









## Improved Analysis of the Average-Case Behavior of Classic Single-Source Shortest Path Approaches

#### Problem and Algorithms

#### Single-Source Shortest-Paths



- Input is a graph with *n* vertices and *m* arcs
- Find the shortest path from source vertex *s* to all other vertices
- We study the lower bound of the runtime on graphs with independent real random edge weights uniformly chosen from the interval [0,1]

#### List class algorithms

(Maintain one or more queues)

- Bellman-Ford algorithm
- Pallottino's algorithm

#### Algorithms with Approximate Priority Queues (Maintain arrays of buckets that contain an interval of tentative distances)

- Approximate Bucket Implementation of Dijkstra's algorithm (ABI-Dijkstra)
- Δ-Stepping algorithm

#### **Previous Worst-Case Constructions**



Causes Bellman-Ford and Pallottino's algorithm to run in  $\Omega(n^{4/3-\epsilon})$ 



- Causes ABI-Dijkstra to run in  $\Omega(n \log n / \log \log n)$
- Causes  $\Delta$ -Stepping to run in  $\Omega(n \log n / (\log \log n)^{1/2})$

#### (u,v,k)-Gadgets

- *k* disjoint paths of length 2 between vertices *u* and *v*
- The higher k, the lower the expected shortest path weight

#### Triangle subgraph

• The path from *u* to *v* via *x* is smaller than the direct connection with probability 1/6



# New Worst-Case Instances

### For the Bellman-Ford algorithm:



**Building Blocks** 





For algorithms with approximate priority queues:



| Algorithm              | Previous Lower Bound                     | New Lower Bound               | Upper Bound        |
|------------------------|------------------------------------------|-------------------------------|--------------------|
| Bellman-Ford algorithm | Ω(η <sup>4/3-ε</sup> )                   | $\Omega(n^2)$                 | O(n <sup>2</sup> ) |
| Pallottino's algorithm | Ω(η <sup>4/3-ε</sup> )                   | $\Omega(n^2)$                 | O(n <sup>3</sup> ) |
| ABI-Dijkstra           | $\Omega(n \log n / \log \log n)$         | $\Omega(n^{1.2-\varepsilon})$ | O(n <sup>2</sup> ) |
| 2-Stepping             | $\Omega(n \log n / (\log \log n)^{1/2})$ | $\Omega(n^{1.1-\epsilon})$    | O(n <sup>2</sup> ) |

MADALGO – Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation