SRP Projekter

SRP forløb på Institut for Datalogi

På Institut for Datalogi, Aarhus Universitet udbyder vi en række forløb som støtte til gymnasiets studieretningsprojekt (SRP) eller andre større skriftlige projekter (fx eksamensprojekt i Teknikfag A, HTX).

Vores tilbud omfatter hovedsageligt hjælp til at udføre den eksperimentelle del og i visse tilfælde også litteratursøgning. Det kan være i form af, at eleverne laver en del af deres eksperimentelle arbejde i instituttets laboratorier eller får teoretisk vejledning af forskere eller ph.d.-studerende.

Kryptologi og sikkerhed (Matematik)

Deltagerantal/kapacitet 1-4 pr. periode

Gymnasiefag: Matematik

Institut: Institut for Datalogi

Sted: Institut or Datalogi, IT-Byen Katrinebjerg, Åbogade 34, 8200 Aarhus N 

Dato(er) hvor forløbet udbydes på AUHele året

Tidsramme: Vejledning pr. mail/tlf med PhD studerende, samt evt. besøg på Instituttet

Til læreren og elevens forberedelse: Baggrundsnote om kryptologi , samt evt. artikler indenfor SRP opgavens fokusområde

Beskrivelse

Kryptologi er et ord der dækker over flere ting. Der er to hovedemner indenfor moderne kryptologi, nemlig

1. Hemmeligholdelse

Hemmelige beskeder som banktransaktioner, militære ordrer og anden ømtålelig information, kan beskyttes ved at kode beskeden.

2. Autentitetsbekræftelse

Sikring af at beskeden er modtaget som den er sendt. Altså at afgøre om beskeden er blevet ændret undervejs. Ligeledes at bekræfte, at senderen er den han udgiver sig for at være.

Man forbinder normalt kryptologi med hemmeligholdelse, men det er et faktum at autentitetsbekræftelse er et lige så vigtigt og stort et felt.

Forslag til faglige perspektiver/EksemplerRSA ktryptering, Kryptering i et historisk perspektiv, sikre flerparts-beregninge, Online auktioner.

Inspiration til studieretningsprojektet: Vi modtager meget gerne eksempler på problemformuleringer fra elever og lærere som har udført dette forløb eller lignende., og er også gerne medvirkende til at hjælpe elever med at få det rigtige fokus på et evt. SRP-projekt. Henvend dig til kontaktpersonen herunder.

Kontakt/Ansøgning: Søren Poulsen, poulsen@cs.au.dk, 20951282

Algoritmer og grafteori (Matematik)

En algoritme er en utvetydig og abstrakt beskrivelse af, hvordan en specifik type problem løses endeligt. En algoritme er en slags opskrift til at løse et problem af en bestemt type, som leverer en løsning uanset den konkrete problemsituations udseende. Et eksempel kunne være en præcis beskrivelse af, hvordan man sorterer et spil kort, uanset hvordan de enkelte kort ligger fra udgangspunktet. Hvis vi som eksempel skal beskrive hvordan man sorterer et spil kort, uanset udgangspunktet, kunne det gøres på følgende måde: Tag et tilfældigt kort fra bunken. Gå nu bunken igennem - alle dem som er højere end dit tilfældige kort, lægger du i en bunke til venstre, og dem som er mindre i en bunke til højre. Læg dit tilfældige kort i den venstre bunke. Hvis der er mere end to kort i bunkerne, gentag pkt 1 til 3 for begge af de to bunker. Sørg for, at når de enkelte bunker deles, bliver begge de nye bunker sammen på samme side. Hvis der er to kort i bunken, læg det højeste øverst, og læg bunken ovenpå den bunke den blev delt fra. Denne algoritme kalder sig selv på den måde, at man skal udføre den igen og igen på mindre og mindre bunker (indtil man kun har to kort i bunkerne, så lægger man dem sammen igen).

Algoritmer og grafteori (Matematik)

En algoritme er en utvetydig og abstrakt beskrivelse af, hvordan en specifik type problem løses endeligt.

En algoritme er en slags opskrift til at løse et problem af en bestemt type, som leverer en løsning uanset den konkrete problemsituations udseende. Et eksempel kunne være en præcis beskrivelse af, hvordan man sorterer et spil kort, uanset hvordan de enkelte kort ligger fra udgangspunktet.

Hvis vi som eksempel skal beskrive hvordan man sorterer et spil kort, uanset udgangspunktet, kunne det gøres på følgende måde:

  1. Tag et tilfældigt kort fra bunken.

  2. Gå nu bunken igennem - alle dem som er højere end dit tilfældige kort, lægger du i en bunke til venstre, og dem som er mindre i en bunke til højre.
  3. Læg dit tilfældige kort i den venstre bunke.
  4. Hvis der er mere end to kort i bunkerne, gentag pkt 1 til 3 for begge af de to bunker. Sørg for, at når de enkelte bunker deles, bliver begge de nye bunker sammen på samme side.
  5. Hvis der er to kort i bunken, læg det højeste øverst, og læg bunken ovenpå den bunke den blev delt fra.

Denne algoritme kalder sig selv på den måde, at man skal udføre den igen og igen på mindre og mindre bunker (indtil man kun har to kort i bunkerne, så lægger man dem sammen igen).

Context Awareness (Matematik, Fysik, Teknologifag, IT)

Context-awareness er et forskningsområde der fokuserer på at levere relevante services til brugere baseret på eksempelvis tid og sted, samt andre parametre  der beskriver brugeren og det omgivende miljø. Context-awareness er vigtig for udviklingen at nye forskningsområder som pervasive computing, ubiquitous computing, ambient computing, interaktive rum, osv. 

Begrebet Context Awarenes dækker over teknikker og teknologier som kan omfatte:

  • Software infrastrukturer til context-aware computing,
  • Kontekstmodellering,
  • Sensor / aktuator netværk og positionering teknologier, der kan bruges til at oprette context-aware services,
  • Aktivitetsbaseret IT,
  • Aktivitet-genkendelse og mønstergenkendelse,
  • Context-awareness til mobile enheder og andre faste installationer i området.