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• Spam: Testing if email is spam or not
• Sentiment analysis: is a product review positive or negative
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• Predictions: Stock market price as function of financial specs
• Relationship between dosage and effectiveness
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But we don't have any examples of the "correct" answer !
Clustering is closely related to classification with multiple classes
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Unsupervised Learning
Dimensionality Reduction (or Feature Learning)

Given objects in Rd find a mapping A : Rd 7! Rk, k ⌧ d

that preserves the "structure" of the objects

• Find "relevant" dimensions for a task
• Reduce dimensionality to manage complexity of algorithms
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Mixing and Matching

Semi-supervised learning: labelled and unlabeled data

Find a classifier that separates the labeled points and separates 
the unlabeled points "well"

Often have lots of unlabeled data and only a little labeled 
data to guide efforts
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Mixing and Matching

Supervised clustering = multiclass classification

Supervised dimensionality reduction = (linear) discriminant analysis
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Understanding vs Predicting

{(x
1

, y1), (x2

, y2), . . .} is drawn from distribution p(X, Y)

Generative learning: Learn the distribution p(X, Y)

"What controls the rise and fall of the tides ?"

Discriminative learning: Learn the conditional distribution p(Y | X)

p(Y | X) =
p(X, Y)

p(X)

"Will there be a high tide tomorrow evening ?" 
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Understanding vs Predicting
Discriminative clustering: predict the cluster of a new point

p( | ) = exp(�k � k2)

Generative clustering: mixture density estimation
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Parameters

Parametric Learning:
• Define a space of models parametrized by fixed number of parameters
• Find model that best fits the data (by searching over parameters)

Parametric binary classification:
• Model: 
• Maximize likelihood of any model
•             parameters

(µ1, S1, µ2, S2) p(x) µ exp(�(x � µ)>S(x � µ))

d2 + 2d
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Parameters

Non-parametric Learning:
• Define a space of models that can grow in size with data. 
• Find model that best fits the data
• "Non-parametric" means "Not-fixed", not "none" !

4 "support points" define the resulting classifier. 
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Bayesian Learning

Non-Bayesian (parametric) learning:

{Q}

{(x
1

, y1), (x2

, y2), . . .}
Learner Q⇤

p(Q)

{(x
1

, y1), (x2

, y2), . . .}

Learner

Bayesian learning:

Prior (belief 
about the world)

p̂(Q)

Posterior (belief 
about the world)

Q⇤ is a point estimate. 
p̂(Q) is a distribution over possible worlds
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Bayesian Learning

You know you're talking to a Bayesian if...

Wha
t's 

yo
ur 

prio
r ? Conjugate priors

Maximum a posteriori (MAP)
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Many Learning Frameworks

• Online Learning: must make prediction as soon as item arrives
• Active Learning: I can get labels for data, but it's expensive. 
• Multi-task Learning: I'm learning different tasks, but they're related

so maybe the tasks can learn from each other.
• Transfer Learning: I can learn well in one domain: can I transfer this
• knowledge into a different domain ? 
• Ensemble Learning: I have bad learners, but together they're decent
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The Mechanics of Learning
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Loss Functions

Find a function f : Rd 7! {+1,�1}

such that f captures the relationship between and 
x y

Given: {(x
1

, y1), (x2

, y2), . . .} drawn from some source

x

i

2 Rd yi 2 {+1,�1}

Loss functions                       measure the quality of f: L( f ((x), y))

0-1 loss:

Hinge loss:

Square loss: 

1 f (x) 6=y

max(0, 1 � y · f (x))

(y � f (x))2
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Estimating Risk

Once we have a loss function, we can quantify how good
a predictor is:

R( f ) = E
x,y[L( f (x), y)] =

Z
p(x, y)L( f (x), y)

and find a good predictor:

f ⇤ = arg min
f2F

R( f )

But we don't usually know what the data distribution is, so we can't
solve the minimization !
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Empirical Risk Minimization

Assume the given data is drawn from the source distribution.
Replace 

R( f ) = E
x,y[L( f (x), y)] =

Z
p(x, y)L( f (x), y)

by the empirical mean:

R̂( f ) =
1
n Â

i
L( f (xi, yi)

with the hope that the estimate is unbiased and converges:

E[R̂( f )] = R( f ), R̂( f ) ! R( f )

But now we have a "normal" optimization:

min
f2F

1
n Â

i
L( f (xi, yi)
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Overfitting and Regularization

The problem with optimizing over
the data is that you can over-fit 
to your samples. (low bias)

This is bad because then your
predictive power goes down (high 
variance) and you can't generalize

Complex models (with more parameters) can overfit. Penalize them !

min
f2F

1
n Â

i
L( f (xi, yi) + c( f )

model complexity termThis is called regularization.
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Generalization
How many samples of the data do you need for the empirically 
optimized answer to get close to the true answer ? 

If your function space is "well behaved" (not too wiggly), then you 
don't need too many samples. 

Well behaved: 
• VC dimension is small
• Rademacher complexity is small
• Fat shattering dimension is small
• ... and others.

All of this assumes that you sample from the real distribution...
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Overview... so far...

1) Choose a learning task (classification, clustering, regression, ...)
2) Pick a convenient loss function
3) Sample a sufficient number of points from a source
4) Build an optimization using the data, the loss function, and any regularizers
5) OPTIMIZE !!!
6) Use learned model on new data to predict. 
7) (if you're doing online learning, repeat)

ML = Design choices + careful optimization

Linear..
Least squares
Semidefinite
Convex...

Submodular...

Gradient search
Coordinate descent

Interior point methods
Newton's method
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Representations
The Computational Geometry prayer: 

Let P be a set of points in the plane. Amen. 

Let G be a graph with n vertices and m edges

Let S be a set of elements drawn from a universe U

Let M be an m X n matrix of reals.

But in learning, we don't have a "natural" representation.
We have to CHOOSE one. 



Summer School 2014: Learning at Scale

Representations help algorithms

Learning a circle
separating classes
can be tricky



Summer School 2014: Learning at Scale

Representations help algorithms

Learning a circle
separating classes
can be tricky

` : (x, y) 7! (x, y, x

2 + y

2)

If we change the representation



Summer School 2014: Learning at Scale

Representations help algorithms

Learning a circle
separating classes
can be tricky

` : (x, y) 7! (x, y, x

2 + y

2)

If we change the representation

Circle separation becomes
linear separation !
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Constructing a representation
Supervision guides the representation

Unsupervised spectral representation

And many other kinds...
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Optimize !
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A new overview of learning
Build a model of 

data

Choose a 
learning task

Shape your learner 
(loss, regularizer)

Choose samples 
from a source

Optimize !

Predict !

Kernels

(Submodular) 
optimization

Provably 
efficient 

algorithms

Doing all of 
this at scale
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