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A New Compression Paradigm

Modern applications demand more than just compression ratio: decompression time, en-
ergy consumption... conflicting, multiple objectives!
This issue is usually dealt with by “tweaking” heuristically a known compression method
until it exhibits the desired trade-off.

Our aim: design a compression method
which lets the user choose in a

principled way the required trade-off.

The LZSS compression method

Compression is performed in two steps:

I Parsing: the text is decomposed in phrases
(strings) belonging to the LZSS dictionary.

I Encoding: mapping copies and literals to
codewords, i.e., binary strings of variable length.

Decompression is performed by iteratively decoding a
codeword and copying the corresponding phrase,
thus deriving the original phrase.
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The parsing strategy and the encod-
ing format can be customized and both
greatly affect decompression times. In
our case, the pattern of memory ac-
cesses induced by the parsing is funda-
mental in determining the decompres-
sion time/compression ratio trade-off.

Time-Space Biobjective LZSS Parsing Strategy

The graph G(T ) = (V ,E ) is defined as follows:

I vi ∈ V for each character T [i ] plus a “sink” vn+1;

I (vi , vj+1) ∈ E for each substring T [i , j ] in the LZSS dictionary;

I a time weight and a space weight for each edge.

Let Π be the set of paths from v1 to vn+1, then:

I there is a bijection between Π and LZSS parsings of T ;

I the sum the edge weights on a path equals the decompression
time and compression ratio of the corresponding parsing.
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Time weights have been estimated by
correlating decompression time of a parsing
with a set of relevant parsing features like

number of phrases, characters, copies
which may induce cache misses, etc.

Our goal is to minimize the
compressed space, given a
user-specified time bound.

Since the weight-constrained shortest path
problem is NP-hard in general, we

employed a O(n log n) heuristic based on
solving the Lagrangian Dual on the weight
constraint using the cutting-plane method.
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It is possible to control, in a nearly linear way, the decompression time/compression ratio trade-off.
Moreover, we perform consistently better than state-of-the-art compression (like Google Snappy).


