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Mathematics of Machine Learning

Choose the pattern ¢ to “fit” the data.

Key: controlling the space of predictors ¢. [Avoiding the curse of dimensionality]

[typically using statistical assumptions to validate models]

» Spaces of low VC-dimension, parameterized families.

Linear methods, parametric families, neural networks...

» Smoothness

Kernel methods, splines, regularization in RKHS, Support Vector Machines.
» Sparsity

Wavelets, LASSO, compressed sensing, L, regularization.

» Geometry -- understanding the shape of the domain.
Graph methods, Laplacian-based methods, diffusions, topological methods.

Mathematics needed: Functional analysis, probability/statistics, combinatorics,
graph theory, approximation theory, differential geometry, topology, algorithms and

numerical methods.



e
Geometry and Manifold learning

Two main points:

1. Natural data is non-uniform and concentrates along lower
dimensional structures.

2. The shape of the data can be exploited for learning patterns.

The notion of a Riemannian manifold is a very general and
powerful mathematical framework for describing geometry.

Note: in high dimension only nearest neighbors make sense.
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Ubiquity of manifolds

» In many domains (e.g., speech, some vision
problems) data explicitly lies on a manifold.

» For all sources of high-dimensional data, true
dimensionality is much lower than the number of
features.

» Much of the data is highly nonlinear.

Manifolds (Riemannian manifolds with a measure +
noise) provide a natural mathematical language for
thinking about high-dimensional data.
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Vocal tract modeled as a sequence of tubes.
(e.g. Stevens, 1998)



Vision
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Robotics
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Graph-based methods

Data ——— Probability Distribution

Graph —— Manifold

Graph extracts underlying geometric structure.
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Problems of machine learning

» Classification / regression.
» Data representation / dimensionality reduction.
> Clustering.
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Common intuition — similar objects have similar labels.



Geometry of classification

How does shape of the data affect the notion of
similarity?

» Manifold assumption.

» Cluster assumption.

Reflect our understanding of structure of natural data.
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Cluster assumption






Unlabeled data




Unlabeled data

Unlabeled data to estimate geometry.
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Manifold assumption

Manifold/geometric assumption:
functions of interest are smooth with respect to the
underlying geometry.

Probabillistic setting:
Map X — Y. Probability distribution P on X x Y.

Regression/(two class)classification: X — R.
Probabilistic version:

conditional distributions P(y|z) are smooth with
respect to the marginal P(x).



What is smooth?

Function f: X — R. Penalty at z € X:

5% / (F(z) = f(z+0)) p(z)ds ~ |V f|*p(z)

small §

Total penalty — Laplace operator:

/ IVF1P0(2) = (f, Apf)



What is smooth?

Function f: X — R. Penalty at z € X:

1

5 [ (@ sa+8) pa)as ~ V5| p(a)

small §

Total penalty — Laplace operator:

/vaz TN

Two-class classification — conditional P(1|x).

Manifold assumption: (P(1|x), A,P(1]x))y 1S small.



Laplace operator

Laplace operator is a fundamental geometric object.

The only differential operator invariant under
translations and rotations.

Heat, Wave, Schroedinger equations.

Fourier analysis.



Laplacian on the circle

2 f

~ o2 = Af where f(0) = f(2n)

Same as In R with periodic boundary conditions.

Eigenvalues:

N\, = n?

Eigenfunctions:

sin(ng), cos(ng)

Fourier analysis.



Laplace-Beltrami operator

0° f (exp,(x))

Generalization of Fourier analysis.



Laplace-Beltrami operator

Eigenfunctions of the Laplace-Beltrami operator provide a basis for
L, functions on the manifold ordered by smoothness according to the
eigenvalue.

The span of a few bottom eigenvectors (e ...ey) is a natural space of
predictors for fitting data.

Data (x;,y;). Simplest learning method:

2
i, Tt )

Predictor: P(x) =YX a;e;(x)

What to do when the manifold is not known?



Algorithmic framework: Laplacian

L =
0 0 -1 3 -1 -1
f6 o 0 0 -1 2 -1
\ 0 0 0 -1 -1 2

Natural smoothness functional (analogue of grad):

S(F) = (fi—fo)?+(fr—f3)*+(fa—f3)° +(fs—fa)* +(fa—f5)° +(fa—f5)* +(fs— fs)?

Basic fact:

S(f) = Z(ﬁ—fj)2 — %fth

1~
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Algorithmic framework




Data representation

f:G—-R

Minimize 37, wi;(fi — f;)

Preserve adjacency.

Solution: Lf = \f (slightly better Lf = AD)
Lowest eigenfunctions of L (L).

Laplacian Eigenmaps
Belkin Niyogi 01

Related work: LLE: Roweis, Saul 00; Isomap: Tenenbaum, De Silva, Langford 00

Hessian Eigenmaps: Donoho, Grimes, 03; Diffusion Maps: Coifman, et al, 04



Laplacian Eigenmaps

» Visualizing spaces of digits and sounds.

Partiview, Ndaona, Surendran 04

» Machine vision: inferring joint angles.

Corazza, Andriacchi, Stanford Biomotion Lab, 05, Partiview, Surendran

EERE -
L 'E‘P

Isometrically invariant representation. [link]

» Reinforcement Learning: value function
approximation. manadevan, Maggioni, 05



Semi-supervised learning

Learning from labeled and unlabeled data.

» Unlabeled data is everywhere. Need to use it.
> Natural learning Is semi-supervised.



Semi-supervised learning

Learning from labeled and unlabeled data.

» Unlabeled data is everywhere. Need to use it.
> Natural learning Is semi-supervised.

Labeled data: (x1,v1),...,(x;,y) € RY xR
Unlabeled data: x;1,..., x4, € RY

Need to reconstruct

fro :RY - R



Reqgularization

Estimate f: RY — R
Data: (x1,91),..., (x5, u)

Regularized least squares (hinge loss for SVM):

f* = argmin — Z )* + Al 1l

feH

fit to data + smoothness penalty

| f|lx Incorporates our smoothness assumptions.
Choice of || || IS Important.



Algorithm: RLS/SVM

Solve: " = argmin - Z 24 )\HfHK
feH

| /|l x 1s @ Reproducing Kernel Hilbert Space norm
with kernel K (x,y).

Can solve explicitly (via Representer theorem):
[
=) aiK(x;,-)
1=1

) = (KD g,

(K)ij = K(xi,x;5)
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Toy example

Laplacian SVM Laplacian SVM
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Manifold regularization

Estimate f: RY — R

Labeled data: (x1,41),..., (x;, )
Unlabeled data: x;1,..., x4,

f* = argmin - : Z (%) 2+ Aallf 5+ M1l
feH

fit to data + extrinsic smoothness + intrinsic smoothness

Empirical estimate:

1

(eI Y () EAV{C NS (T

I£1I7 =

Belkin Niyogi Sindhwani 04



Laplacian RLS/SVM

Representer theorem (discrete case):

[+u

A=) aiK(x,)
1=1

Explicit solution for quadratic loss:

A7l
(u+1)?

a = (JK + \gll + LK) Yy, ...,4,0,...,0]

(K)ij:K(XZ‘,X]‘), J:diag(l,...,l,(),...,())

[ U



RLS vs LapRLS
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Experimental results: USPS
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LapSVM (Test)
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Experimental comparisons

Dataset — g50c Coil20 | Uspst || mac-win | WebKB | WebKB WebKB
Algorithm | (link) (page) | (page+link)
SVM (full labels) 3.82 0.0 3.35 2.32 6.3 6.5 1.0
SVM (I labels) 8.32 24.64 | 23.18 18.87 25.6 22.2 15.6
Graph-Reg 17.30 6.20 21.30 11.71 22.0 10.7 6.6
TSVM 6.87 26.26 | 26.46 7.44 14.5 8.6 7.8
Graph-density 8.32 6.43 16.92 10.48 - - -
VTSVM 5.80 1756 | 17.61 5.71 - - -
LDS 5.62 4.86 15.79 5.13 - - -
LapSVM 5.44 3.66 12.67 10.41 18.1 10.5 6.4




Key theoretical question

What is the connection between point-cloud Laplacian
L and Laplace-Beltrami operator A ,,?

Analysis of algorithms:

Eigenvectors of .~ ——  Eigenfunctions of A,



Main result

Theorem [convergence of eigenfunctions]

Eig[Ly] — Eig[Apm]

n

(Convergence in probabillity)

number of data points n — oo
width fo the Gaussian ¢, — 0

Previous work. Point-wise convergence.
Belkin, 03 Belkin, Niyogi 05,06; Lafon Coifman 04,06;Hein Audibert Luxburg, 05; Gine
Kolchinskii, 06

Convergence of eigenfunctions for a fixed  t:

Kolchniskii Gine 00, Luxburg Belkin Bousquet 04



Heat equation in R":

u(x,t) — heat distribution at time ¢.

u(x,0) = f(z) — Initial distribution. » € R", ¢ € R.

du
Arnu(x,t) = E(x,t)

Solution — convolution with the heat kernel:

2
_ ==yl

fly)e™ 7 ~dy
Rn

|3

u(x,t) = (4nt)™

Recall



Proof idea (pointwise convergence)

Functional approximation:
Taking limit as ¢t — 0 and writing the derivative:

2
llz—=yll© yll

Awf(@) = 5 |(m) 7 [ s dy]o




Proof idea (pointwise convergence)

Functional approximation:
Taking limit as ¢t — 0 and writing the derivative:

|3

Agn f(z) = — | (4mt)~

d |z—y|2
— T ar (]

Mg f(x) & 1 (4t) (f(:v) - f(y)e%—fdy)

Rn



Proof idea (pointwise convergence)

Functional approximation:
Taking limit as ¢t — 0 and writing the derivative:

2
_ Mz—yll* yll

M (o) = g7 |0ty [ e |

ARnﬂx)w—%th)—% (f(as)— fly)e “dy)

Rn

Empirical approximation:
Integral can be estimated from empirical data.

B (1) 5 —(4)” ( - S )



Some difficulties

Some difficulties arise for manifolds:

» Do not know distances.
» Do not know the heat kernel.

X M

dist, (x,y)
|Ix=yIl




Some difficulties

Some difficulties arise for manifolds:

» Do not know distances.
» Do not know the heat kernel.

X M

dist, (x,y)
|Ix=yIl

Careful analysis needed.



Non-uniform convergence

Let A be the heat operator.

H' = exp(—tA )

t : 1—H?
L' approximates ~—;

Non-uniform convergence:

1 — H?
p 7 Apm




Convergence of eigenfunctions

Observe that H? has the same eigenfunctions as A .

Show that L! is a relatively bounded and small
perturbation of A°.

|(H = L) ()]l
LHE(f) ]2

< 1
for small ¢.

Enough for convergence.



Spectral clustering

L =
0 0 -1 3 -1 -1
f6 o 0 0 -1 2 -1
\ 0 0 o0 -1 -1 2
argmin Z Wij = argmm Z = — argmin f'Lf
S iesS, jev-5 {(-11} 57 8 fief{—1,1}

Relaxation gives eigenvectors.

Lv = M\v



Spectral clustering




Spectral clustering
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Spectral clustering

_0.46 0.46 [ 2 -1 -1 0 0 0\
-1 2 -1 0 0 0

-0.26 L -t -1 -1 00

o 0 -1 3 -1 -1

o o0 0 -1 2 -1

0 46 0.4¢ \ 0 0 o0 -1 -1 2

Unnormalized clustering:

Ler = Mie1  e1 = [—0.46, —0.46, —0.26, 0.26, 0.46, 0.46]



Spectral clustering
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Unnormalized clustering:

Ler = Mie1  e1 = [—0.46, —0.46, —0.26, 0.26, 0.46, 0.46]

Normalized clustering:

Le; = MDe;  e; = [—0.31,—0.31,—0.18, 0.18, 0.31, 0.31]



Consistency of spectral clustering

Limit behavior of spectral clustering.
X1y--.,Xp n — o0

Sampled from probability distribution P on X.

Theorem 1.
Normalized spectral clustering (bisectioning) is
consistent.

Theorem 2:

Unnormalized spectral clustering may not converge
depending on the spectrum of L and P.

von Luxburg Belkin Bousquet 04



Continuous spectral clustering

Laplacian eigenfunction as a relaxation of the isoperimetric problem.

69\/[1 b inf VOln_1(5./\/l1)
~ " min (vol" (M), vol" (M — M)

O=X <A < A<t

h < g [Cheeger]




Estimating volumes of cuts

2 1 T 4
vol(0S) ~ N (dnt)l? \/;15ng

L is the normalized graph Laplacian and 1y Is the indicator
vector of points In S. (Narayanan Belkin Niyogi, 06)



Singular manifolds.

{h boundary-type

Intersection-type
{
/

0y




Singular manifolds

Operator scaling:

1
Lf=-—=¢D
tf \/E(p n
| 0() By
O(%) O(V1) : . O(lﬂ)
| VY \
<~ o(vi)—
Boundary Intersection Edge
p=e " ¢ =re ¢ =e re

[B elkin, Que, Wang, Zhou 12]



Conclusion

1. Geometry controls many aspects of inference.

2. Our methods should adapt to geometry.
Graph-based representation of data is good at that.

3. Laplace operator — graph Laplacian is a useful tool
for various inferential tasks.
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