MADALGO & CTIC Summer School 2011

Student Poster Session

Geometric t-spanner

Given a set of points, Construct a good network

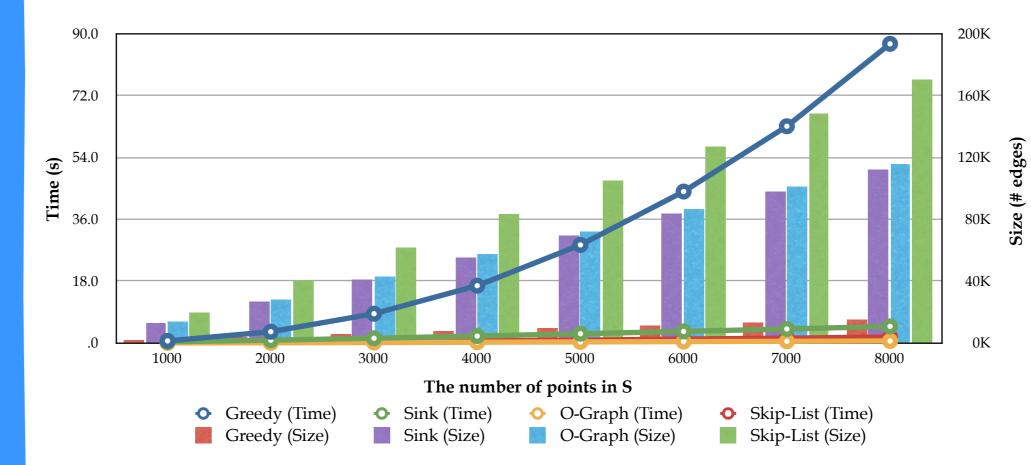
Network Measures

Stretch Factor (Dilation), Size, Weight, Degree, Diameter, Connectivity, Fault Tolerance, Genus, Numbers of Steiner Points, Load Factor ...

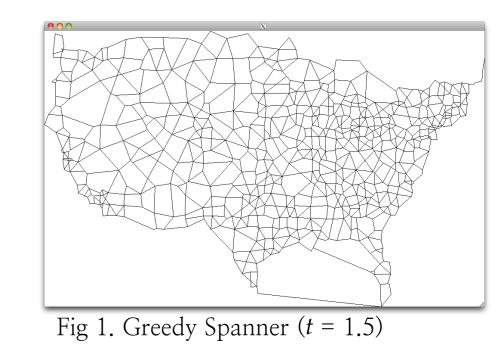
Known Algorithms

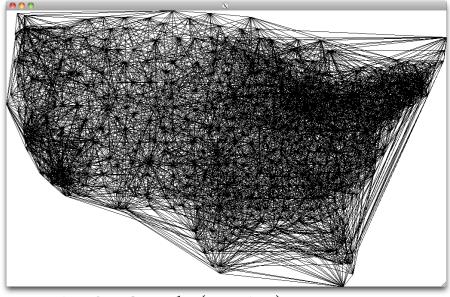
Greedy Algorithm $O(n^3 \log n) \rightarrow O(n^2 \log n)$ WSPD-Spanner O(*n*log*n*) Skip-list O(*n*log*n*) Θ -Graph O(*n*log*n*) Variants of Θ -Graph

Greedy Algorithm

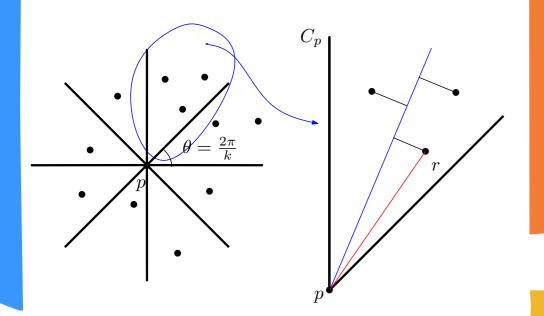

 $G = (S, E = \emptyset)$ Sort all pair of points in nondecreasing order of their distance. For each pair (*p*, *q*), (in sorted order) Compute shortest path $d_G(p,g)$ in *G*. if $|d_G(p,g)| > t |pq|$ then $E = E \cup (p,q)$. return G

Definition (Spanner)

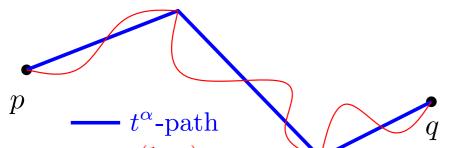

Let *S* be a set of *n* points in \mathbb{R}^d and $t \ge 1$ be a real number.


A *t-spanner* for *S* is an undirected graph *G* with vertex set *S*, such that for any two points *p* and *q*, there is a path in *G* between *p* and *q*, whose length is less than equal to t | pq |, where |pq| is the Euclidean distance from p to q.

Problem


Jungwoo Yang **KAIST, South Korea** yjwoo14@gmail.com

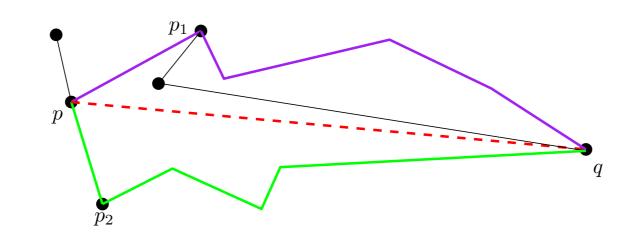
Θ -Graph


For each point *p* of *S* and each cone C_p the Θ -Graph contains one edge {*p*, *r*}, where *r* is a point in $C_p \cap S \setminus \{p\}$, whose orthogonal projection onto bisector of C_p is closest to p.

Hybrid Scheme

First, compute t^{α} -spanner $G_1(S, E_1)$. $(|E_1| = \mathcal{O}(n))$ Second, prune edges in E_1 such that every pair (*p*, *q*) in E_1 has $t^{(1-\alpha)}$ path.

 \rightarrow Every pair (*p*, *q*) has $t^{\alpha} \times t^{(1-\alpha)} = t$ path.

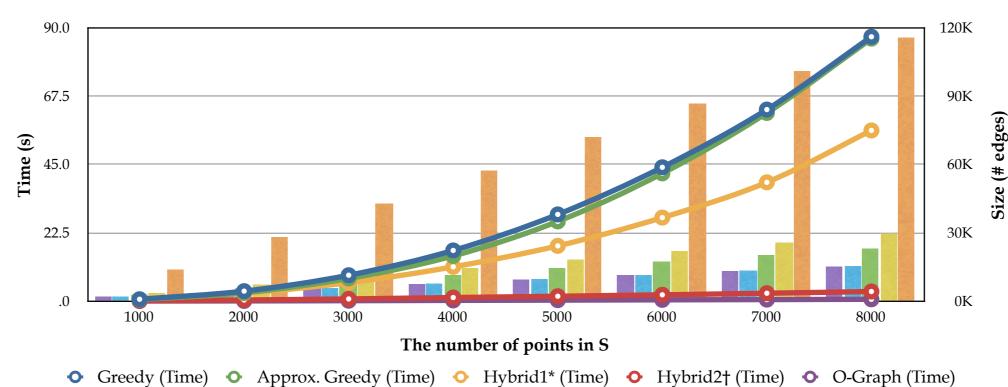


 \rightarrow The greedy algorithm is too slow, the other algorithms generate bad networks.

Approach

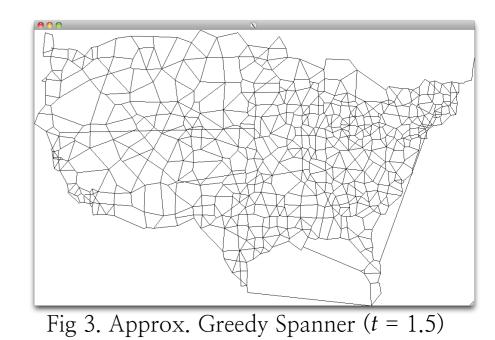
Compute the **approximate shortest path** $d'_G(p,q)$ instead of computing Dijkstra alg. Let (p,q) be a pair being considered.

Let p_1, \ldots, p_k and q_1, \ldots, q_l be neighbor points of p and q respectively. $d'_{G}(p,q) = min(|pp_{1}| + d_{G}(p_{1},q), ..., |pp_{k}| + d_{G}(p_{k},q), |pq_{1}| + d_{G}(p,q_{1}), ..., |pq_{l}| + d_{G}(p,q_{l})).$ If $d'_G(p,q) > t | pq |$ then $d_G(p,q) = | pq |$ else $d_G(p,q) = d'_G(p,q)$.


 \rightarrow Still O($n^2\log n$) + O(n^2) g(n) algorithm, where g(n) is the degree complexity of *G*.

Approach

Using the hybrid scheme, improve time complexity. First, generate t^{α} -spanner $G_1(S, E_1)$ using a variant of Θ -Graph. Second, for each edge (p,q) in E_1 compute the approximate shortest path $d'_G(p,q)$. If $d'_G(p,q) > t | pq |$ then add (p,q) to result graph G(S,E).


 \rightarrow O(*n*log*n*) + O(*n*) *g*(*n*) algorithm, where *g*(*n*) is the degree complexity of *G*.

Experiment

Greedy (Size) Approx. Greedy (Size) Hybrid1 (Size)

Fig 2. Θ -Graph (t = 1.5)

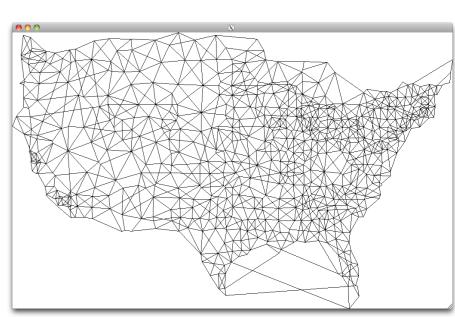
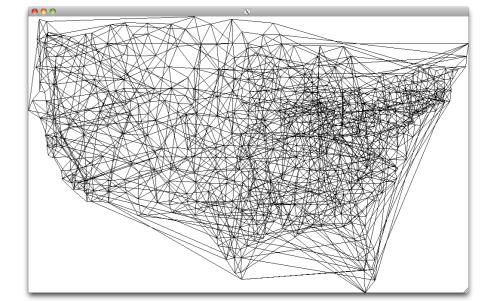



Fig 4. Hybrid1 Spanner ($t = 1.5, \alpha = 0.5$)

edges)

Theoretical bounds

Algorithms	Size	Weight	Degree	Time
Greedy	O(n)	O(n)	<i>O</i> (1)	$O(n^2 \log n)$
Θ-Graph	O(n)	$\theta(n)$	$\theta(n)$	$O(n\log n)$
Ο. <i>Θ</i> -Graph	O(n)	O(n)	$O(\log n)$	$O(n\log n)$
WSPD	O(n)	$O(\log n)$	$\theta(n)$	$O(n\log n)$
Sink	$\theta(n)$	O(n)	<i>O</i> (1)	$O(n\log n)$
Skip-list	$\theta(n)$	$\theta(n)$	$\theta(n)$	$O(n\log n)$
Hybrid1	O(n)	O(n)	<i>O</i> (1)	$O(n\log n)$

Fig 5. Hybrid2 Spanner ($t = 1.5, \alpha = 0.5$)

Questions

Does the hybrid2 algorithm really bound degree? (If so, it is definitely O(*n*log*n*) alg.) Can it be transformed into angle-constrained spanner? (If so, the degree is bounded by constant.) How does the α factor affect the result? Is there any other good preprocessing algorithm instead of Θ -Graph?

Hybrid2 (Size)

O-Graph (Size)

^{*} Hybrid1 uses *\Theta-Graph* for t^{α} -spanner $G_1(S, E_1)$ in the first phase, then uses *greedy algorithm* with $t^{(1-\alpha)}, E_1$. [†] Hybrid2 uses *\Theta-Graph* for t^{α} -spanner $G_1(S, E_1)$ in the first phase, then uses *approximate greedy algorithm* with $t^{(1-\alpha)}, E_1$.