
GPU Algorithms III/IV
Computing with CUDA

MADALGO Summer School on Algorithms for Modern Parallel

and Distributed Models

Suresh Venkatasubramanian
University of Utah



Previously...

1999 2006

Programmable
pipeline

sorting
matrices

geometry

CUDA

A streaming model



Outline

1999 2006

Programmable
pipeline

sorting
matrices

geometry

CUDA

A streaming model

sorting
matrices

graphs



CUDA: Compute Unified Device Architecture

Lightweight threads that run SIMD (SIMT) in “blocks”
Blocks run in “SPMD” mode (single program, multiple data)
Memory at multiple levels (thread, blocks, global)
Threads are very lightweight, and there are many of them.
Two views: programmer-centric and hardware-centric



CUDA Model: Blocks

Block

• A block is a collection of threads

• A block can have different ”shapes”

• All threads run the same instructions and can
synchronize

• Theads have local memory (and so do blocks)

• Block memory is low-latency and shared among threads



CUDA Model: Grids

Grid

• A grid is a collection of blocks

• A grid can have different shapes

• A grid of blocks is initiated by a request from the host

kernel<< 4, 3 >>

• A grid has shared memory

• Blocks cannot coordinate with each other and are run
independently



CUDA Model: Overview

Host Device

GridProgram

RUN



CUDA Execution Model

Nickolls, Buck, Garland, Skadron, ACM Queue, Mar 2008[NBGS08]



CUDA Execution Model

CUDA grids

• Each block is assigned to a single SP

• Grid is a software construct

• Block memory managed by SM



CUDA Execution Model

SP

Block

Thread

Warps

• Each block is divided into groups of 32 threads called ”warps”

• Warp threads are scheduled SIMD on the processor

• Warps are scheduled concurrently



CUDA Design Pitfalls: Branch Divergence
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CUDA Design Pitfalls: Memory Bank Conflicts
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Solution: Kernel DecompositionSolution: Kernel Decomposition

Avoid global sync by decomposing computation 
into multiple kernel invocations

In the case of reductions, code for all levels is the 
same

Recursive kernel invocation

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

4 7 5 9
11 14

25

3 1 7 0 4 1 6 3

Level 0:

8 blocks

Level 1:

1 block

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]
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Reduction #1: Interleaved AddressingReduction #1: Interleaved Addressing

__global__ void reduce0(int *g_idata, int *g_odata) {

extern __shared__ int sdata[];

// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

sdata[tid] = g_idata[i];
__syncthreads();

// do reduction in shared mem

for(unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {

sdata[tid] += sdata[tid + s];
}
__syncthreads();

}

// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]
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Parallel Reduction: Interleaved AddressingParallel Reduction: Interleaved Addressing

2011072-3-253-20-18110Values (shared memory)

0 2 4 6 8 10 12 14

22111179-3-558-2-2-17111Values

0 4 8 12

22111379-3458-26-17118Values

0 8

22111379-31758-26-17124Values

0

22111379-31758-26-17141Values

Thread 

IDs

Step 1 

Stride 1

Step 2 
Stride 2

Step 3 

Stride 4

Step 4 
Stride 8

Thread 
IDs

Thread 

IDs

Thread 
IDs

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]
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Reduction #1: Interleaved AddressingReduction #1: Interleaved Addressing

__global__ void reduce1(int *g_idata, int *g_odata) {

extern __shared__ int sdata[];

// each thread loads one element from global to shared mem
unsigned int tid = threadIdx.x;
unsigned int i = blockIdx.x*blockDim.x + threadIdx.x;

sdata[tid] = g_idata[i];
__syncthreads();

// do reduction in shared mem

for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {

sdata[tid] += sdata[tid + s];
}
__syncthreads();

}

// write result for this block to global mem
if (tid == 0) g_odata[blockIdx.x] = sdata[0];

}

Problem: highly divergent 
warps are very inefficient, and 

% operator is very slow

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]
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Performance for 4M element reductionPerformance for 4M element reduction

2.083 GB/s8.054 msKernel 1: 
interleaved addressing
with divergent branching

Note: Block Size = 128 threads for all tests

BandwidthTime (222 ints)

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]
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for (unsigned int s=1; s < blockDim.x; s *= 2) {
if (tid % (2*s) == 0) {

sdata[tid] += sdata[tid + s];

}
__syncthreads();

}

for (unsigned int s=1; s < blockDim.x; s *= 2) {
int index = 2 * s * tid;

if (index < blockDim.x) {
sdata[index] += sdata[index + s];

}
__syncthreads();

}

Reduction #2: Interleaved AddressingReduction #2: Interleaved Addressing

Just replace divergent branch in inner loop:

With strided index and non-divergent branch:

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]
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Parallel Reduction: Interleaved AddressingParallel Reduction: Interleaved Addressing

2011072-3-253-20-18110Values (shared memory)

0 1 2 3 4 5 6 7

22111179-3-558-2-2-17111Values

0 1 2 3

22111379-3458-26-17118Values

0 1

22111379-31758-26-17124Values

0

22111379-31758-26-17141Values

Thread 

IDs

Step 1 

Stride 1

Step 2 
Stride 2

Step 3 

Stride 4

Step 4 
Stride 8

Thread 
IDs

Thread 

IDs

Thread 
IDs

New Problem: Shared Memory Bank Conflicts

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]
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Performance for 4M element reductionPerformance for 4M element reduction

2.33x4.854 GB/s

2.083 GB/s

2.33x3.456 ms
Kernel 2:
interleaved addressing
with bank conflicts

8.054 ms
Kernel 1: 
interleaved addressing
with divergent branching

Step

SpeedupBandwidthTime (222 ints)
Cumulative

Speedup

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]
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Parallel Reduction: Sequential AddressingParallel Reduction: Sequential Addressing

2011072-3-253-20-18110Values (shared memory)

0 1 2 3 4 5 6 7

2011072-3-27390610-28Values

0 1 2 3

2011072-3-27390131378Values

0 1

2011072-3-2739013132021Values

0

2011072-3-2739013132041Values

Thread 
IDs

Step 1 
Stride 8

Step 2 
Stride 4

Step 3 

Stride 2

Step 4 
Stride 1

Thread 
IDs

Thread 
IDs

Thread 
IDs

Sequential addressing is conflict free

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]
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for (unsigned int s=1; s < blockDim.x; s *= 2) {
int index = 2 * s * tid;

if (index < blockDim.x) {
sdata[index] += sdata[index + s];

}
__syncthreads();

}

for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
if (tid < s) {

sdata[tid] += sdata[tid + s];
}
__syncthreads();

}

Reduction #3: Sequential AddressingReduction #3: Sequential Addressing

Just replace strided indexing in inner loop:

With reversed loop and threadID-based indexing:

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]
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Performance for 4M element reductionPerformance for 4M element reduction

2.01x

2.33x

9.741 GB/s

4.854 GB/s

2.083 GB/s

4.68x

2.33x

1.722 msKernel 3:
sequential addressing

3.456 ms
Kernel 2:
interleaved addressing
with bank conflicts

8.054 ms
Kernel 1: 
interleaved addressing
with divergent branching

Step

SpeedupBandwidthTime (222 ints)
Cumulative

Speedup

Mark Harris. Optimizing Parallel Reduction in CUDA.[HBM+07, SHZO07]
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Sample Sort

Given X = {x1, x2, . . . xn}, k
if n ≤ M then
SimpleSort(X)

end if
Pick random sample R = xi1 , xi2 , . . . xik
Sort(R) = {r0 = −∞, r1, r2, . . . , rk,+∞ = rk+1}
Place xi in bucket bj if rj ≤ xi < rj+1
Concatenate SampleSort(b0, k), SampleSort(b1, k), . . .

Parallelize the individual sorts
Use parallel reductions to partition elements



GPU Algorithm: A single phase

Phase 1 Compute the sample and sort it
Phase 2 Within each block, figure out the bucket indices for

each element. Construct k-element histogram. Copy to
global memory

Phase 3 Do prefix sum (parallel reduction!) to find global offsets
Phase 4 Distribute items using global offset



Data-parallel Binary Search
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GPU QuickHull[SKGN09]

Phase 1 Compute the sample and sort it
Phase 2 Within each block, figure out the bucket indices for

each element. Construct k-element histogram. Copy to
global memory

Phase 3 Do prefix sum (parallel reduction!) to find global offsets
Phase 4 Distribute items using global offset



GPU QuickHull[SKGN09]

Phase 1 Compute the pivot point
Phase 2 Within each block, eliminate elements above the pivot

segment. Store the rest
Phase 3 Do prefix sum (parallel reduction!) to find global offsets
Phase 4 Distribute items using global offset



3D Quick Hull Algorithm

Instead of line segments, the separating objects are planes.
As before, points are distributed to the planes that they are
“outside” of.
The operation of extending the hull can create “concave” edges
that need to be repaired.
This is a hybrid CPU-GPU algorithm: distribution happens on
the GPU, and the rest happens on the CPU.
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Challenge

Challenge
Can we get better algorithms for computing 2D Voronoi diagrams
and lower envelopes ?



k-means clustering[ZG09]
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Where are the expensive computations ?

Each point finds its nearest neighbor (O(nk) or O(n log k) if
clever)
We compute the centroids of points in clusters
Points are fixed in all iterations, but centroids change.



Standard Implementation: CPU-GPU hybrid

For each point, need to compute minC ‖p− c‖
This is a trivial parallelization

One thread for each point (or block appropriately)
In each iteration, compute distances from a single center.
k� n, so this is not expensive

For each labelling, find new center.
Could do this entirely in GPU: centers computed via reduce
operation.
Most algorithms don’t do it: copy to CPU.



Why irregular access is a problem

GPUs are designed for high arithmetic intensity and SIMT
behavior
Irregular data locality and access (such as with graphs) reduces
the benefit of these methods
To handle sparse data, you need to store the data compactly, and
process it efficiently based on the format.



Sparse Matrix-Vector multiplication

y = Ax

Easy if A is dense using kernel at each vector: O(n2)

If number of nonzeros in A is small, would prefer O(nnz(A)) (or
linear in input)



Representations

A =




1 7 0 0
0 2 8 0
5 0 3 9
0 6 0 4




Diagonal form

data =




∗ 1 7
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offsets =
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GPU SpMV I

ptr =
[
0 2 4 7 9

]

indices =[
0 1 1 2 0 2 3 1 3

]

data =[
1 7 2 8 5 3 9 6 4

]

CSR representation

start← ptr[ID]
end← ptr[ID + 1]
for i = start to end do
d = d + data[i] + x[indices[start]]

end for
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GPU SpMV II

New idea: instead of assigning one thread per row, assign one warp
per row.

Each thread in a warp sums up a piece of the dot product
At end, a parallel reduction combines the pieces of the sum
Unrolling helps speed the reduction.

Row

Row

Thread 0

Row

Thread 0

Thread 1

Row

Thread 0

Thread 1

Row

Thread 0

Thread 1

Parallel Reduce



GPU SpMV II

New idea: instead of assigning one thread per row, assign one warp
per row.

Each thread in a warp sums up a piece of the dot product
At end, a parallel reduction combines the pieces of the sum
Unrolling helps speed the reduction.

Row

Row

Thread 0

Row

Thread 0

Thread 1

Row

Thread 0

Thread 1

Row

Thread 0

Thread 1

Parallel Reduce



GPU SpMV II

New idea: instead of assigning one thread per row, assign one warp
per row.

Each thread in a warp sums up a piece of the dot product
At end, a parallel reduction combines the pieces of the sum
Unrolling helps speed the reduction.

RowRow

Thread 0

Row

Thread 0

Thread 1

Row

Thread 0

Thread 1

Row

Thread 0

Thread 1

Parallel Reduce



GPU SpMV II

New idea: instead of assigning one thread per row, assign one warp
per row.

Each thread in a warp sums up a piece of the dot product
At end, a parallel reduction combines the pieces of the sum
Unrolling helps speed the reduction.

RowRow

Thread 0

Row

Thread 0

Thread 1

Row

Thread 0

Thread 1

Row

Thread 0

Thread 1

Parallel Reduce



GPU SpMV II

New idea: instead of assigning one thread per row, assign one warp
per row.

Each thread in a warp sums up a piece of the dot product
At end, a parallel reduction combines the pieces of the sum
Unrolling helps speed the reduction.

RowRow

Thread 0

Row

Thread 0

Thread 1

Row

Thread 0

Thread 1

Row

Thread 0

Thread 1

Parallel Reduce



Compute a BFS ordering of a graph[MGG12]

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier



Compute a BFS ordering of a graph[MGG12]

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier



Compute a BFS ordering of a graph[MGG12]

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier



Compute a BFS ordering of a graph[MGG12]

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier

1

2

3

4

5

6

7

• BFS is notoriously hard to parallelize well

• Main challenge is managing the nonuniform vertex and edge
frontier



Matrix View

If A is the adjacency matrix of a graph, and x is a vector representing
the current vertex frontier, then

y = x>A

is the new frontier.

This is under the (min,+) algebra, rather than (+,×) for regular
matrix operations
Methods from sparse matrix multiplication can be used here.
But this is very expensive.

Plan:
Replace matrix view by a “parallel” frontier expansion
Carefully manage duplicate neighbors



Better Implementation I

How to construct a new frontier from current frontier ?

Every thread manages one node, and counts its neighbors.
Once we have all neighbors, we invoke a prefix sum.
Now threads can write new frontier into shared memory.



Better Implementation II
New frontier can have many duplicates in it, if individual threads
share neighbors.

Idea:
When a thread writes a neighbor, it first hashes and checks for a
collision.
If collision, then neighbor has already been written.
Called “warp-culling”.

Using combination of these and other ideas yields fast BFS with
linear work.



Better Implementation II
New frontier can have many duplicates in it, if individual threads
share neighbors.

Idea:
When a thread writes a neighbor, it first hashes and checks for a
collision.
If collision, then neighbor has already been written.
Called “warp-culling”.

Using combination of these and other ideas yields fast BFS with
linear work.



Better Implementation II
New frontier can have many duplicates in it, if individual threads
share neighbors.

Idea:
When a thread writes a neighbor, it first hashes and checks for a
collision.
If collision, then neighbor has already been written.
Called “warp-culling”.

Using combination of these and other ideas yields fast BFS with
linear work.



Better Implementation II
New frontier can have many duplicates in it, if individual threads
share neighbors.

Idea:
When a thread writes a neighbor, it first hashes and checks for a
collision.
If collision, then neighbor has already been written.
Called “warp-culling”.

Using combination of these and other ideas yields fast BFS with
linear work.



Better Implementation II
New frontier can have many duplicates in it, if individual threads
share neighbors.

Idea:
When a thread writes a neighbor, it first hashes and checks for a
collision.
If collision, then neighbor has already been written.
Called “warp-culling”.

Using combination of these and other ideas yields fast BFS with
linear work.



Graph Coloring

Core problem in graph optimization
Register allocation, spectrum assignment, scheduling, ....



Graph Coloring

Core problem in graph optimization
Register allocation, spectrum assignment, scheduling, ....



Graph Coloring

Core problem in graph optimization
Register allocation, spectrum assignment, scheduling, ....



Graph Coloring

Core problem in graph optimization
Register allocation, spectrum assignment, scheduling, ....



What do we know about it

NP-hard, and n1−ε-hard to approximate
Many heuristics (based on greedy ordering)

Fix an arbitrary ordering of the vertices
Color a vertex with the smallest feasible color.
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Ordering Heuristics

First Fit Choose any ordering
SDO/LDO Color is allocated to vertex with highest “saturation”

(number of distinct neighboring colors) and then
highest degree.

MAX OUT Choose vertex that has the maximum number of edges
going out of the subgraph

MIN OUT Choose vertex that has fewest number of edges out of
the subgraph.



Parallel Coloring

1 Partition the graph into roughly equal-sized pieces that have
very few connections between them

2 Color each piece in parallel
3 Fix conflicts at boundaries of pieces

GPU has fine-grained parallelism, faster SIMD processors. Can we do better ?



GPU Coloring[GZL+11]

1 Arbitrarily partition vertices into pieces
2 Color each piece in a thread block, but use common color pool
3 Suppose conflicts occur (at boundary)

Erase colors of conflicted nodes
Try to color them again
Repeat until number of conflicts is small
Shift to CPU.



Summary

GPU SIMD makes conflict checking very easy
Doing careful partitioning (METIS) doesn’t really help (GPU is
more tolerant to “bad” partitioning)
CPU is very slow to resolve conflicts sequentially: best to use it
when number of conflicts is small
GPU heuristics give good quality colorings (not sure why!)



Software Tools

CUDPP (http://code.google.com/p/cudpp (basic data-parallel
tools)
CUBLAS (http://developer.nvidia.com/cuda/cublas)
Thrust (https://code.google.com/p/thrust/) (template
library)
Cusp (http://code.google.com/p/cusp-library/) (sparse
linear algebra)

http://code.google.com/p/cudpp
http://developer.nvidia.com/cuda/cublas
https://code.google.com/p/thrust/
http://code.google.com/p/cusp-library/


Research Tools



Overview of lectures

GPU in the BC era: vertex and fragment shaders. Can do
Voronoi diagrams !
SIMD view key to designing and exploiting behavior of card.
CUDA provides general purpose SIMD framework
Low-level SIMD violations can lose many factors in performance
Parallel reduction and prefix sum is an important primitive.
Many applications: dense systems, sparse systems, geometry, . . .
For efficient code, reduce to known primitives like
reduction/prefix sm



Debate

The GPU represents the realistic future of high intensity parallel
computing. SIMD is the only way to get the throughput needed
for many problems, and once memory buses become faster, GPUs
will become the primary model.

Versus

While the GPU can demonstrate great performance, the hoops you
have to jump through to get this performance are so constraining
and so artificial that GPUs will never be more than a boutique
processor that is great for games.



Questions?
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