 <  𝑆 < 1 + 𝜖 𝑆 + 𝜖

[A-Krauthgamer-Onak’11]

𝑂(𝜖−3log 𝑛)



Precision Sampling Algorithm

 Precision Sampling Lemma: can get, with 90% success:
 O(1) additive error and 1.5  multiplicative error: 

𝑆 − 𝑂 1 <  𝑆 < 1.5 ⋅ 𝑆 + 𝑂(1)

 with average cost equal to 𝑂(log 𝑛)

 Algorithm:
 Choose each 𝑢𝑖[0,1] i.i.d.

 Estimator:  𝑆 = count number of 𝑖‘s s.t.  𝑎𝑖/ 𝑢𝑖 > 6 (up to a 
normalization constant)

 Proof of correctness:

 we use only  𝑎𝑖 which are 1.5-approximation to 𝑎𝑖

 𝐸[  𝑆] ≈ ∑ Pr[𝑎𝑖 / 𝑢𝑖 > 6] = ∑ 𝑎𝑖/6.

 𝐸[1/𝑢𝑖] = 𝑂(log 𝑛) w.h.p.

function of [  𝑎𝑖/𝑢𝑖 − 4/𝜖]
+

and 𝑢𝑖’s

concrete distrib. = minimum of 𝑂(𝜖−3) u.r.v.

𝑂(𝜖−3log 𝑛)

𝜖 1 + 𝜖

𝑆 − 𝜖 <  𝑆 < 1 + 𝜖 ⋅ 𝑆 + 𝑂 1



ℓ𝑝 via precision sampling

 Theorem: linear sketch for ℓ𝑝 with 𝑂(1) approximation, 

and 𝑂(𝑛1−2/𝑝 log 𝑛) space (90% succ. prob.).

 Sketch:

 Pick random 𝑟𝑖{±1}, and 𝑢𝑖 as exponential r.v.

 let 𝑦𝑖 = 𝑥𝑖 ⋅ 𝑟𝑖/𝑢𝑖
1/𝑝

 throw into one hash table 𝐻,

 𝑘 = 𝑂(𝑛1−2/𝑝 log 𝑛) cells

 Estimator:

 max
𝑐

𝐻 𝑐 𝑝

 Linear: works for difference as well 

 Randomness: bounded independence suffices

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝑦𝟏

+ 𝑦𝟑

𝑦𝟒 𝑦𝟐

+ 𝑦𝟓

+ 𝑦𝟔

𝑥 =

𝐻 =

𝑢 ∼ 𝑒−𝑢



Correctness of ℓ𝑝 estimation

 Sketch:

 𝑦𝑖 = 𝑥𝑖 ⋅ 𝑟𝑖/𝑢𝑖
1/𝑝

where 𝑟𝑖{±1}, and 𝑢𝑖 exponential r.v.

 Throw into hash table 𝐻

 Theorem: max
𝑐

𝐻 𝑐 𝑝 is 𝑂(1) approximation with 90% 

probability, for 𝑘 = 𝑂(𝑛1−2/𝑝 log𝑂 1 𝑛) cells

 Claim 1: max
𝑖

|𝑦𝑖| is a const approx to ||𝑥||𝑝

 max
𝑖

𝑦𝑖
𝑝 = max

𝑖
𝑥𝑖

𝑝/𝑢𝑖

 Fact [max-stability]: max 𝜆𝑖/𝑢𝑖 distributed as ∑𝜆𝑖/𝑢

 max
𝑖

𝑦𝑖
𝑝 is distributed as ||𝑥||𝑝

𝑝
/𝑢

 𝑢 is Θ(1) with const probability



Correctness (cont)

 Claim 2:

 max
𝑐

|𝐻 𝑐 | =  1 ⋅ ||𝑥||𝑝

 Consider a hash table 𝐻, and the cell 𝑐 where 𝑦𝑖∗ falls into

 for 𝑖∗ which maximizes |𝑦𝑖∗|

 How much “extra stuff” is there?

 2 = (𝐻[𝑐] − 𝑦𝑖∗)2 = (∑𝑗≠𝑖∗ 𝑦𝑗 ⋅ [𝑗𝑐])2

 𝐸 2 = ∑𝑗≠𝑖∗ 𝑦𝑗
2 ⋅ [𝑗𝑐] = ∑𝑗≠𝑖∗ 𝑦𝑗

2/𝑘 ≤ ||𝑦||2/𝑘

 We have: 𝐸𝑢||𝑦||2 ≤ ||𝑥||2 ⋅ 𝐸 1/𝑢1/𝑝 = 𝑂 log𝑛 ⋅ ||𝑥||2

 ||𝑥||2 ≤ 𝑛1−2/𝑝||𝑥||𝑝
2

 By Markov’s: 2 ≤ ||𝑥||𝑝
2 ⋅ 𝑛1−2/𝑝 ⋅ 𝑂(log𝑛)/𝑘 with prob 0.9.

 Then: 𝐻[𝑐] = 𝑦𝑖∗ + 𝛿 =  1 ⋅ ||𝑥||𝑝.

 Need to argue about other cells too → concentration

𝑦𝑖 = 𝑥𝑖 ⋅ 𝑟𝑖/𝑢𝑖
1/𝑝

where 𝑟𝑖{±1}
𝑢𝑖 exponential r.v.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

𝑦𝟏

+ 𝑦𝟑

𝑦𝟒 𝑦𝟐

+ 𝑦𝟓

+ 𝑦𝟔

𝐻 =


