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Reminder

MapReduce:
– A trade-off between ease of use & possible parallelism

Graph Algorithms Approaches:
– Reduce input size (filtering)
– Graph specific optimizations (Pregel & Giraph)
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Today

Machine Learning
– More filtering -- reducing input size
– Machine Learning Optimizations & AllReduce

Applications:
– k-means clustering
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Machine Learning

Definition:
– Fitting a function to the data 
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Machine Learning

Definition:
– Fitting a function to the data 

Examples:
– Classification: 

• Data (x,y) pairs               
• Temperature = 15, Pressure = 755mm, Cloud Cover = 90%.  : No Rain 
• Temperature = 17, Pressure = 760mm, Cloud Cover = 75%   : No Rain
• Temperature = 23, Pressure = 766mm, Cloud Cover = 95%   : Rain
• Temperature = 19, Pressure = 740mm, Cloud Cover = 100% : ???

5

x 2 Rd
, y = ±1
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Machine Learning

Definition:
– Fitting a function to the data 

Examples:
– Classification. 
– Regression:

• Data (x,y) pairs               
• Temperature = 15, Pressure = 755mm, Cloud Cover = 90%.  : 1mm Rain
• Temperature = 17, Pressure = 760mm, Cloud Cover = 75%   : 0mm Rain
• Temperature = 23, Pressure = 766mm, Cloud Cover = 95%   : 9mm Rain
• Temperature = 19, Pressure = 740mm, Cloud Cover = 100% : ???

6

x 2 Rd
, y 2 R
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Machine Learning

Definition:
– Fitting a function to the data 

Examples:
– Classification.  
– Regression. 
– Clustering:

• Data               , Goal: find a sensible grouping into      groups

7

x 2 Rd k
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Machine Learning

Definition:
– Fitting a function to the data 

Examples:
– Classification.  
– Regression. 
– Clustering.

Today:
– Regression & Clustering
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Regression

Data:
– Temperature = 15, Pressure = 755mm, Cloud Cover = 90%.  : 1mm 
– Temperature = 17, Pressure = 760mm, Cloud Cover = 75%   : 0mm
– Temperature = 23, Pressure = 766mm, Cloud Cover = 95%   : 9mm
– Temperature = 11, Pressure = 740mm, Cloud Cover = 100% : 5mm

Matrix Form:

9

x =

0

BB@

15 755 90
17 760 75
23 766 95
11 740 100

1

CCA y =

0

BB@

1
0
9
5

1

CCA

Temperature Pressure Cloud Cover

Aarhus (yesterday)
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Linear Regression

– Approximate    by a linear function of     :
– Example: 0.05 weight on Temperature, 0 on pressure , 0.1 on Humidity
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x =

0

BB@

15 755 90
17 760 75
23 766 95
11 740 100

1

CCA y =

0

BB@

1
0
9
5

1

CCA

y x
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Linear Regression

– Approximate    by a linear function of     :
– Example: 0.05 weight on Temperature, 0 on pressure , 0.1 on Humidity 
– Predictions:

– Find    that minimizes the squared distance: 
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x =

0

BB@

15 755 90
17 760 75
23 766 95
11 740 100

1

CCA y =

0

BB@

1
0
9
5

1

CCA

✓

y x

15 · 0.05 + 0.1 · 90 = 1.65
17 · 0.05 + 0.1 · 75 = 1.6

kx · ✓ � yk2
. . .
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Linear Regression

– Approximate    by a linear function of     :
– Example: 0.05 weight on Temperature, 0 on pressure , 0.1 on Humidity 
– Predictions:

– Find    that minimizes the squared distance: 
– Very simple! 

• Is this complex enough to capture all of the data?
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x =

0

BB@

15 755 90
17 760 75
23 766 95
11 740 100

1

CCA y =

0

BB@

1
0
9
5

1

CCA

✓

y x

15 · 0.05 + 0.1 · 90 = 1.65
17 · 0.05 + 0.1 · 75 = 1.6

kx · ✓ � yk2
. . .
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Linear Regression

– Approximate    by a linear function of     :
– Example: 0.05 weight on Temperature, 0 on pressure , 0.1 on Humidity 
– Predictions:

– Find    that minimizes the squared distance: 
– Very simple! 

• Is this complex enough to capture all of the data?
• Maybe if you have a lot of features
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x =

0

BB@

15 755 90
17 760 75
23 766 95
11 740 100

1

CCA y =

0

BB@

1
0
9
5

1

CCA

✓

y x

15 · 0.05 + 0.1 · 90 = 1.65
17 · 0.05 + 0.1 · 75 = 1.6

kx · ✓ � yk2
. . .
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Doing Regression

Problem:
– Examples                    , labels:
– Find a set of weights                   that minimizes:

14

X 2 Rn⇥d Y 2 Rn⇥1

✓ 2 Rd⇥1 kX · ✓ � Y k2
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Doing Regression

Problem:
– Examples                    , labels:
– Find a set of weights                   that minimizes:

Exact Solution:

15

X 2 Rn⇥d Y 2 Rn⇥1

✓ 2 Rd⇥1 kX · ✓ � Y k2

✓ = (XTX)�1XTY
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Doing Regression

Problem:
– Examples                    , labels:
– Find a set of weights                   that minimizes:

Exact Solution:
– If the number of examples    is large..
– ...but the dimensionality    is small 
– Then:

•                              and                           are small..

16

X 2 Rn⇥d Y 2 Rn⇥1

✓ 2 Rd⇥1 kX · ✓ � Y k2

✓ = (XTX)�1XTY

n
d
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Doing Regression

Problem:
– Examples                    , labels:
– Find a set of weights                   that minimizes:

Exact Solution:
– If the number of examples    is large..
– ...but the dimensionality    is small 
– Then:

•                              and                           are small..
• ..and therefore fit onto a single machine
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Doing Regression

Problem:
– Examples                    , labels:
– Find a set of weights                   that minimizes:

Exact Solution:
– If the number of examples    is large..
– ...but the dimensionality    is small 
– Then:

•                              and                           are small..
• ..and therefore fit onto a single machine

– Idea: Compute                       in parallel, finish on a single machine
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X 2 Rn⇥d Y 2 Rn⇥1

✓ 2 Rd⇥1 kX · ✓ � Y k2

✓ = (XTX)�1XTY

n
d

(XTX) 2 Rd⇥d XTY 2 Rd⇥1
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Computation

Idea:
– Compute                       in parallel, finish on a single machine

19

XTX,XTY
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Computation

Idea:
– Compute                       in parallel, finish on a single machine

How hard?
– Computing Matrix-Matrix & Matrix-Vector products
– For square                    matrices:

•                              time 

20

XTX,XTY

O

✓
n
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n

m
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p
n

Machine memory
Total memory O(1) m = n3/4,M = n3/2when
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Computation

Idea:
– Compute                       in parallel, finish on a single machine

How hard?
– Computing Matrix-Matrix & Matrix-Vector products
– For square                    matrices:

•                              time 

• and! 

•
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How far can you go?

ML Theory
– Statistical query model 
– Interact with data only via some             that’s averaged over all of the 

examples.

– This is trivial to parallelize 

22

f(X,Y ) =
1

n

X

(x,y)2(X⇥Y )

f(x, y)

f(x, y)
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Statistical Query Model

What can you do using the statistical query model?

– Linear Regression
– Naive Bayes 
– Logistic Regression
– Neural Networks
– Principle Component Analysis (PCA)

23
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Statistical Query Model

What can you do using the statistical query model?
    But required runtime per step....
– Linear Regression
– Naive Bayes 
– Logistic Regression
– Neural Networks
– Principle Component Analysis (PCA)

24

O(d2)

O(d2)

O(d2)

O(d)

O(d)
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Statistical Query Model

What can you do using the statistical query model?
    But required runtime per step....
– Linear Regression
– Naive Bayes 
– Logistic Regression
– Neural Networks
– Principle Component Analysis (PCA)

...Applicable only to low dimensional spaces

25

O(d2)

O(d2)

O(d2)

O(d)

O(d)
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Large Dimensionality

What if the dimension is too high?
Goal Minimize:

26

J(✓) = kX · ✓ � Y k2
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Large Dimensionality

What if the dimension is too high?
Goal Minimize:
– greedy solution: gradient descent

– Single example gradient:

27

✓
new

= ✓
old

+ ↵ ·rJ(✓
old

)

@

@✓j
J(✓) = (y � x · ✓) · xj

J(✓) = kX · ✓ � Y k2
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Batch Gradient Descent

Given examples:
– 1. Compute gradient for every example for every coordinate 

• Easy to parallelize!    

28

@

@✓j
J(✓) = (y � x · ✓) · xj
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Batch Gradient Descent

Given examples:
– 1. Compute gradient for every example for every coordinate 

• Easy to parallelize!
– 2. Update     :

29

@

@✓j
J(✓) = (y � x · ✓) · xj

✓

✓

new(j) = ✓

old(j) + ↵

nX

i=1

(y(i) � x

(i) · ✓) · x(i)
j
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Batch Gradient Descent

Given examples:
– 1. Compute gradient for every example for every coordinate 

• Easy to parallelize!
– 2. Update     :

– 3. Repeat until convergence
• Will converge given mild conditions on 

30

@

@✓j
J(✓) = (y � x · ✓) · xj

✓

✓

new(j) = ✓

old(j) + ↵

nX

i=1

(y(i) � x

(i) · ✓) · x(i)
j

↵
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Performance

Batch Gradient Descent in MR:
– Easy to write
– But requires many many rounds to converge...
– ...this is inefficient in MapReduce 
– Remember, aimed for           rounds. 

31

O(1)
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Performance

Batch Gradient Descent in MR:
– Easy to write
– But requires many many rounds to converge...
– ...this is inefficient in MapReduce. 
– Remember, aimed for           rounds. 

Same problem exists sequentially:
– Batch Gradient Descent looks at all examples in every round!

32

O(1)
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Sequential Improvement

What if we update the gradient after every example
– Read one example:

33

(x(i)
, y

(i))
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Sequential Improvement

What if we update the gradient after every example
– Read one example:

– Update the parameter: 

34

(x(i)
, y

(i))

✓

new(j) = ✓

old(j) + ↵(y(i) � x

(i) · ✓) · x(i)
j
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Sequential Improvement

What if we update the gradient after every example
– Read one example:

– Update the parameter: 

– Repeat until changes are minor
– Again, converges to somewhere near the local minimum

Known as Stochastic Gradient Descent 

35

(x(i)
, y

(i))

✓

new(j) = ✓

old(j) + ↵(y(i) � x

(i) · ✓) · x(i)
j
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Stochastic GS & All-Reduce

How to parallelize stochastic gradient descent?
– Main Loop:

– First compute  
– Then: perform the update

36

✓

new(j) = ✓

old(j) + ↵(y(i) � x

(i) · ✓) · x(i)
j

y

(i) � x

(i) · ✓
Requires all coordinates

Easy to parallelize by coordinate
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All-Reduce

Optimizes taking a sum & propagating the updates.

37
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All-Reduce

Optimizes taking a sum & propagating the updates.

38
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All-Reduce

Optimizes taking a sum & propagating the updates.
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All-Reduce

Optimizes taking a sum & propagating the updates.

40

7 5 3 4
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All-Reduce

Optimizes taking a sum & propagating the updates.

41

7 5 3 4

1 8

37 37
9
37

Saturday, August 25, 12



MR ML Algorithmics Sergei Vassilvitskii

All-Reduce

Optimizes taking a sum & propagating the updates.
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All-Reduce

Optimizes taking a sum & propagating the updates.
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7 5 3 4
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All-Reduce

Optimizes taking a sum & propagating the updates
– Very optimized !
– Can get a significant speed up over straightforward Hadoop
– Mostly maintain fault tolerance given by Hadoop
– Pipelining means nodes are never idle 

• Delay propagation of gradient by a few rounds

44
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All-Reduce

Optimizes taking a sum & propagating the updates
– Very optimized !
– Can get a significant speed up over straightforward Hadoop
– Mostly maintain fault tolerance given by Hadoop
– Pipelining means nodes are never idle 

• Delay propagation of gradient by a few rounds

– Gets good results!
– Can be made to work with other Statistical Query Algorithms 

45
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Regression Overview

Two approaches:
– Exact Computation

• Works only if the dimension is small (quadratic algorithms on dimension allowed)

– Streaming style computation
• Works even if dimension is large
• AllReduce makes MapReduce more scalable

46
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Today

Machine Learning
– More filtering -- reducing input size
– Machine Learning Optimizations & AllReduce

Applications:
– k-means clustering

47
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Clustering

Clustering:
– Group similar items together 

One of the oldest problems in CS:
– Thousands of papers
– Hundreds of algorithms

48
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Lloyd’s Method: k-means

Initialize with random clusters
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Lloyd’s Method: k-means

Assign each point to nearest center
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Lloyd’s Method: k-means

Recompute optimum centers (means)
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Lloyd’s Method: k-means

Repeat: Assign points to nearest center
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Lloyd’s Method: k-means

Repeat: Recompute centers
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Lloyd’s Method: k-means

Repeat...

54
Saturday, August 25, 12



MR ML Algorithmics Sergei Vassilvitskii

Lloyd’s Method: k-means

Repeat...Until clustering does not change
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Lloyd’s Method: k-means

Repeat...Until clustering does not change

Total error reduced at every step - guaranteed to converge.

55
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Lloyd’s Method: k-means

Repeat...Until clustering does not change

Total error reduced at every step - guaranteed to converge.

Minimizes:

56

�(X,C) =
X

x2X

d(x,C)2
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k-means Initialization

Random?
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k-means Initialization

Random?
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k-means Initialization

Random? A bad idea
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k-means Initialization

Random? A bad idea

Even with many random restarts!
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Easy Fix

Select centers using a furthest point algorithm (2-approximation to k-
Center clustering).
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Easy Fix

Select centers using a furthest point algorithm (2-approximation to k-
Center clustering).
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Easy Fix

Select centers using a furthest point algorithm (2-approximation to k-
Center clustering).
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Easy Fix

Select centers using a furthest point algorithm (2-approximation to k-
Center clustering).
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Easy Fix

Select centers using a furthest point algorithm (2-approximation to k-
Center clustering).
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Sensitive to Outliers
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Sensitive to Outliers
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Sensitive to Outliers
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Sensitive to Outliers
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Sensitive to Outliers
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Interpolate between two methods. Give preference to further points. 

Let          be the distance between    and the nearest cluster center. 
Sample next center proportionally to           . 

k-means++

67

D(p) p

D↵(p)
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k-means++

68

D(p) p

Interpolate between two methods. Give preference to further points. 

Let          be the distance between    and the nearest cluster center. 
Sample next center proportionally to           . D↵(p)

D↵(p)P
x

D↵(p)

kmeans++:
   Select first point uniformly at random
   for (int i=1; i < k; ++i){
      Select next point p with probability          ;     
      UpdateDistances();
   }
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k-means++

69

D(p) p

Interpolate between two methods. Give preference to further points. 

Let          be the distance between    and the nearest cluster center. 
Sample next center proportionally to           . D↵(p)

↵ = 1
↵ = 2

Original Lloyd’s:  

Furthest Point: 
k-means++: 

↵ = 0

D↵(p)P
x

D↵(p)

kmeans++:
   Select first point uniformly at random
   for (int i=1; i < k; ++i){
      Select next point p with probability          ;     
      UpdateDistances();
   }
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k-means++
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k-means++
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k-means++
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k-means++
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k-means++

71

Theorem [AV ’07]: k-means++ guarantees a               approximation⇥(log k)
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Algorithm

Initialization:

Very Sequential!
– Must update all distances before selecting next cluster

72

kmeans++:
   Select first point uniformly at random
   for (int i=1; i < k; ++i){
      Select next point p with probability          ;     
      UpdateDistances();
   }

D2(p)P
p D2(p)

Saturday, August 25, 12



MR ML Algorithmics Sergei Vassilvitskii

Goal: Simulate k-means++ 

k-means++:
– Is a “soft” greedy algorithm
– Adapt sample & prune technique 
– Sample multiple points in each round 
– In the end, prune back down to k points 

73
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k-means||

74

kmeans++:
   Select first point uniformly at random
   for (int i=1; i < k; ++i){
      Select next point p with probability          ;     
      UpdateDistances();
   }
}

D2(p)P
p D2(p)

Saturday, August 25, 12



MR ML Algorithmics Sergei Vassilvitskii

k-means||

75

kmeans++:
   Select first point c uniformly at random
   for (int i=1; i <           ; ++i){
      Select point p independently with probability               ;     
      UpdateDistances();
   }
   Prune to k points total by clustering the clusters
}

k · ` · D↵(p)P
x

D↵(p)

log`(�(X, c))
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k-means||

76

kmeans++:
   Select first point c uniformly at random
   for (int i=1; i <           ; ++i){
      Select point p independently with probability               ;     
      UpdateDistances();
   }
   Prune to k points total by clustering the clusters
}

k · ` · D↵(p)P
x

D↵(p)

log`(�(X, c))

Independent selection
      Easy MR
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k-means||

77

kmeans++:
   Select first point c uniformly at random
   for (int i=1; i <           ; ++i){
      Select point p independently with probability               ;     
      UpdateDistances();
   }
   Prune to k points total by clustering the clusters
}

k · ` · D↵(p)P
x

D↵(p)

log`(�(X, c))

Independent selection
      Easy MR

Oversampling Parameter
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k-means||

78

kmeans++:
   Select first point c uniformly at random
   for (int i=1; i <           ; ++i){
      Select point p independently with probability               ;     
      UpdateDistances();
   }
   Prune to k points total by clustering the clusters
}

k · ` · D↵(p)P
x

D↵(p)

log`(�(X, c))

Independent selection
      Easy MR

Oversampling Parameter

Re-clustering step
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k-means||: Analysis

How Many Rounds?
– Theorem: After                   rounds, guarantee         approximation 
– In practice: fewer iterations are needed
– Need to re-cluster                        intermediate centers

Discussion:
– Number of rounds independent of k
– Tradeoff between number of rounds and memory

79

O(1)O(log`(n�))

O(k` log`(n�))
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How well does this work? 
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Performance vs. k-means++

– Even better on small datasets: 4600 points, 50 dimensions (SPAM) 
– Accuracy:

– Time (iterations):
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Conclusion: ML

Three prevalent ideas:
– If the dimension is small: prune (in a smart way)
– If the dimension is large, figure out what to optimize All-Reduce
– For clustering, adapt methods by oversampling & pruning
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Conclusion: MapReduce

Overall:
– A robust implementation of the BSP model 
– Easy to work with, easy to think about

Things to Keep in Mind:
– The data will be skewed! 
– For specific classes of problems, additional optimizations possible

• Graphs with Pregel, ML with All-Reduce

– Wisely sampling the input & using the sample gets you very far
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Conclusion: MapReduce

Overall:
– A robust implementation of the BSP model 
– Easy to work with, easy to think about

Things to Keep in Mind:
– The data will be skewed! 
– For specific classes of problems, additional optimizations possible

• Graphs with Pregel, ML with All-Reduce

– Wisely sampling the input & using the sample gets you very far

– Apparently it never rains in Aarhus :-) 
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