
Multi-Objective LZSS Compression
Andrea Farruggia, Paolo Ferragina

Department of Computer Science, University of Pisa

A New Compression Paradigm

Modern applications demand more than just compression ratio: decompression time, en-
ergy consumption... conflicting, multiple objectives!
This issue is usually dealt with by “tweaking” heuristically a known compression method
until it exhibits the desired trade-off.

Our aim: design a compression method
which lets the user choose in a

principled way the required trade-off.

The LZSS compression method

Compression is performed in two steps:

I Parsing: the text is decomposed in phrases
(strings) belonging to the LZSS dictionary.

I Encoding: mapping copies and literals to
codewords, i.e., binary strings of variable length.

Decompression is performed by iteratively decoding a
codeword and copying the corresponding phrase,
thus deriving the original phrase.

abaabaab

(0, a) (0, b) (0, a) (3, 5)

1a1b1a0001000001

Parsing

Encoding

Decoding

(0, a) (0, b) (0, a) (3, 5)

abaabaab

Copying

The parsing strategy and the encod-
ing format can be customized and both
greatly affect decompression times. In
our case, the pattern of memory ac-
cesses induced by the parsing is funda-
mental in determining the decompres-
sion time/compression ratio trade-off.

Time-Space Biobjective LZSS Parsing Strategy

The graph G(T) = (V ,E) is defined as follows:

I vi ∈ V for each character T [i] plus a “sink” vn+1;

I (vi , vj+1) ∈ E for each substring T [i , j] in the LZSS dictionary;

I a time weight and a space weight for each edge.

Let Π be the set of paths from v1 to vn+1, then:

I there is a bijection between Π and LZSS parsings of T ;

I the sum the edge weights on a path equals the decompression
time and compression ratio of the corresponding parsing.

1 2 3 4 5 6 7 8 9 10 11 12
ippis

ssi

ss

issi

iss

is

sissim

Time weights have been estimated by
correlating decompression time of a parsing
with a set of relevant parsing features like

number of phrases, characters, copies
which may induce cache misses, etc.

Our goal is to minimize the
compressed space, given a
user-specified time bound.

Since the weight-constrained shortest path
problem is NP-hard in general, we

employed a O(n log n) heuristic based on
solving the Lagrangian Dual on the weight
constraint using the cutting-plane method.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 60 70 80 90 100 110 120 130 140 150 160 170

Ti
m

e
 (

se
co

n
d
s)

Size (megabytes)

English, 250MB

lzopt

0.2

0.4

0.6

0.8

1 Snappy

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 35 40 45 50 55 60 65 70 75 80 85

Ti
m

e
 (

se
co

n
d
s)

Size (megabytes)

HTML, 250MB

lzopt

0.2

0.4

0.6

0.8

1
Snappy

It is possible to control, in a nearly linear way, the decompression time/compression ratio trade-off.
Moreover, we perform consistently better than state-of-the-art compression (like Google Snappy).

